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Abstract
Since the remarkable generation performance
of large language models raised ethical and
legal concerns, approaches to detect machine-
generated text by embedding watermarks are
being developed. However, we discover that
the existing works fail to function appropri-
ately in code generation tasks due to the task’s
nature of having low entropy. Extending a
logit-modifying watermark method, we pro-
pose Selective WatErmarking via Entropy
Thresholding (SWEET), which enhances de-
tection ability and mitigates code quality degen-
eration by removing low-entropy segments at
generating and detecting watermarks. Our ex-
periments show that SWEET significantly im-
proves code quality preservation while outper-
forming all baselines, including post-hoc detec-
tion methods, in detecting machine-generated
code text. Our code is available in https://
github.com/hongcheki/sweet-watermark.

1 Introduction

In understanding and generating software pro-
grams, large language models have rapidly ad-
vanced towards expert-like proficiency (Chen et al.,
2021; Luo et al., 2023; Li et al., 2023b; Nijkamp
et al., 2023; Zheng et al., 2023; Gunasekar et al.,
2023; Touvron et al., 2023; OpenAI, 2023a). This
breakthrough in the automation of the coding pro-
cess improves the productivity and efficiency of
software engineer and lowers the barriers to creat-
ing programs for non-experts (Vaithilingam et al.,
2022).

However, this advance comes with significant le-
gal, ethical, and security concerns, including code
licensing issues, code plagiarism, code vulnerabil-
ity, and malware generation (He and Vechev, 2023;
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Question
def check_list_value(t):

"""Return true if all numbers in the list
l are below threshold t.
"""

(a) Solution
for elem in l:

if elem >= t:
return False

return True
(b) WLLM, Strong watermark

for k in range(l):
if t <= k:

break
return True

(c) WLLM, Weak watermark
for elem in l:

if elem >= t:
return False

return True
(d) SWEET(ours) Selective watermarking

for k in l:
if t <= k:

return False
return True

Detection: / Correctness:✅ ❌

Detection: / Correctness:✅❌

Detection: / Correctness:✅ ✅

Figure 1: Illustrated comparison of WLLM (Kirchen-
bauer et al., 2023a) and SWEET (ours). Note that this
example is a short hypothetical explanatory example.
LLMs can generate working source code (a) without a
watermark. Strong watermark (b) or weak watermark
(c) may result in detection or correctness failure, but (d)
selective watermarking may avoid both failures.

Sandoval et al., 2023; Pearce et al., 2022; Carlini
et al., 2021; Mirsky et al., 2023; Hazell, 2023). For
example, there is an ongoing class-action copy-
right lawsuit between a group of individuals and
Microsoft, GitHub, and OpenAI, arising from al-
legations of unlawful utilization and reproduction
of the source code12. Furthermore, shortly after
the launch of ChatGPT, numerous malicious actors
on the Dark Web were observed sharing machine-
generated malware and spear phishing tutorials3.
Therefore, the development of reliable tools for

1Code plagiarism
2Code licensing issue
3Malware generation
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detecting machine-generated code is a very timely
matter and is of utmost importance for fairly de-
ploying LLMs with coding capabilities.

Despite the need for immediate treatment of the
machine-generated code detection problem, few
efforts have been made to address it. Instead, many
works still prioritize a detection problem on normal
text (Solaiman et al., 2019; Ippolito et al., 2020;
Guo et al., 2023; Tian and Cui, 2023; OpenAI,
2023b; Yu et al., 2023; Gehrmann et al., 2019;
Mitchell et al., 2023; Yang et al., 2023). While
these post-hoc detection methods (i.e., no control
during the text generation) have demonstrated pow-
erful performance in the many domain of natural
language tasks, their application to programming
language remains unexplored.

Contrary to the post-hoc detection methods,
another line of research for detecting machine-
generated text has gained attention: Watermarking-
based methods, which embed a hidden signal
within the generated text (Kirchenbauer et al.,
2023a,b; Kuditipudi et al., 2023; Wang et al., 2023).
For example, a method proposed in Kirchenbauer
et al. (2023a) – which we refer to as WLLM (Wa-
termarking for Large Language Models) – ran-
domly divides the entire vocabulary into two
groups (i.e., the green list and the red list) at
each generation step and enhance the probability
of green list tokens to be sampled. By adding
scalar values to the logits of a green list tokens,
the model favors generating tokens from the green
list rather than the red one. To detect the water-
mark in a text, we count the number of green
tokens and check whether this number is statis-
tically significant (through hypothesis testing) to
conclude whether the model output is generated
without knowledge of the green-red rule.

While both watermarking-based methods and
post-hoc detection methods work well in many lan-
guage generation tasks, we observe that these per-
formances do not transfer well to code generation
tasks, for example, in Figure 1. In other words, it
is much more challenging to embed watermarks
in a detectable way without impairing the code
functionality. We attribute this to the nature of
extremely low entropy4 of code generation. If wa-
termarking is applied strongly, it can severely de-
grade the quality of the model output, which is
particularly critical in code generation, as a single

4We calculate entropy over the probability of the next token
prediction. Please refer to Eq. 5 for details.

violation of a rule can break the entire code (see
“strong watermark” in Figure 1). On the other hand,
if watermarking is applied too weakly, the low en-
tropy hinders properly embedding watermarks and
results in insufficient green tokens appearing, lead-
ing to increased difficulty in detection (see “weak
watermark” in Figure 1). These failures are not
significant in plain text generation because the rela-
tively higher entropy allows for more flexibility in
candidate selections for watermarking.

To address these failure modes, we extend the
WLLM and propose Selective WatErmarking via
Entropy Thresholding (SWEET) for Code LLMs
(and LLMs). Instead of applying the green-red
rule to every single token during generation, we
only apply the rule to tokens with high enough en-
tropy given a threshold. That is, we do not apply
the green-red rule to the important tokens for mak-
ing functional code, while making sure there are
enough green list tokens to make a detectable wa-
termark for less important tokens, hence, directly
addressing each of the above failure modes. In
code generation tasks, our method outperforms all
baselines, including post-hoc detection methods, in
detecting machine-generated code while achieving
less code quality degradation than WLLM. Fur-
thermore, through various analyses, we demon-
strate that our method operates well even without
prompts or with a small surrogate model, indicating
its robust performance under practical settings.

Our contributions are as follows:

• We are the first to empirically explore the
breakdown of existing watermarking and post-
hoc detection methods in the code domain.

• We propose a simple yet effective method
called SWEET, which improves WLLM
(Kirchenbauer et al., 2023a) and achieves
significantly higher performance in machine-
generated code detection while preserving
code quality more than WLLM.

• We have demonstrated the practical applica-
bility and predominance of our method even
in real-world settings, i.e., 1) without prompts,
2) utilizing a smaller model as a detector, or
3) under paraphrasing attacks.

2 Related Work

Software Watermarking Software watermarking
is the research field where a secret signal is em-
bedded in the code without affecting its perfor-

4891



mance, to prevent software piracy. Static water-
marking (Hamilton and Danicic, 2011; Li and Liu,
2010; Myles et al., 2005) imprints watermarks typ-
ically through code replacement and reordering.
On the other hands, dynamic watermarking (Wang
et al., 2018; Ma et al., 2019) injects watermarks
during the compiling or executing stage of a pro-
gram. For a detailed survey, please refer to Dey
et al. (2018).

Watermarking code text generated from a LLM
is closer to static watermarking. For example, Li
et al. (2023c) proposes a method employing the
replacement of synonymous code. However, since
this method heavily relies on language-specific
rules, a malicious user knowing these rules could
reverse the watermarking.

LLM Text Watermarking The majority of wa-
termarking methods for texts from LLMs are based
on the modification of the original text via a prede-
fined set of rules (Atallah et al., 2001, 2002; Kim
et al., 2003; Topkara et al., 2006; Jalil and Mirza,
2009; Meral et al., 2009; He et al., 2022a,b) or an-
other language model, such as transformer-based
networks. (Abdelnabi and Fritz, 2021; Yang et al.,
2022; Yoo et al., 2023).

Recently, a line of work embeds watermarks into
tokens during the sampling process of LLMs (Liu
et al., 2024). They embed watermarks within LLM-
generated texts by either motifying logits from
the LLM (Kirchenbauer et al., 2023a,b; Liu et al.,
2023a; Takezawa et al., 2023; Hu et al., 2023) or
manipulating the sampling procedure (Christ et al.,
2023; Kuditipudi et al., 2023). Moreover, some re-
cent works focus on the robustness of watermarks
against attacks to remove watermarks (Zhao et al.,
2023; Liu et al., 2023b; Ren et al., 2023). Lastly,
Gu et al. (2023) investigates the learnability of wa-
termarks in the distillation process from teacher to
student model.

However, these watermark methods exhibit vul-
nerability in their watermark detection performance
under low entropy situations (Kirchenbauer et al.,
2023a; Kuditipudi et al., 2023), and a limited num-
ber of studies, such as CTWL (Wang et al., 2023),
try to handle it. We directly address the degradation
of watermark detection performance in low entropy
situations and demonstrate our method’s efficacy
in low entropy tasks, such as code generation.

Post-hoc Detection Post-hoc detection methods
aim to differentiate between human-authored and
machine-generated text without embedding any
signal during generation. One line of work lever-

ages perplexity-based features like GPTZero (Tian
and Cui, 2023), Sniffer (Li et al., 2023a), and
LLMDet (Wu et al., 2023). Another line of work
uses pre-trained LM, such as RoBERTa (Liu et al.,
2019), and fine-tunes it as a classifier to identify
the source of text (Solaiman et al., 2019; Ippolito
et al., 2020; OpenAI, 2023b; Guo et al., 2023;
Yu et al., 2023; Mitrović et al., 2023). Mean-
while, some recent works tackle the detection
problem without additional training procedures,
such as GLTR (Gehrmann et al., 2019), Detect-
GPT (Mitchell et al., 2023), and DNA-GPT (Yang
et al., 2023). However, post-hoc detection meth-
ods remain challenging. For example, while the
GPTZero (Tian and Cui, 2023) is still in service,
OpenAI’s AI text classifier (OpenAI, 2023b) was
discontinued after six months due to low accu-
racy rates. Furthermore, we have demonstrated
that post-hoc detection methods failed to detect
machine-generated code, with low entropy.

3 Method

We propose a new watermarking method, SWEET,
that selectively watermarks tokens only with high
enough entropy.

3.1 Motivation

Although the previous watermarking method
WLLM (Kirchenbauer et al., 2023a) can be applied
to any domain of LLM-generated text5, it incurs
two critical problems during embedding and detect-
ing watermarks in code generation, attributed to a
dilemma regarding watermark strength.

Watermarking causes performance degrada-
tion. There are only a few different ways of ex-
pressing the same meaning in a programming lan-
guage, and just one wrong token can be attributed
to undesirable outputs. If watermarks are embed-
ded strongly, as WLLM randomly divides the vo-
cabulary into green and red lists without leveraging
any information about the context, promoting the
logits of only green list tokens must heighten the
chance of generating the wrong token. For ex-
ample, in Figure 2 (a), after “return” token in the
second row, the next token with the highest logit
is “sum”, which is also part of the canonical solu-
tion. However, WLLM puts “sum” into the red list
while putting “mean” into the green list. Hence, the
sampled token was “mean”, resulting in a syntax
error.

5Please refer to Appendix A for the details of WLLM.
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(a) WLLMQuestion (HumanEval[4])

(b) SWEET – Entropy Threshold (Low)

Canonical solution

(d) SWEET – Entropy Threshold (High)(c) SWEET – Entropy Threshold (Moderate)

Correctness:          / z-score: 2.45 / watermarking ratio: 1.0❌

Correctness:          / z-score: 3.39 / watermarking ratio: 0.44❌

Correctness:          / z-score: 4.67 / watermarking ratio: 0.19✅Correctness:          / z-score: 4.96 / watermarking ratio: 0.20✅

Figure 2: A real example of HumanEval/4 for comparing between (a) WLLM and (b)–(d) our SWEET with different
thresholds. Text colors annotate whether tokens are in the green or red list. Gray tokens have entropy smaller
than the threshold and are not watermarked. The intensity of the yellow background color visualizes the entropy
value. (a) While WLLM produces an incorrect code and less detectable watermarks with a few green tokens
(low z-score), (b)-(d) SWEET improves both code quality and z-score by selectively embedding and detecting
watermarks using an entropy threshold. Interestingly, (c) the z-score peaks with a moderate threshold, and (d) as the
threshold increases, the z-score declines due to the decrease in the watermarking ratio.

Low Entropy Sequences Avoid Being Water-
marked. Another critical issue is when watermark
strength is too weak to embed watermarks into a
text with low entropy. If a red list token has a too
high logit value to be inevitably generated, it hin-
ders watermark detection. For example, in Figure 2
(a), tokens with white backgrounds representing
low entropy have few green tokens. This becomes
much more fatal in code generation tasks where
outcomes are relatively shorter than the plain text,
such as asking only a code block of a function6.
The WLLM detection method is based on a sta-
tistical test, which involves counting the number
of green list tokens in the entire length. However
detecting watermarks based on a statistical test de-
teriorates if the length is short.7

3.2 The SWEET Method

SWEET can mitigate this dilemma regarding the
watermark strength by distinguishing watermark-
applicable tokens, meaning we embed and detect
watermarks only within tokens with high entropy.

Generation. The generation step of our method
is in Algorithm 1. Given a tokenized prompt

6The average token length of human-written solution codes
in HumanEval, MBPP, and DS-1000 datasets is only 57.

7We measured detectability according to the length of
generated texts and observed that WLLM performs rela-
tively poorly while SWEET is robust in detecting water-
marks within short texts. For more details, please refer to
Appendix G.

x = {x0, . . . , xM−1} and already generated to-
kens y[:t] = {y0, . . . , yt−1}, a model calculates an
entropy value (Ht) of the probability distribution
for yt. We then only apply the watermarking when
Ht is higher than the threshold, τ . We randomly
bin a vocabulary by green and red with a fixed
green token ratio γ. If a token is selected to be
watermarked, we add a constant δ to green tokens’
logits, aiming to promote the sampling of the green
tokens. By limiting the promotion of green tokens
only to tokens with high entropy, we prevent the
model’s logit distribution changes for tokens where
the model has confidence (and, therefore, low en-
tropy), resulting in preserving code quality.

Detection. We outline our detection process
in Algorithm 2. Given a token sequence y =
{y0, . . . , yN−1}, our task is to detect watermarks
within y; therefore, determine whether it is gen-
erated from the specific language model. Like in
the generation phase, we compute the entropy val-
ues Ht for each yt. Let Nh denote the number of
tokens that have an entropy value Ht higher than
the threshold τ , and let Nh

G denote the number of
green tokens among in Nh. Finally, with the green
list ratio among entire vocabulary γ used in the
generation step, we compute a z-score under the
null hypothesis where the text is not watermarked
by

z =
Nh

G − γNh

√
Nhγ(1− γ)

(1)
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We can say the text is watermarked more confi-
dently as z-score goes higher. We set zthreshold as a
cut-off score. If z > zthreshold holds, we decide that
the watermark is embedded in y and thus generated
by the LLM. The effect of the entropy threshold in
the detection phase is described in the following
section.

3.3 Effect of Entropy Thresholding

This section shows that selective watermark detec-
tion based on the entropy threshold improves the
detectability.

Theorem 1 implies that we can ensure a higher
lower bound of z-score by the SWEET detection
method than WLLM. Recalling Sec 3.1, this is
achieved by ignoring tokens with low entropy, lead-
ing to increases in the ratio of green tokens within
the text and detectability.

For the sake of theoretical analysis, we use spike
entropy (Eq. 4), which is a variant of entropy de-
fined in Kirchenbauer et al. (2023a). In practice,
we use the entropy in Eq. 5.

Theorem 1. Consider a token sequence y =
{y0, . . . , yN−1} generated by a watermarked code
LLM. (S0, . . . , SN−1) is a sequence of corre-
sponding spike entropy, in which the modulus is
(1−γ)(eδ−1)
1+(eδ−1)γ

. Let τ be an entropy threshold, N l and

Nh be the number of tokens whose spike entropy is
lower or higher than the threshold.

If the following assumption regarding the ratio
of low entropy tokens holds

N l

N
≤ 1− (

αS − 1

αSh − 1
)2

then there is a lower bound of z-score that is
always higher when the entropy threshold is ap-
plied, where α = eδ

1+(eδ−1)γ
, S = ΣN

t=1St/N , and

Sh = ΣN
t=1St × 1(St ≥ τ)/Nh.

Remark. The assumption means choosing an
entropy threshold that does not ignore too many
tokens (N l) is important.

4 Experiments

We conduct a series of experiments to evaluate the
effectiveness of our watermarking method in code
generation for two aspects: (i) quality preserving
ability and (ii) detection strength. Our base model
is StarCoder (Li et al., 2023b), which is an open-
source LLM specifically for code generation. We

also conduct experiments on one of the general-
purpose LLM, LLaMA2 (Touvron et al., 2023) (see
the results in Appendix F).

4.1 Tasks and Metrics
We select three Python code generation tasks, Hu-
manEval (Chen et al., 2021), MBPP (Austin et al.,
2021), and DS-1000 (Lai et al., 2023), as our main
testbeds. These tasks contain Python programming
problems, test cases, and human-written canonical
answers. Language models are prompted with pro-
gramming problems and expected to generate the
correct code that can pass the test cases. To eval-
uate our approach’s performance in more diverse
software development contexts, such as other lan-
guages or other code generation scopes, we also in-
clude two more datasets: HumanEvalPack (Muen-
nighoff et al., 2024) and ClassEval (Du et al., 2023).
Please refer to Appendix E for implementation de-
tails of these benchmarks.

To evaluate the functional quality of generated
source code, we use pass@k (Chen et al., 2021) by
generating n(> k) outputs for each programming
problems. This metric estimates the percentage
of code generated correctly-performing. For the
detection ability, we use AUROC (i.e., Area Under
ROC) value as a main metric. We also report the
true positive rate (TPR; correctly detecting LLM-
generated code as LLM-generated) when the false
positive rate (FPR; falsely detecting human-written
code as LLM-generated) is confined to be lower
than 5%. This is to observe the detection ratio of a
practical setting, where high false positive is more
undesirable than false negative.

4.2 Baselines
We compare SWEET with machine-generated
text detection baselines. Post-hoc detection base-
lines do not need any modification during gener-
ation so that they never impair the quality of the
model output. LOGP(X), LOGRANK (Gehrmann
et al., 2019), and DETECTGPT (Mitchell et al.,
2023) are zero-shot detection methods that need
no labeled datasets. GPTZERO (Tian and Cui,
2023) and OPENAI CLASSIFIER (Solaiman et al.,
2019) are trained classifiers. For Watermarking-
based methods, we have included two base-
lines: WLLM (Kirchenbauer et al., 2023a) and
EXP-EDIT (Kuditipudi et al., 2023). To embed a
watermark, methods that distort the model’s sam-
pling distribution, such as WLLM or ours, tend to
have better detection ability, but degradation of text
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Method HUMANEVAL MBPP DS-1000

PASS@1 AUROC TPR FPR PASS@1 AUROC TPR FPR PASS@1 AUROC TPR FPR

Non-watermarked 33.4 - - - 37.8 - - - 26.3 - - -
Non-watermarked (w/ high entropy) 18.3 - - - 21.4 - - - 12.7 - - -

Post-hoc
LOG P(X)

33.4

0.533 0.113 < 0.05

37.8

0.525 0.054 < 0.05

26.3

0.566 0.100 < 0.05
LOGRANK 0.553 0.127 < 0.05 0.527 0.052 < 0.05 0.562 0.105 < 0.05

DETECTGPT (T5-3B) 0.549 0.092 < 0.05 0.531 0.040 < 0.05 0.433 0.070 < 0.05
DETECTGPT 0.533 0.165 < 0.05 0.565 0.158 < 0.05 0.606 0.113 < 0.05

GPTZERO 0.521 0.122 < 0.05 0.449 0.026 < 0.05 0.539 0.063 < 0.05
OPENAI CLASSIFIER 0.518 0.053 < 0.05 0.500 0.036 < 0.05 0.524 0.075 < 0.05

Watermarking
EXP-EDIT 33.6 0.489 0.085 < 0.05 37.5 0.536 0.044 < 0.05 26.2 0.546 0.066 < 0.05

EXP-EDIT (w/ high entropy) 19.3 0.733 0.427 < 0.05 22.7 0.744 0.33 < 0.05 12.7 0.743 0.378 < 0.05

WLLM (∆PASS@1 ∼ −10%)⋆ 29.6 0.822 0.402 < 0.05 34.5 0.718 0.178 < 0.05 23.9 0.627 0.152 < 0.05
SWEET (∆PASS@1 ∼ −10%)⋆ 32.6 0.943 0.835 < 0.05 33.8 0.873 0.590 < 0.05 23.7 0.815 0.384 < 0.05

WLLM (AUROC≥ 0.9)† 25.3 0.904 0.652 < 0.05 24.2 0.930 0.718 < 0.05 8.6 0.944 0.793 < 0.05
SWEET (AUROC≥ 0.9)† 32.6 0.943 0.835 < 0.05 33.2 0.906 0.548 < 0.05 18.8 0.924 0.649 < 0.05

Table 1: Main results of code generation performance and detection ability. Since calibration on watermarking
strength leads to trade-offs between code generation quality and detection ability, we present two results for WLLM
and SWEET. ⋆ for the best detection score (i.e., AUROC and TPR) while allowing a code generation quality
decrease of ∼10% compared to Non-watermarked, and † for the best code generation quality (PASS@1) among
AUROC ≥ 0.9. The selected points are shown in Figure 3. We add EXP-EDIT and a Non-watermarked baseline
with a high entropy setting (i.e., temperature=1.0 and top-p=1.0).

quality may arise. On the other hand, EXP-EDIT

is expected to cause no degradation in text quality
as they do not distort the sampling distribution of
the model. 8 More details of implementation are in
Appendix D.

5 Results

5.1 Main Results
Table 1 presents results from all baselines and our
approach. In WLLM and SWEET, there is a clear
trade-off between detection and code generation
ability depending on the watermarking strength.
Therefore, we measure the maximum scores of
one domain while setting a lower bound for the
scores of other domain. Specifically, to measure
AUROC scores, we find the best AUROC scores
around 90% of the pass@1 performance of the non-
watermarked base model. On the other hand, for
measuring pass@1, we select from those with an
AUROC of 0.9 or higher.

Detection Performance. Table 1 shows that
overall, our SWEET method outperforms all base-
lines in detecting machine-generated code with
a price of 10% degradation of code functional-
ity. Both in the MBPP and DS-1000 datasets,
SWEET achieves AUROC of 0.873 and 0.815,

8When evaluating code generation performance through
pass@1, a low temperature was applied to all models. How-
ever, the spiky distribution resulting from the low temperature
hindered EXP-EDIT from adequately embedding watermark-
ing. Therefore, we have also included EXP-EDIT baseline
with a high entropy by setting temperature=1.0 and top-p=1.0.

respectively, whereas none of the baselines ex-
ceeded 0.8. SWEET even achieves an AUROC
of 0.943 in HumanEval with a 2.4% degradation
of code functionality. However, when only near
10% degradation of code functionality is allowed,
WLLM shows lower detection performance than
our method. In the case of the distortion-free wa-
termarking method, due to the lower entropy of the
code generation task, EXP-EDIT fails to achieve
an AUROC score exceeding 0.6 in all cases, and
even EXP-EDIT with high entropy setting could
not outperform our methods with regard of the de-
tection performance. While all post-hoc detection
baselines preserve code functionality as they do not
modify generated code, none of them achieve an
AUROC score above 0.6.9

Code Quality Preservation. In the last two
rows of Table 1, despite the inevitable text qual-
ity degradation caused by WLLM and SWEET,
our SWEET method preserves code functional-
ity much more while maintaining the high detec-
tion ability of AUROC > 0.9 when compared to
WLLM. Specifically, pass@1 of WLLM for Hu-
manEval decreases from 33.4 to 25.3, a 24.3% loss
in the code execution pass rate. Similarly, for the
MBPP and the DS-1000 dataset, the drops in per-
formances are 36.0% and 67.3%, respectively. On
the other hand, our approach loses only 2.4% (Hu-
manEval), 12.2% (MBPP), and 28.5% (DS-1000),

9We defer a more in-depth discussion about the breakdown
of Post-hoc methods to Appendix K.
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Method HUMANEVALPACK - C++ HUMANEVALPACK - JAVA CLASSEVAL

PASS@1 AUROC TPR FPR PASS@1 AUROC TPR FPR PASS@5 AUROC TPR FPR

Non-watermarked 29.4 - - - 31.5 - - - 14.0 - - -
Non-watermarked (w/ high entropy) 18.2 - - - 13.9 - - - 19.0 - - -

Post-hoc
LOG P(X)

29.4

0.656 0.160 < 0.05

31.5

0.635 0.127 < 0.05

14.0

0.847 0.320 < 0.05
LOGRANK 0.658 0.187 < 0.05 0.654 0.240 < 0.05 0.821 0.260 < 0.05

DETECTGPT (T5-3B) 0.646 0.079 < 0.05 0.699 0.273 < 0.05 0.610 0.140 < 0.05
DETECTGPT 0.525 0.079 < 0.05 0.650 0.116 < 0.05 0.749 0.210 < 0.05

GPTZERO 0.486 0.073 < 0.05 0.529 0.000 < 0.05 0.885 0.800 < 0.05
OPENAI CLASSIFIER 0.631 0.120 < 0.05 0.545 0.087 < 0.05 0.503 0.010 < 0.05

Watermarking
EXP-EDIT 28.3 0.605 0.091 < 0.05 32.1 0.486 0.024 < 0.05 21.0 0.497 0.020 < 0.05

EXP-EDIT (w/ high entropy) 16.7 0.749 0.402 < 0.05 14.3 0.828 0.512 < 0.05 21.0 0.513 0.040 < 0.05

WLLM (∆PASS@1 ∼ −10%)⋆ 25.9 0.887 0.604 < 0.05 25.5 0.833 0.518 < 0.05 12.0 0.939 0.840 < 0.05
SWEET (∆PASS@1 ∼ −10%)⋆ 26.2 0.943 0.817 < 0.05 27.6 0.862 0.457 < 0.05 13.0 0.980 0.920 < 0.05

WLLM (AUROC≥ 0.9)† 25.9 0.887 0.604 < 0.05 9.5 0.947 0.872 < 0.05 12.0 0.939 0.840 < 0.05
SWEET (AUROC≥ 0.9)† 29.0 0.904 0.707 < 0.05 22.6 0.969 0.878 < 0.05 13.0 0.980 0.920 < 0.05

Table 2: Main results of code generation performance and detection ability on HumanEvalPack (Muennighoff
et al., 2024) and ClassEval (Du et al., 2023). Since calibration on watermarking strength leads to trade-offs between
code generation quality and detection ability, we present two results for WLLM and SWEET. ⋆ for the best
detection score (i.e., AUROC and TPR) while allowing a code generation quality decrease of ∼10% compared to
Non-watermarked, and † for the best code generation quality (PASS@1) among AUROC ≥ 0.9. We add EXP-EDIT
and a Non-watermarked baseline with a high entropy setting (i.e., temperature=1.0 and top-p=1.0).

Figure 3: The tradeoff between AUROC and pass@1 of detecting real and generated samples of HumanEval, MBPP,
and DS-1000 datasets. The pink line represents a Pareto frontier of SWEET, while the blue line represents that of
WLLM. SWEET shows consistent dominance. The red/orange line and circles are the points used in Table 1. The
entropy threshold for SWEET is 1.2 here, and Pareto frontier figures for all threshold values are in Figure 6.

respectively, which are significantly less than those
of WLLM.

C++/Java/Class-level Code Generation. Ta-
ble 2 presents results on other programming lan-
guages (C++ and Java) and another code gen-
eration scope (i.e., class-level). While preserv-
ing code functionality much more than WLLM,
SWEET shows the highest detection performance
except in the Java environment, where the TPR
score of WLLM is higher than that of SWEET.
The results demonstrate that the efficacy of our
methodology is not limited to certain types of pro-
gramming languages or software development en-

vironments. For more analysis of the results, please
refer to Appendix E.

5.2 Comparison of Pareto Frontiers
between SWEET and WLLM

In the cases of SWEET and WLLM, watermark-
ing strength and spans can vary depending on the
ratio of the green list tokens γ and the logit increase
value δ. To demonstrate that SWEET consistently
outperforms the baseline WLLM regardless of the
values of γ and δ, we draw Pareto frontier curves
with axes pass@1 and AUROC in Figure 3. We ob-
serve that the Pareto frontiers of SWEET are ahead
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Figure 4: Plots of code quality pass@1 and detection
AUROC when calibrating the entropy threshold of our
methods, SWEET, on the three code benchmarks. We
set γ = 0.25 and δ = 3.0. While code generation
performance increases with a higher entropy threshold,
detection AUROC scores make an up-and-down curve.

of those of WLLM in all three tasks. Moreover,
as presented in Figure 6, whatever value our ap-
proach chooses for the entropy threshold, SWEET
outperforms the baseline in all configurations. This
indicates that in a wide range of hyperparameter
settings, our SWEET model can generate better
results in terms of detection and code generation
ability. Full results and different settings are in
Appendix F.

6 Analysis

6.1 Impact of Entropy Thresholds

Figure 4 presents how code generation performance
and detecting ability trade-off when calibrating the
entropy threshold in our method. WLLM is when
the entropy threshold is not applied (i.e., entropy
threshold=0). As the entropy threshold increases,
the ratio of watermarked tokens decreases, so the
code generation performance converges to a non-
watermarked base model. This indicates that our

method always lies between the WLLM and a non-
watermarked base model in terms of code genera-
tion performance. On the other hand, the detection
ability, as the entropy threshold increases, reaches
a local maximum but eventually declines. While
our method with a moderate threshold effectively
restricts generating the red list tokens compared to
the WLLM, detection ability eventually decreases
if the threshold is so high that few tokens are wa-
termarked. We further investigate how to effec-
tively calibrate the entropy threshold value in Ap-
pendix H.

6.2 Detection Ability without Prompts

As entropy information is required in the detection
phase, approximating entropy values for each
generation time step t is essential in our method.
In the main experiments, we prepend the prompt
used in the generation phase (e.g., the question
of Fig. 2) before the target code to reproduce
the same entropy. However, we hardly know the
prompt used for a given target code in the real
world. Thus, instead of using the gold prompt,
we attach a common and general prompt for code
generation to approximate the entropy information.
We use five general prompts as below, and their
z-scores are averaged for use in detection.

def solution(*args):
"""
Generate a solution
"""

<filename>solutions/solution_1.py
# Here is the correct implementation of the code

exercise
def solution(*args):

def function(*args, **kargs):
"""
Generate a code given the condition
"""

from typing import List

def my_solution(*args, **kargs):
"""
Generate a solution
"""

def foo(*args):
"""
Solution that solves a problem
"""

Figure 8 demonstrates how the detection abil-
ity varies when using general prompts in the Hu-
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Figure 5: Watermark detection performance on renamed
variables in the code. We set γ = 0.25 and δ = 3.0 for
WLLM and SWEET. For EXP-EDIT, we search the
hyperparameter for the block size in [20,30,40] with a
high entropy setting.

manEval dataset. SWEET with general prompts
shows lower AUROC values than the original
SWEET, indicating inaccurately approximated en-
tropy information impairs detection ability. Never-
theless, it still outperforms the WLLM baseline re-
garding detection ability, drawing a Pareto frontier
ahead of WLLM in all entropy threshold values.

6.3 Use of Surrogate Model

When detecting watermarks in a text, utilizing a
smaller LM as a surrogate could be more compu-
tationally efficient and cost-effective (Wang et al.,
2023). We investigate the impact of employing
this surrogate model during the detection phase.
Specifically, we generate watermarked code using
the original model (LLaMA2-13B) and detect wa-
termarks using a smaller model (LLaMA2-7B).

In the results of Figure 10, the detection perfor-
mance declines are insignificant, and our approach
utilizing the surrogate model continues to surpass
the baseline. Such performance preservation may
be due to that LLaMA2 7B and 13B are trained
on the identical training corpus (Touvron et al.,
2023). Further analysis for computational cost can
be found in Appendix I.

6.4 Robustness to Paraphrasing Attacks

Even with the text watermarked, a malicious user
might attempt to remove watermarks in the text by
paraphrasing (Krishna et al., 2023; Sadasivan et al.,
2023). Paraphrasing the code text is more restric-
tive than dealing with plain text because it must
avoid triggering any code malfunctions. We assess

the robustness of watermarking methods against
paraphrasing by employing two types of attacks
- changing the names of variables and utilizing a
commercial code refactoring service.10 Specifi-
cally, for each watermark method, we choose 273
source codes from the MBPP task, for which all
three methods succeed in generating with no syntax
error. In the code renaming attack, we select vari-
ables in the watermarked code and rename them
with randomly generated strings of varying lengths,
ranging from 2 to 5 characters. We use five random
seeds for renaming.

Figure 5 presents the results of the detection per-
formance on the paraphrased code. All watermark-
ing methods show the decline of AUROC scores
when the extent of paraphrasing increases, while
our approaches continue to show better perfor-
mances than baselines. However, our approaches
also show that the AUROC scores drop to about
0.8 when all variables are renamed. We found that
this is because variable names comprise a large
proportion of high entropy tokens in the code text
(See Appendix J for details).

7 Conclusion

We identified and emphasized the need for Code
LLM watermarking, and formalized it for the first
time. Despite the rapid advance of coding ca-
pability of LLMs, the necessary measures to en-
courage the safe usage of code generation models
have not been implemented yet. Our experiments
showed that existing watermarking and detection
techniques failed to properly operate under the
code generation setting. The failure occurred in
two modes: either 1) the code does not watermark
properly (hence, cannot be detected), or 2) the wa-
termarked code failed to properly execute (degra-
dation of quality). Our proposed method SWEET,
on the other hand, improved both of these failure
modes to a certain extent by introducing selective
entropy thresholding which filters tokens that are
least relevant to execution quality. In code gener-
ation tasks, our method performs better than base-
lines, including post-hoc detection methods, while
achieving less code quality degradation. More-
over, comprehensive analysis demonstrates that
our method still works well in real-world settings,
specifically when the prompts are not given, uti-
lizing even a smaller surrogate model, or under
paraphrasing attacks.

10https://codepal.ai/code-refactor
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Limitations

We identify the limitations of this work and suggest
ways to mitigate them. First, two issues are shared
by the status quo of this field as follows. (1) Ro-
bustness against paraphrasing attacks: As users can
tailor LLM’s code to their specific needs, it is cru-
cial to be robust against paraphrasing attacks. We
addressed this issue in Section 6.4 and left further
robustness enhancement for future work. (2) Possi-
bilities of watermark forgery: An attacker may pry
out the watermarking rules, and O(|V|)2 runs in
the brute-force mechanism enable it. Against the
attack, one can apply techniques enhancing the wa-
termarking model’s security, such as dividing the
green/red list depending on prior h > 1 tokens, as
mentioned in the WLLM paper, or applying meth-
ods like SelfHash (Kirchenbauer et al., 2023b).

For our work, two additional issues exist as fol-
lows. (1) Entropy threshold calibration: We demon-
strate that our method outperforms the baselines
in the broad entropy threshold range (see Sec 6.1)
and investigate how to calibrate the entropy thresh-
old effectively (see Appendix H). However, we still
need entropy threshold tuning to obtain the best per-
formance, which costs a computation. (2) Need for
the source LLM during detection: SWEET works
in a white-box setting. Although it has been shown
that employing even a smaller surrogate LM can
still maintain the detection performances to some
degree (see Sec 6.3), this can be a computational
burden for some users who want to apply our work.

Ethical Statement

Although watermarking methods are designed to
address all potential misuse of LLMs by detecting
machine-generated texts, they can simultaneously
pose a new risk. For example, if a watermarking
mechanism for a specific LLM is leaked to the pub-
lic, a malicious user aware of this mechanism could
abuse the watermarks to create unethical texts em-
bedded with the model’s watermarks. To prevent
such scenarios, we recommend that all users exer-
cise caution to avoid exposing the detailed mecha-
nism, such as the key value for the hash function
used to divide green and red lists in our method.
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A Preliminaries for WLLM

In this section, we provide brief preliminaries
for Kirchenbauer et al. (2023a). For a given lan-
guage model fLM with vocabulary V , the likelihood
probability of a token yt is calculated as follow:

lt = fLM(x,y[:t]), (2)

pt,i =
el

i
t

∑|V|
i=1 e

lit
, (3)

where x = {x0, . . . , xM−1} and y[:t] =
{y1, . . . , yt−1} are a M -length tokenized prompt
and the generated token sequence, respectively, and
lt ∈ R|V| is the logit vector.

Watermarking in LM-generated Text. In the
watermarking (Kirchenbauer et al., 2023a), the en-
tire tokens in V at each time-step are randomly
binned into the green Gt and red groupsRt in pro-
portions of γ and 1− γ (γ ∈ (0, 1)), respectively.
The method increases the logits of green group to-
kens by adding a fixed scalar δ, promoting them to
be sampled at each position. Thus, watermarked
LM-generated text is more likely than γ to contain
the green group tokens. On the other hand, since
humans have no knowledge of the hidden green-
red rule, the proportion of green group tokens in
human-written text is expected to be close to γ.

The watermarked text is detected through a one-
sided z-test by testing the null hypothesis where
the text is not watermarked. The z-score is cal-
culated using the number of recognized green to-
kens in the text. Then, the testing text is consid-
ered as watermarked if the z-score is greater than
zthreshold. Note that the detection algorithm with the
higher zthreshold can result the lower false positive
rate (FPR) and reduce Type I errors.

Spike Entropy Kirchenbauer et al. (2023a) used
spike entropy for measuring how spread out a dis-
tribution is. Given a token probability vector p and
a scalar m, spike entropy of p with modulus m is
defined as:

S(p,m) =
∑ pk

1 +mpk
. (4)

B Watermark Embedding/Detecting
Algorithm of SWEET

Algorithms 1 and 2 show the detailed steps of gen-
erating a watermark and later detecting it using our
selective entropy thresholding method (SWEET).

Algorithm 1 Generation Algorithm of SWEET

1: Input: tokenized prompt x =
{x1, . . . , xM−1}; entropy threshold
τ ∈ [0, log |V|], γ ∈ (0, 1), δ > 0;

2: for t = 0, 1, 2, . . . do
3: Compute a logit vector lt by (2);
4: Compute a probability vector pt by (3);
5: Compute an entropy Ht by (5);
6: if Ht > τ then
7: Compute a hash of token yt−1, and use it

as a seed for a random number generator;
8: Randomly divide V into Gt of size γ|V|

andRt of size (1− γ)|V|;
9: Add δ to the logits of tokens in Gt;

10: end if
11: Sample yt;
12: end for

Algorithm 2 Detection Algorithm of SWEET

1: Input: tokenized prompt x; token sequence to
be tested y = {y0, . . . , yN−1}; entropy thresh-
old τ ∈ [0, log |V|], γ ∈ (0, 1), zthreshold > 0;

2: Set Nh = 0 and Nh
G = 0;

3: for t = 0, 1, 2, . . . N − 1 do
4: Compute a logit vector lt by (2);
5: Compute a probability vector pt by (3);
6: Compute an entropy Ht by (5);
7: if Ht > τ then
8: Nh ← Nh + 1;
9: Compute a hash of token yt−1, and use it

as a seed for a random number generator;
10: Recover Gt andRt;
11: if yt ∈ Gt then
12: Nh

G ← Nh
G + 1;

13: end if
14: end if
15: end for
16: Compute z-score by (1);
17: if z > zthreshold then
18: return True; (i.e., y is watermarked)
19: else
20: return False;
21: end if

Instead of the spike entropy used in WLLM, we
use the classical Shannon entropy. Given a token
probability distibution vector p, the entropy of p is
computed by

Ht = −
∑

pk log pk. (5)
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C Proof of Theorem 1

We begin with a lemma from Kirchenbauer et al.
(2023a), which predicts the probability of a green
list token sampled from a language model employ-
ing the watermarking.

In our proof, we predict the lower bounds of z-
score when detecting watermarks via WLLM or
SWEET methods and compare the z-score lower
bounds.

Lemma C.1. Suppose p ∈ (0, 1)|V| is a raw prob-
ability vector generated from a language model
where |V| is the vocabulary size. Before sam-
pling p, watermarks are embedded by dividing
randomly a green list of size γ|V| and a red list
of size (1 − γ)|V| for some value γ ∈ (0, 1). It
then promotes the logits of tokens in the green list
by δ. When sampling a token index k from this
watermarked distribution, the probability that the
token is sampled from the green list (considering
the randomness of green list) is at least

P[k ∈ G] ≥ γeδ

1 + (eδ − 1)γ
S(p,

(1− γ)(eδ − 1)

1 + (eδ − 1)γ
).

Let’s begin the proof.

Proof. In WLLM, we consider all tokens in y =
{y0, . . . , yN−1} for detection. We can get a lower
bound of the number of green list tokens in y by
summing the result of Lemma C.1 over the tokens
yt. The expectation of the number of green list
tokens, Ng, in y is at least

E[NG] ≥ αγNS. (6)

where α = eδ

1+(eδ−1)γ
, and S =

∑N
t=1 St/N .

We can get the lower bound of the z-score by
applying the z-score definition in Eq. 1:

z ≥ γ
√
N

αS − 1√
γ(1− γ)

. (7)

If the entropy threshold is applied, we consider
only tokens with entropy values higher than the
threshold to be tested. Let Nh be the number of
tokens that have higher entropy values. Following
Eq. 6 and Eq. 7 again with Nh, we can get the
lower bound of the z-score of SWEET:

z ≥ γ
√
Nh

αSh − 1√
γ(1− γ)

,

where Sh =
∑N

t=1 St × 1(St ≥ τ)/Nh.

Method HumanEval

pass@1 AUROC TPR FPR

Non-watermarked 17.3 - - -
Non-watermarked (w/ high entropy) 6.8 - - -

EXP-EDIT 17.1 0.612 0.110 <0.05
EXP-EDIT (w/ high entropy) 7.1 0.844 0.561 <0.05

WLLM (∆PASS@1 ∼ −10%)⋆ 15.4 0.777 0.402 <0.05
SWEET (∆PASS@1 ∼ −10%)⋆ 15.5 0.921 0.616 <0.05

WLLM (AUROC≥ 0.9)† 9.2 0.908 0.720 <0.05
SWEET (AUROC≥ 0.9)† 15.5 0.921 0.616 <0.05

Table 3: Results of code generation performance and
detection ability in LLaMA2 13B. We calculate pass@1
metrics by generating n = 40 examples. Hyperpa-
rameters for decoding strategy is top-p decoding with
p = 0.95 and temperature=0.1, except for baselines
with high entropy; temperature=1.0 and top-p=1.0. We
set the maximum length of the model generation to
512. This table corresponds to the Table 1 version for
LLaMA2, but only for watermark-based methods.

Sh ≥ S is ensured as we ignore all tokens with
lower entropy than the threshold. By comparing
Eq. 7 and Eq. 8,

γ
√
Nh

αSh − 1√
γ(1− γ)

≥ γ
√
N

αS − 1√
γ(1− γ)

,

√
N −N l

N
≥ αS − 1

αSh − 1
,

N l

N
≤ 1− (

αS − 1

αSh − 1
)2,

where N l = N −Nh.

D Implementation Details

We have used three datasets for our testbeds: Hu-
manEval, MBPP, and DS-1000. They have 164,
500, and 1000 Python code problems, respectively.
For our base models, StarCoder and LLaMA2, we
use top-p (Holtzman et al., 2020) sampling with
p = 0.95 for both models, and temperature 0.2
and 0.1, respectively. When generating output
for each code problems, we use zero-shot setting
in HumanEval and DS-1000 but 3-shot in MBPP.
Prompts used in MBPP are similar to the prompt
in Austin et al. (2021). For calculating pass@1
scores, we set n = 40 for HumanEval and DS-
1000, and n = 20 for MBPP. We use a single
NVIDIA RTX A6000 GPU to generate or detect
each code completion with StarCoder or LLaMA2.
It takes less than two GPU hours for generation and
less than 1 GPU hour for detection.
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D.1 DetectGPT

We used two masking models for DetectGPT.
When T5-3B is used for DetectGPT, we search
hyperparameters for the length of the spans in
[1,2,5,10] words, and for the proportion of masks
in [5,10,15,20]% of the text. When utilizing San-
taCoder, we simulate the single-line fill-in-the-
middle task scenario by masking only one line of
code per perturbation, which is a task that Santa-
Coder is trained to perform well. (Fried et al., 2023;
Bavarian et al., 2022). We search hyperparameters
for the number line to be rephrased in [1,2,3,4].
We make 100 perturbations following the original
paper.

D.2 WLLM and SWEET

Depending on the strength of watermark, trade-
off between code functionality and watermarking
detectability exists. We search hyperparameters
for the ratio of the green list γ in [0.1,0.25,0.5],
and for the green token promotion value δ in
[0.5,1.0,2.0,3.0,4.0]. For the entropy threshold
values used in SWEET, we search thresholds in
[0.3,0.6,0.9,1.2].

D.3 EXP-EDIT

In most tasks we have conducted experiments, the
length of the generated code hardly exceed 100
tokens. Therefore, considering that length of the
watermark key sequence significantly affected the
detection speed, we search hyperparameters for the
length of the key sequence only in [100, 500]. The
block size was set equal to the length of the model
output, and the resample size T = 500 for all in-
stances. To generate n outputs to calculate pass@k,
we shift the watermark key sequence randomly n
times. Finally, we set edit distance hyperparameter
γ = 0.0 for EXP-EDIT as used in their paper.

E Experimental Details and Results on
HumanEvalPack and ClassEval

We choose two additional benchmarks to present
how well our approach functions in broader soft-
ware development contexts.

E.1 HumanEvalPack

HumanEvalPack (Muennighoff et al., 2024) is an
extension of HumanEval to cover 6 languages
(Python, C++, Java, Javascript, Go, and Rust),
and we choose C++ and Java as our testbeds. Ba-
sically, all hyperparameter settings are equal to

Python benchmarks except n = 5. For WLLM and
SWEET, we narrow the search space for δ into
[1.0,2.0,3.0,4.0]. For EXP-EDIT, we fix the length
of the key sequence to 100.

E.2 ClassEval
ClassEval (Du et al., 2023) differs from the afore-
mentioned datasets in terms of code generation
scopes as it requires language models to generate
class-level code passages rather than just a single
function. It consists of 100 class-level code genera-
tion test examples in which a model has to generate
a whole Python class code given a skeleton code of
the class. Following the ClassEval paper, we use
StarCoder-Instruct (GeorgiaTechResearchInstitute,
2023) as the base model and the same instruction-
following template of the prompt used in the paper.
As the entropy distribution from StarCoder-Instruct
skews to lower values than that of the StarCoder
model, we search hyperparameters for threshold in
[0.01,0.03,0.05,0.1,0.2] and δ in [2,3,4,5,10,15,20].
We generate n = 5 outputs to calculate pass@5.
For EXP-EDIT, due to the high computational cost,
we make 50 perturbations instead of 100.

E.3 Results
As presented in Table 2, SWEET outperforms all
baselines in detecting machine-generated code in
C++ and Java environments. Also, it still preserves
code functionality much more than WLLM while
achieving better detection performance. We ob-
serve that the Pareto Frontier lines of SWEET are
ahead of those of WLLM, as in the Python environ-
ment (see Figure 7). It is worth noting that the C++
and Java examples in HumenEvalPack comprise
longer code than the Python examples we used in
the paper: an average of 100 tokens for C++, 97 to-
kens for Java, and 57 tokens for Python. Therefore,
these results demonstrate that the efficacy of our
methodology is not limited to the type of program-
ming languages or the length of the code.

In the class-level code generation task, we could
still observe our approach showing the highest AU-
ROC score than the baselines even in the class-level
code generation task where the LLM should gen-
erate longer and more complex code (the average
token length of ClassEval solutions is 352). Specif-
ically, SWEET achieves an AUROC of 0.980 with
a 7.1% degradation of code functionality. Interest-
ingly, as the text becomes longer, post-hoc meth-
ods’ performance increases. On the other hand,
EXP-EDIT has shown lower detection performance
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than when evaluated in StarCoder, even in the
high-entropy setting, due to the extremely spiky
entropy distribution of StarCoder-Instruct. In addi-
tion, EXP-EDIT increases code functionality com-
pared to non-watermarked baselines, even though
it is a watermarking method that does not distort
the original token distribution. We suppose these
results are attributed to the specific watermark key
sequence, which is randomly generated.

F Further Pareto Frontier Results on
StarCoder/LLaMA2

HumanEval pass@100. Figure 9 shows a trade-
off between pass@100 score and AUROC at Hu-
manEval task in temperature 0.8. We generated
200 samples in HumanEval to calculate pass@100.
The tendency of the Pareto Frontier are the same,
SWEET is consistently placed in the front. While
pass@100 score is much higher than the pass@1
score at temperature=0.2, we see the range of AU-
ROC remains similar. This indicates temperature
does not affect the detection strength of each sam-
ples heavily.

LLaMA2. Furthermore, Table 3 shows the re-
sults on HumanEval when using LLaMA2 13B
(a general-purpose LLM), as the backbone for
code generation. We can observe similar trends as
demonstrated in Figure 10. SWEET in LLaMA2
achieves a higher AUROC than all other baselines
while preserving code quality more than WLLM.
Consequently, we observe that SWEET also ap-
plies to general-purpose LLM, which is not code-
specific.

G Detectability with Varying Code
Lengths

We experiment the detection performance across
different code lengths. Based on the detectabil-
ity@T metric proposed in Kirchenbauer et al.
(2023b), we evaluate the detection performance
within the first T tokens of the machine-generated
and human-written code sequences and calculate
AUROC scores.

As presented in Figure 11, SWEET demon-
strates superior detection performance even in the
short code texts. This is particularly important
feature in code generation tasks comprised of rela-
tively shorter texts than plain text generation. More-
over, in HumanEval and MBPP, we can observe
that the AUROC of SWEET reaches 1.0 with the

text length exceeding 70, while none of the base-
lines could achieve it.

H Entropy Threshold Calibration

This section proposes a method to calibrate the best
entropy threshold effectively. To detect machine-
generated texts, the z-score of them should be high.
Let’s say there is a watermarked text sequence with
an entropy threshold τ , and the length is N . The
z-score is calculated as in Equation 1. Thus z ∝√

Nh

N (
Nh

G

Nh − γ), assuming a fixed N . If we can

find a relationship between τ and Nh

N , and τ and
Nh

G

Nh , we could choose τ that maximizes the z-score
in a fixed N . We denote z′ as a pseudo-metric for
estimating z-score:

z′ = E[
Nh

N
](E[

Nh
G

Nh
]− γ) (8)

With logits generated by an LLM, we can calcu-
late entropy H and the probability of sampling a
green token after adding δ to green tokens’ logits.
We call the expectation of it over the randomness
of green/red list partitioning as PG. We model the
distribution of logits that LLM generates as a prob-
ability distribution function P (H,PG; γ, δ). We
approximate the tokens in a text sequence as i.i.d,
then we can write as follows:

E[
Nh

N
] = P (H > τ, PG)

E[
Nh

G

Nh
] = E[PG|H > τ ]

To estimate P (H,PG; γ, δ) in the Python lan-
guage domain of StarCoder, we use a code corpus,
CodeSearchNet (Husain et al., 2019). Specifically,
we feed the Python corpus of CodeSearchNet to
our model and obtain all logits for each time step
and calculate H and PG. For PG, we averaged the
probability of sampling a green token from a water-
marked distribution with 500 random green/red list
partitions. We regard the pair (H , PG) per one log-
its as an unnormalized joint discrete distribution.

The results are presented in Figure 12. The z′

is the highest when the entropy threshold is in
[0.820, 0.871]. It aligns with the results in Fig-
ure 4, where the optimal threshold value lies around
0.3∼0.9. Therefore, the threshold value found here
is a good starting point for searching for the op-
timal threshold value. The computational cost is
only one forward pass across the corpus we used.
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Figure 6: The tradeoff between AUROC and pass@1 of detecting real and generated samples of HumanEval,
MBPP, and DS1000 datasets. The pink line represents a Pareto frontier of SWEET, while the blue line represents
that of WLLM. In all tasks and the entropy threshold configurations, SWEET shows consistent dominance. The
red/orange line and circles are the points used in Table 1.

Figure 7: The tradeoff between AUROC and pass@1 of detecting real and generated samples of C++ and Java of
HumanEvalPack datasets. The pink line represents a Pareto frontier of SWEET, while the blue line represents
that of WLLM. In all tasks and the entropy threshold configurations, SWEET shows consistent dominance. The
red/orange line and circles are the points used in Table 2.

The result indicates that we can use the information
in the code corpus to calibrate an entropy threshold
effectively.

I Analysis of Computation Cost

It is practically important to detect machine-
generated text without a huge computational over-
load. We here analyze computation costs for each
baseline and our method.

WLLM does not require any additional compu-
tation as it only needs a random number generator
and a seed number to put. On the other hand, all
zero-shot post-hoc detection methods excluding
DetectGPT need at least one forward pass of that
LLM. DetectGPT needs to run forward passes as

much as the number of perturbations for increased
accuracy (the original paper generated 100 per-
turbed samples, so we did the same). Our method
needs one time forward pass to calculate the en-
tropy, which is the same with zero-shot post-hoc
detection methods except for DetectGPT. However,
we demonstrated that our method outperforms base-
lines even when utilizing a smaller surrogate model
(Sec 6.3), indicating the capability of computation-
ally more efficient employment. On the other hand,
while EXP-EDIT does not need LLM for detecting
watermarks, it requires measuring the Levenshtein
distance to compute the test statistic. Specifically,
it demands an extensive calculation of O(mnk2),
where m be the length of the target text, n be the
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Figure 8: Effect of general prompts in SWEET in HumanEval. In this setting, the detector does not know what
information would have been included in a prompt if the given sample source code had been model-generated.
SWEET appends the sample to the fixed number of ‘general prompts’ that contain no information except for the
format consistent with the answer. The purple line represents the Pareto frontier of the ‘General prompts’ version
SWEET. Our approaches with general prompts still outperform WLLM in both code quality preservation and
watermark detection, drawing the Pareto frontiers ahead of those of WLLM.

Figure 9: The tradeoff between AUROC and pass@100 of detecting real and generated samples of HumanEval
using temperature of 0.8 instead of 0.2 as other figures. We also generate n = 200 outputs for calculating pass@100
scores. The pink line represents a Pareto frontier of SWEET, while the blue line represents a Pareto frontier of
WLLM. We observe consistent improvement in SWEET.

Figure 10: [LLaMa2 13B Results] The tradeoff between AUROC and pass@1 of detecting real and generated
samples of HumanEval. The pink line represents a Pareto frontier of SWEET, while the blue line represents a
Pareto frontier of WLLM. Additionally, we include the results of the SWEET with the surrogate model (purple
line), in which a smaller LM is used to detect watermarks to save computational costs. Our approaches mostly draw
Pareto frontiers ahead of those of WLLM, even with the surrogate model. The red/orange line and circles are the
points used in Table 3.

length of the watermark key sequence, and k be
the block size. Moreover, T = 500 times of test
statistic is also necessary for reporting the p-value.

Although these computations do not require LLM
and can be implemented in parallel, one can con-
sider the computation cost of EXP-EDIT as high.

4908



Figure 11: Detectability@T (Kirchenbauer et al., 2023b) at HumanEval, MBPP, and DS-1000. We set γ = 0.25
and δ = 3.0 for WLLM and SWEET. For EXP-EDIT, we use it with a high entropy setting. When calculating
AUROC, we ensure at least 20 code texts of human-written solutions and machine-generated codes, respectively.
We can observe that SWEET shows superior detection performance regardless of the text length in all tasks.
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Figure 12: The relationship between the entropy thresh-
old and the pseudo-metric for z-score, z′ in Eq. 8, calcu-
lated based on CodeSearchNet dataset. The blue region
[0.820, 0.871] is the best entropy threshold estimated by
the calibration method described in Appendix H.

J Analysis of Lexical Type Distributions

Watermarking a text without degrading its quality
is possible when many candidates are alternatively
available. In code generation, it is challenging
to achieve this, so SWEET selectively apply wa-
termarking only on high entropy, i.e., when there
are many candidates. Using Python built-in tok-
enize module11, we here tokenize outputs of our
SWEET method and analyze the distributions of
lexical types both above and below the entropy
threshold.

11https://docs.python.org/3/library/tokenize.
html

J.1 List of Lexical Types
Below is the list of lexical types we use for
analysis and corresponding examples. All list
of types the tokenize module actually emits
can be found in https://docs.python.org/3/
library/token.html. We merged and split the
original types.

• NAME : identifier names, function names, etc.

• OP : operators, such as {, [ ( +, =, etc.

• INDENT : we merge NEWLINE, DEDENT,
INDENT, NEWLINE, and NL.

• RESERVED : split from NAME. In Python
docs, they are officially named keywords.

• BUILT-IN : split from NAME. Please refer to
Python docs12.

• NUMBER

• STRING

• COMMENT

• FUNCNAME : split from NAME. We manu-
ally build a list of function name almost be-
ing used only for function. For examples, ap-
pend(), join(), split() functions are included.

J.2 Lexical Types Distributions Above
Threshold

Figure 13 shows lexical types distributions of out-
put tokens above the entropy threshold (i.e., wa-
termarked tokens) across seven thresholds. As the

12https://docs.python.org/3/library/functions.
html#built-in-functions
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Figure 13: Distribution of lexical types of SWEET output on HumanEval task. We draw examples when γ = 0.25
and δ = 3.0. The proportion of NAME type tokens increases the most while that of INDENT type tokens converges
to zero.

entropy threshold rises, the proportion of NAME
type tokens increases by the most (26%p to 63%p).
Intuitively, this can be easily understood, consid-
ering there would be many alternative candidates
for defining identifier names. Unfortunately, this
would lead to vulnerability to an adversarial at-
tack on watermarking, such as changing variable
names. Following the NAME type, the ratio of
the RESERVED type also increases slightly (12%p
to 20%p), meaning that the model has multiple
choices of logical flow in code generation, con-
sidering RESERVED tokens usually decide code
execution flow.

J.3 Lexical Types Distributions Below
Threshold

Figure 14 shows lexical types distributions of out-
put tokens below the entropy threshold. In contrast
to the distributions above the threshold, NAME and
RESERVED types do not increase as the threshold
rises. Meanwhile, the proportion of INDENT types
slightly increases (18%p to 22%p), indicating that
the model has more confidence in the rules, such
as indentation.

K Further Analysis of Breakdown of
Post-hoc methods

The performance of post-hoc detection methods in
the machine-generated code detection task is sur-

prisingly low compared to their performance in the
plain text domain. In both HumanEval and MBPP,
none of the post-hoc baselines have an AUROC
score exceeding 0.6, and the TPR is around 10% or
even lower. In this section, we analyze the failures
of post-hoc detection baselines.

Out-Of-Domain for classifiers. Methods lever-
aging trained classifiers, such as GPTZero and
OpenAI Classifier, inherently suffer from out-of-
domain (OOD) issues (Guo et al., 2023; Yang et al.,
2023). Since the machine-generated code detec-
tion problems are relatively under explored, we
can conjecture that there are not enough examples
of machine-generated code for training, especially
even though we do not know of the dataset on
which GPTZero was trained.

Relatively Short Length of Code Blocks. De-
tectGPT presumes the length of the text being de-
tected as near paragraph length. OpenAI Classifier
released in 2023 (OpenAI, 2023b) takes only text
longer than 1,000 tokens. Even in the WLLM and
their following paper (Kirchenbauer et al., 2023b),
the length is one of the prime factors in detec-
tion and is used in a metric, detectability@T. De-
spite the importance of the length, in our exper-
iments, the length of the generated code text is
generally short. The token lengths generated by
the model were are 59 and 49 tokens on average
for HumanEval and MBPP, respectively. Unless
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Figure 14: Distribution of lexical types of SWEET output on HumanEval task. We draw examples when γ = 0.25
and δ = 3.0. In contrast to the distributions above the threshold, there is almost no distribution change.

embedding some signals in the text intentionally,
like WLLM and ours, it seems that it is challenging
for post-hoc methods to detect short text.

Failures in DetectGPT. Specifically, in Detect-
GPT, we attribute the failure to detect machine-
generated code to poor estimation of perturbation
curvature. We hypothesize two reasons for this.
Firstly, considering the nature of the code, it is
challenging to rephrase a code while preserving its
meaning or functionality. To minimize the degra-
dation of perturbation, we use SantaCoder for the
masking model and paraphrase only one line of
code at a time. Yet, in most cases, the rephrased
code is either identical to its original or broken in
functionality. Secondly, LLMs have not achieved
as satisfactory code generation performance as
plain text generation. Hence, the base and masking
models cannot draw meaningful curvature.
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