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Abstract

In this study, we address the challenge of
enhancing temporal knowledge reasoning in
Large Language Models (LLMs). LLMs often
struggle with this task, leading to the generation
of inaccurate or misleading responses. This is-
sue mainly arises from their limited ability to
handle evolving factual knowledge and com-
plex temporal logic. To overcome these limi-
tations, we propose Abstract Reasoning Induc-
tion (ARI) framework, which divides temporal
reasoning into two distinct phases: Knowledge-
agnostic and Knowledge-based. This frame-
work offers factual knowledge support to LLMs
while minimizing the incorporation of extra-
neous noisy data. Concurrently, informed by
the principles of constructivism, ARI provides
LLMs the capability to engage in proactive,
self-directed learning from both correct and
incorrect historical reasoning samples. By
teaching LLMs to actively construct knowl-
edge and methods, it can significantly boost-
ing their temporal reasoning abilities. Our
approach achieves significant improvements,
with relative gains of 29.7% and 9.27% on
two temporal QA datasets, underscoring its
efficacy in advancing temporal reasoning in
LLMs. The code can be found at https:
//github.com/czy1999/ARI-QA.

1 Introduction

"Knowledge is not simply transmitted
from teacher to student, but actively con-
structed in the mind of the learner."

— Jean Piaget

In practical scenarios, factual knowledge fre-
quently undergoes evolution over time (Roddick
and Spiliopoulou, 2002; Hoffart et al., 2011; Liang
et al., 2023b, 2022). For instance, the host city
of the Winter Olympic Games in 2018 was South
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Figure 1: LLMs, when integrated with various levels of
information, exhibit varying scopes of applicability; the
more abstract and refined the knowledge, the broader its
potential application.

Korea, while in 2022 it was Beijing. Despite their
proficiency in various linguistic tasks, LLMs of-
ten exhibit limitations in efficiently processing and
understanding tasks that involve temporal informa-
tion. (Huang and Chang, 2023; Zhao et al., 2023a;
Liang et al., 2023a).

Specifically, when tasks require complex tem-
poral reasoning, LLMs tend to mislead the pro-
cess and provide an inaccurate result. For instance,

“Which country’s government leader visited China
for the last time in 2015?”, to answer this question,
we need to (1) get which countries visited China
in 2015 ; (2) filter out the country with the earliest
visiting date. In step 1, LLMs easily meet halluci-
nations due to the incomplete training data and the
uncertainty of parameterised knowledge. In step
2, LLMs may lead to the error because of the inac-
curacy of the time filtering. Within such temporal
reasoning tasks, any misjudgment in the temporal
knowledge or errors during the temporal reason-
ing will culminate in erroneous conclusions. The
problem might stem from the temporal unaware-
ness of LLMs, impeding their ability to track and
interpret events over time, particularly in situations
requiring subtle and time-sensitive understanding.

Based on intuitive and empirical analysis, the
cause accounting for the problem can be identi-
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fied from two aspects: lack of temporal knowledge
and lack of complex temporal reasoning. And the
definition is given as follows:

LACK OF TEMPORAL KNOWLEDGE. LLMs
acquire vast knowledge through pre-training on ex-
tensive datasets. However, the fixed nature of their
parameters after training solidifies their knowledge
base, which leads to LLMs’ failure in understand-
ing unseen and evolving knowledge.

LACK OF COMPLEX TEMPORAL REASON-
ING. Owing to the inherent nature of large models
that generate outputs based on maximum probabil-
ity, they are limited in directly conducting complex
reasoning. Facing the interconnected multi-step
temporal reasoning, LLMs might accumulate er-
rors during the process of probabilistic generation.

Despite the neglect of essences, current studies
relatively approach above challenges. To augment
the LLMs’ capacity for understanding unseen and
evolving information, researchers incorporate ex-
ternal knowledge to supply contextually relevant
information, known as Retrieval Augmented Gener-
ation (RAG) (Zhao et al., 2023b; Baek et al., 2023;
Sun et al., 2023). Although these methods enhance
the richness of LLMs’ responses, the retrieval ac-
curacy and input length limitations might result in
irrelevant noises and incomplete reasoning clues,
degrading overall performance (Wang et al., 2023;
Lu et al., 2023). Furthermore, although tailored
examples serve as prompts to guide LLMs (Dong
et al., 2023; Min et al., 2022), they are often inad-
equate for diverse practical tasks and require sub-
stantial efforts in time and human to acquire high-
quality examples. In conclusion, above approaches
fail to provide necessary guidance for ongoing tem-
poral reasoning processes and are susceptible to
incorporating extraneous noise, as shown in Fig-
ure 2.

To overcome the limitation, it is crucial to recog-
nize that LLMs are inherently limited by reliance
on passively absorbing training instances. Con-
structivism (Savery and Duffy, 1995; Kirschner
et al., 2006), deeply embedded in philosophical
and psychological schools of thought, contends
that knowledge and learning emerge not from mere
exposure to external information but through active
construction. It asserts that learners synthesize new
knowledge by building upon their existing under-
standing and experiences (Lake and Baroni, 2023).
In this view, learning is an active and ongoing pro-
cess wherein individuals continuously modify and

refine their cognitive frameworks.
Inspired by the principles of constructivism,

we try to steer LLMs towards an active and self-
initiated learning approach, and propose an Ab-
stract Reasoning Induction (ARI) framework. This
will equip LLMs with the capacity for abstract syn-
thesis and personalized knowledge application, en-
hancing relevance and utility in various contexts.

In details, to handle the lack of temporal knowl-
edge, we transfer the data generation to an ac-
tive process, consisting of two stages: Knowledge-
agnostic and Knowledge-based. In knowledge-
agnostic part, LLMs only need to choose potential
steps. It is only in the knowledge-based part that
the corresponding action is executed on the specific
knowledge base to obtain the answer. This proce-
dure offers factual knowledge support to LLMs
while minimizing the incorporation of extraneous
noisy data. On the other hand, to complete LLMs’
complex temporal reasoning ability, ARI actively
engages in proactive and self-directed learning
from both correct and incorrect historical reasoning
samples. This approach enables LLM to summa-
rize and generalize methodologies (i.e. knowledge-
agnostic step-by-step instructions) for different
types of questions. When similar questions are en-
countered again, these abstract methods will guide
the LLM to perform more efficient multi-step rea-
soning. By teaching LLMs to actively construct
knowledge and methods, it can significantly boost-
ing their temporal reasoning abilities without the
need for further training.

In summary, our contribution is three-fold:

• Grounded in the principles of constructivism,
we offer fresh perspectives for enhancing the
reasoning capabilities and task adaptability of
LLMs.

• We present ARI, a novel temporal reasoning
framework that divides the process into two
phases: Knowledge-agnostic and Knowledge-
based. ARI enables LLMs to learn and con-
struct proactively from historical reasoning
samples, fostering a perpetual refinement of
LLMs’ reasoning abilities.

• The experimental results demonstrate that,
compared to the leading TKGQA models, our
approach achieves relative improvements of
29.7% and 9.27% respectively on two tempo-
ral QA datasets.
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Figure 2: Three levels of information utilisation. Information-Driven Response, which extracts pertinent knowledge
to form the basis of answers; Exemplar-Based Learning, offering cases of reasoning for the language model to
assimilate and guide current inferences; and Abstract Reasoning Induction, providing step-wise abstract method-
ological guidance to the present question, distinct from concrete knowledge, thereby steering the language model’s
inference process.

2 Related Work

2.1 TKGQA Models

Traditional temporal knowledge graph question an-
swering (TKGQA) methodologies fall into two cat-
egories. The first, exemplified by TEQUILA (Jia
et al., 2018), deconstructs the initial question into
sub-questions and temporal constraints, employ-
ing standard KGQA models for resolution, fol-
lowed by a comparative analysis to select the
most fitting answer. The second approach, such
as CronKGQA (Saxena et al., 2021a), seeks to
leverage TKG embeddings for semantic similarity
assessments in answer determination, featuring a
learnable reasoning process independent of hand-
crafted rules. Despite CronKGQA’s proficiency
with simpler inquiries, its performance falters with
complex questions necessitating specific temporal
inference. TempoQR (Mavromatis et al., 2021) ad-
dresses this by incorporating temporal scope data
and employing the EaE method (Févry et al., 2020)
to enrich question representation semantically.

However, traditional approaches rely on hand-
crafted rules or learnable representations, strug-
gling with sophisticated temporal reasoning (Chen
et al., 2022). In contrast, our model, leveraging the
power of LLMs, excels in these challenging scenar-
ios, showcasing superior adaptability and reasoning
capabilities.

2.2 LLM Reasoning with External
Information

Addressing hallucinations in generative models
presents a compelling challenge, with one promis-
ing solution being the augmentation of LLMs with
external knowledge (Mialon et al., 2023). Inte-
gration with an external knowledge base has be-
come a prevalent strategy in question-answering
and conversational tasks (Peng et al., 2023). There
are mainly two approaches: explicit and implicit
knowledge injection (Yang et al., 2023a). Explicit
injection involves directly supplying LLMs with
pertinent knowledge via prompts. For instance,
KAPING (Baek et al., 2023) retrieves facts relevant
to a query from a knowledge graph and appends
these to the query as a prompt for the LLM, while
CoK (Li et al., 2023a) first evaluates answer credi-
bility and, if necessary, uses the LLM to decompose
the question and generate various SPARQL queries
to extract information from external knowledge
bases. ChatKBQA (Luo et al., 2023) finetunes
LLMs on KG structure to generate logical queries,
which can be executed on KGs to obtain answers.
Symbol-LLM (Xu et al., 2023) propose a dual-
stage fine-tuning framework to integrates symbolic
knowledge into LLMs, enhancing their reasoning
capabilities. ToG (Sun et al., 2023) treats the LLM
as an agent to interactively explore related entities
and relations on KGs and perform reasoning based
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on the retrieved knowledge. Implicit injection, on
the other hand, subtly steers the LLM by incor-
porating knowledge semantic embeddings during
reasoning or in the decoding process. KID (Liu
et al., 2022) represents a novel decoding algorithm
for generative LMs that dynamically infuses exter-
nal knowledge at each step of LM decoding, and
KPE (Zhao et al., 2023b) introduces a trainable
parameter-sharing adapter to a parameter-freezing
PLM for knowledge integration. Additionally, the
incorporation of knowledge from other modalities
such as visual information (Li et al., 2023c,b) has
also become a method of knowledge introduction.

While the integration of knowledge into LLMs
can mitigate issues of hallucinations, it is not with-
out challenges. Explicit knowledge injection often
struggles to acquire high-quality, relevant informa-
tion, and is constrained by the finite-length contexts.
Implicit injection typically necessitates fine-tuning
of parameters, which can be prohibitively costly.
We address these limitations by dividing tempo-
ral knowledge reasoning into two distinct compo-
nents: knowledge-related and knowledge-agnostic.
This approach achieves a clear separation between
knowledge and reasoning, thereby circumventing
the aforementioned constraints.

2.3 LLM Reasoning with Memories

Memory plays a pivotal role in human intelli-
gence (Atkinson and Shiffrin, 1968). Given that
LLMs inherently lack long-term memory and their
short-term memory is constrained by the scope of
their context window, numerous studies have em-
barked on the journey to equip LLMs with memory
capabilities (Pan et al., 2023; Zhong et al., 2023).
Instead of the conventional approach where accu-
mulated conversations are retrieved directly, Mem-
oChat (Lu et al., 2023) innovatively constructs
and updates a structured, instant memo that cat-
egorizes past dialogues. Conversations are then
fetched based on their specific topics and sum-
maries. Reflexion (Shinn et al., 2023) exploits
a working memory to store experiences for a dedi-
cated task to improve the performance of the agent
through several trials. However, the histories stored
in working memory cannot benefit the episode for
different task goals. MemPrompt (Madaan et al.,
2022) designs a persistent memory to store hu-
man feedback to remind the chatbot of the con-
versational information and improve it continu-
ously. RLEM (Zhang et al., 2023) adopts a persis-

tent environment-grounded experience memory to
store the experiences and assist in future decision-
making even for different task goal. Thought
Propagation (Yu et al., 2023) emphasizes the abil-
ity to explore and apply insights from analogous
solutions. By delving into and utilizing solutions
from problems related to the given issue, it im-
proves performance and accuracy across various
tasks.

However, current memory-enhanced methods
are limited to passively received historical informa-
tion, overlooking the active construction of abstract
knowledge based on previous experience. Start-
ing from constructivism, we apply the proposed
method to provide large models with an active and
continuous learning process, offering knowledge
that is abstract and generalized.

3 Method

Algorithm 1 Abstract Reasoning Induction

Require: Temporal knowledge graph K, question
q, historical memory Hq, abstract methodology
instruction set MC

Ensure: Answer to the question q
1: MC ← LLM(Hq) (4)
2: Initialize subject entity eh from q
3: Find 1-hop subgraph Geh of eh in K (1)
4: Enumerate initial candidate actions P0 from

Geh (2)
5: while LLM(MC∗ , P

′
ti) ̸= answer(a) do

6: Filter candidate actions Pti to get P
′
ti (3)

7: C∗
t ← findKmeansCluster(q) (5)

8: a∗i = LLM(MC∗ , q, P
′
ti) (6)

9: Execute selected action a∗i and update cur-
rent environment

10: Regenerate candidate actions for the next
step (2)

11: if ti ≥ tmax then
12: Break
13: end if
14: end while
15: Execute final action a∗i to abtain the answer
16: Add current process to Hq

17: return Answer derived from the reasoning
process

3.1 Task Definition

Given a Temporal Knowledge Graph (TKG) K and
a natural language question q, TKGQA aims to
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Question: Which country's government leader visited China for the last time in 2015?
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Figure 3: Model architecture of ARI. Our framework divides temporal reasoning into two distinct phases: Knowledge-
agnostic and Knowledge-based. This division aims to reduce instances of hallucinations and improve LLM’s
capacity for integrating abstract methodologies derived from historical experience. See the detailed instructions in
Appendix A.4.

extract an entity s/o ∈ E or a timestamp τ ∈ T that
correctly answers the question q. For instance, for
the question ‘Which country’s government leader
visited China for the last time in 2015?’ Based on
the event information contained in the TKG, we
can get the answer to the question is the KG entity
Vietnam.

3.2 ARI Framework

The constructivist perspective posits that knowl-
edge does not merely encapsulate universal laws
but must be contextually reconstructed for specific
situations. This view emphasizes that understand-
ing is a construct developed by the learner, uniquely
shaped by their experiential background and de-
pendent on their learning trajectory in a partic-
ular context (Kirschner et al., 2006; Savery and
Duffy, 1995). In line with this philosophy, we
introduce ARI framework. We overview the frame-
work in Figure 3. Diverging from previous research
that directly feeds knowledge into LLMs , we di-
vide temporal knowledge reasoning into two parts:
knowledge-agnostic and knowledge-based.

The knowledge-based module extracts relevant
TKG subgraphs based on the given question, gen-
erating all feasible fine-grained actions through
traversal (cf. § 3.3). This module encompasses all
operations and interactions with knowledge, free-
ing the LLM from the vast, noisy specific informa-
tion to focus on reasoning. This design approach
allows us to build intricate knowledge queries by
combining fine-grained atomic operations, while ef-

fortlessly adapting to various knowledge bases (see
the detailed operations in Appendix A.3). In the
knowledge-agnostic module, the LLM performs
high-level strategic decisions and candidate action
selection. We have innovated mechanisms that
allow LLMs to internalize lessons from past de-
cisions, forming generalized abstract methodolo-
gies (solid line process in Figure 3). This founda-
tion empowers the LLM to proactively develop ab-
stract methodological guidelines for various ques-
tion types, enhancing its ability to reason on new
questions efficiently (cf. §3.4).

For the inference process, ARI first categorizes
the question and selects the most suitable abstract
methodological guidance. According to these
guidelines, the LLM interacts multiple turns with
the knowledge-agnostic module to reason and grad-
ually solve the problem, as shown in the dashed
line process in Figure 3. We also present a specific
reasoning example in Figure 5 of Appendix A.4.

3.3 Knowledge-based Interaction

In the knowledge-based interaction part, we frame
complex temporal knowledge reasoning challenges
as multi-step inferentce tasks (Gu and Su, 2022;
Gu et al., 2023). At the beginning of each step,
we employ an filtering mechanism to engage with
the TKG and the current question. This interaction
produces a set of feasible candidate actions for each
step. The LLM then selects the most suitable action
from these candidates. Following this selection, the
model interacts with the TKG, updating the initial
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state for the next step in a recursive process.

Candidate Action Enumeration. Specifically,
given a complex temporal question q and a TKG
K := (E ,R, T ,F), where E ,R, T denote entities,
relations, and timestamps, respectively. Starting
from the subject entity eh of q, we first find the
1-hop subgraph of eh in K. Let Neh be the set of
nodes in the 1-hop (undirected) neighborhood of
eh in the TKG, and Reh be the corresponding edge.

Geh = {(e, r)|e ∈ Neh , r ∈ Reh}, (1)

where Geh is the corresponding 1-hop subgraph
of eh. For each edge r ∈ Geh , our agent will
strictly follow finely-grained atomic operations in
Appendix A.3, traversing and replacing the rela-
tions and entities present in the current Geh to con-
struct the set of candidate actions P0, where the
subscript 0 denotes the candidate actions for the
initial step,

P0 = {Enum(action, e, r)|e, r ∈ Geh}. (2)

Candidate Action Filtration. However, due to

the continual occurrence and updating of temporal
events, even the scale of a 1-hop subgraph can be
vast. This results in an excessively large set of gen-
erated candidate actions, which can significantly
impede the judgment of LLMs (cf. § section 4.2).
Consequently, we propose a filtration process for
candidate actions, retaining only those that are cor-
rect, feasible, and semantically relevant.

Specifically, for each action a within set P0, we
execute the corresponding function on the TKG. If
the function returns a non-empty value, the action
is considered correct and feasible; otherwise, it is
discarded. Among all remaining actions, we retain
the top-K actions based on the calculation of their
semantic similarity to the question q,

P
′
0 = {a|exec(a) ̸= ∅ ∧ a ∈ Top-K(P0, q)}. (3)

Based on the LLM’s decision, the agent executes
the corresponding action, thereby updating the cur-
rent environment. Subsequently, it regenerates the
next set of candidates P1 based on the newly iden-
tified subject entities, repeating this process until a
termination command is received.

3.4 Knowledge-agnostic Reasoning
The knowledge-agnostic module enables LLMs to
distill and apply abstract methodologies from his-
torical reasoning examples, enabling adaptation to

diverse questions. This approach fosters a general
methodology, applicable across various domains
and to a wide range of knowledge-independent in-
quiries, enhancing LLMs’ versatility.

Historical Memory Storage and Learning . In
the LLM’s reasoning process, we meticulously doc-
ument the current state at each step ti, encompass-
ing the current temporal question q, the set of can-
didate actions Pt, and the LLM’s decision at. The
aggregate of all stepwise states for a given question
forms the historical decision set Hq,

Hq = {(q, ti, Pti , ati) | i ∈ T}, (4)

where T is the set of all steps in the process.
Temporal reasoning is often multi-step and com-

plex, yet the types of reasoning involved tend to be
consistent, with similar questions requiring similar
inference steps. Therefore, once the LLM conducts
reasoning and accumulates a series of historical in-
ferential steps, we employ unsupervised clustering
K-means (MacQueen, 1967) to categorize these
historical steps into distinct clusters CH .

After the LLM engages in reasoning and com-
piles historical reasoning steps, these are subjected
to unsupervised clustering to form distinct clusters.
Each cluster contains a mix of both accurate and er-
roneous reasoning processes. We enable the LLM
to actively learn from specific historical instances
within each cluster and distill abstract methodolo-
gies independent of domain-specific knowledge.

LLM Decision with Abstract Reasoning.
When addressing new inference challenges, we
initiate the process by identifying the historical
reasoning cluster most closely aligned with
the new question. We then extract its abstract
methodologies to guide the LLM in its reasoning
for the current question.

Specifically, for a given question q, we calculate
the similarity score S(Ci, q) with each historical
reasoning cluster Ci. We then retrieve the abstract
method instruction MC∗ from the cluster that yields
the maximum S. Let {C1, C2, . . . , Cn} be the set
of historical reasoning clusters. For a given ques-
tion q, we calculate the similarity score S(Ci, q)
for each cluster Ci, and select the cluster C∗ with
the highest similarity score to the query q,

C∗ = argmax
Ci

S(Ci, q). (5)

The abstract method instruction MC∗ is then
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selected from the cluster C∗ such that:

a∗i = LLM(MC∗ , q, Pi), (6)

where MC∗ is the abstract method instruction of
C∗, and a∗i is the final output of LLM. The reason-
ing sequence concludes when the LLM outputs a
termination action or when the length of reasoning
steps exceeds the predetermined maximum thresh-
old.

4 Experiment

4.1 Implementation Details
We use gpt-3.5-turbo-0613 as our LLM
(More experiments and analyses of other LLMs can
be found in Section A.7). We configure the LLM
to access and investigate a corpus of 200 historical
reasoning samples, with the maximum length of
reasoning path set to 5, and the number of histori-
cal path categories fixed at 10. Due to the vast size
of the test set, which comprises more than 50,000
question-answer pairs, we employ a stratified sam-
pling approach for evaluation, extracting a subset of
200 questions from the test set for each iteration. In
our evaluation, we compare several baseline meth-
ods, including the traditional TKGQA models and
LLM-based models (see Appendix A.1 and A.2 for
more details).

4.2 Overall Results
Table 1 presents the comparative results of ARI
against other baselines on MULTITQ.

LLM only Performance. ChatGPT’s perfor-
mance on two datasets reveal a significant short-
coming in its application to temporal knowledge
reasoning, even when all the knowledge required
for the questions is within the scope of its training
data prior to 2021. This deficiency is particularly
pronounced when compared to traditional TKGQA
methods, suggesting that the parameterised knowl-
edge acquired by LLMs is not seamlessly trans-
ferred to temporal reasoning tasks. A stark con-
trast in performance is observed between the MUL-
TITQ and CRONQUESTIONS datasets, the latter
benefiting from ChatGPT’s extensive training on
WikiData(Vrandecic and Krötzsch, 2014). This
discrepancy points to a significant challenge: MUL-
TITQ’s reliance on the ICEWS(Boschee et al.,
2015), which encompasses more niche and fre-
quent events, poses a difficulty for LLMs due to
their limited exposure to such data during training.

This contrast elucidates the inherent limitations of
LLMs in processing temporal knowledge.

Reasoning with External Knowledge. Incorpo-
rating additional knowledge graph data into LLMs,
as seen with KG-RAG, considerably enhances
their performance in knowledge-intensive QA tasks.
KG-RAG outperforms ChatGPT by 81% and 96%
across two datasets, respectively. Nevertheless, it
still falls short of leading TKGQA models. This
gap can be attributed to two main factors. First, the
vast and complex nature of temporal information
presents a challenge. A single question may involve
thousands of related events, which cannot be accu-
rately incorporated through prompts alone, leading
to insufficient background information for reason-
ing. Second, the retrieved external knowledge often
contains redundant or irrelevant information, which
can further mislead the model’s inference process.

Reasoning with Exemplar Guidance. The CoT
KB approach, despite providing step-by-step rea-
soning guidance and knowledge-based interaction,
does not reach the efficacy levels of ARI. This dis-
crepancy stems from the exemplar-based learning
method’s dependence on specific instances, which
can introduce extraneous knowledge and detract
LLMs from focusing on reasoning methodologies,
leading to inaccurate conclusions. Additionally,
its static examples fail to provide the customized
guidance necessary for diverse reasoning questions.
Similarly, our investigation also extends to the aug-
mented knowledge-agnostic module in ReAct, de-
signed to mitigate the generation of infeasible ac-
tions. Despite this enhancement, a performance
gap persists when compared to ARI, underscor-
ing similar limitations identified in the CoT KB
approach. Despite ReAct KB’s interaction with
the environment, it still lacks customized abstract
guidance for the current reasoning question.

ARI significantly outperforms current state-of-
the-art TKGQA models, achieving a relative im-
provement of 29.7% on the MULTITQ dataset and
a 9.27% increase in performance on the CRON-
QUESTIONS dataset. These substantial gains can
be attributed to the knowledge adaptability and
the abstract methodology instruction mechanism,
which empower LLMs to make advanced decisions.
By leveraging abstract methodologies, LLMs can
select optimal temporal reasoning steps without en-
gaging with the specifics of the underlying knowl-
edge.
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Model
MULTITQ CRONQUESTIONS

Overall Question Type Answer Type Overall Question Type Answer Type
Simple Complex Entity Time Simple Complex Entity Time

BERT 0.083 0.092 0.061 0.101 0.040 0.243 0.249 0.239 0.277 0.179
ALBERT 0.108 0.116 0.086 0.139 0.032 0.248 0.255 0.235 0.279 0.177

EmbedKGQA 0.206 0.235 0.134 0.290 0.001 0.288 0.290 0.286 0.411 0.057
CronKGQA 0.279 0.134 0.134 0.328 0.156 0.647 0.987 0.392 0.699 0.549

MultiQA 0.293 0.347 0.159 0.349 0.157 - - - - -
ChatGPT 0.102 0.147 0.077 0.137 0.002 0.249 0.250 0.247 0.246 0.253
KG-RAG 0.185 0.200 0.160 0.230 0.07 0.490 0.460 0.518 0.470 0.520
CoT KB 0.240 0.440 0.120 0.220 0.320 0.640 0.690 0.610 0.620 0.660

ReAct KB 0.310 0.635 0.136 0.313 0.300 0.685 0.835 0.525 0.650 0.755
ARI 0.380∗∗ 0.680∗∗ 0.210∗∗ 0.394∗∗ 0.344∗∗ 0.707∗∗ 0.860 0.570∗∗ 0.660∗ 0.800∗

Table 1: Performance of baselines and our methods on the MULTITQ and CRONQUESTIONS. ∗(p ≤ 0.05) and
∗∗(p ≤ 0.005) indicate paired t-test of ARI versus the best baseline.
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Figure 4: Comparison of average reasoning steps of
ARI on MULTITQ.

Model Accuracy (%)

MULTITQ CRONQUESTIONS

ARI 38.0 70.7

w/o Abstract Guidance 30.5 67.1
w/o History Cluster 34.5 68.9
w/o Action Filter 33.1 66.5
w/o Incorrect Examples 36.5 69.2

Table 2: Ablation results of ARI.

Comparison of Reasoning Efficiency. To val-
idate the effectiveness of abstract instruction, we
conduct an evaluation of reasoning efficiency. On
the test set, with all other components of the model
remaining constant, we remove the abstract instruc-
tion and record the average number of steps taken
for reasoning. Compared with the ARI, we observe
that under the guidance of abstract methodologies,
LLMs not only improve in reasoning accuracy but
also reduce their average number of reasoning steps
by 11.4% on MULTITQ and 9.3% on CRONQUES-
TIONS. This underscores that the guidance pro-
vided by abstract methodologies can significantly
enhance the efficiency of LLMs in temporal rea-
soning tasks.

4.3 Ablation Study

To evaluate the efficacy of the individual compo-
nents of the model, we conducted ablation studies.

Initially, we remove the abstract guidance com-
ponent, requiring the LLM to rely on its own un-
derstanding of the questions without the aid of
historical information. This result in significant
performance drops on both datasets, with a 19.7%
decrease on MULTITQ and a 3.7% decrease on
CRONQUESTIONS. This suggests that distilled ab-
stract guidance plays a substantial role in support-
ing the model’s reasoning capabilities.

To further assess the impact of abstract guidance,
we eliminate the clustering module, thus deriving a
universal abstract guidance from all historical rea-
soning processes without categorization based on
question type. The model performance dropped
by 9.2% on MULTITQ and 2.5% on CRONQUES-
TIONS, indicating that a singular abstract method-
ology is insufficient for guiding various types of
questions and that targeted abstract methodological
guidance is more effective. In Appendix A.5, we
illustrate the impact of varying cluster quantity on
the model’s final reasoning performance.

To verify the role of incorrect samples in ARI,
we remove incorrect examples from the process of
generating abstract methods, providing only correct
examples as guidance. As evident from the results,
the removal of incorrect examples leads to a de-
crease in the quality of abstract guidance, resulting
in a performance drop. By encountering and learn-
ing these incorrect examples, LLMs become more
adept at avoiding similar pitfalls in subsequent rea-
soning tasks. This also aligns with our intuition
and has been validated in prior studies (Wang and
Li, 2023; Yang et al., 2023b; An et al., 2023).
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Lastly, we remove the action selection module,
allowing the LLM to choose from all generated
actions without filtering. This led to a decrease in
performance on both datasets by 12.8% and 5.9%,
underscoring that unfiltered actions result in an
excessive number of options, including irrelevant
ones, which hinders the LLM’s reasoning and com-
plicates the decision-making process.

5 Conclusion and Limitation

This study, anchored in the principles of construc-
tivism, critically examines the shortcomings of
LLMs in addressing complex temporal reasoning
challenges and proposes an innovative approach
to augment their reasoning capabilities. Through
the integration of a knowledge adaptability frame-
work and abstract methodological guidance, we
have shown that LLMs can attain more precise and
efficient reasoning in complex temporal scenarios,
effectively overcoming their constraints in process-
ing and interpreting time-sensitive knowledge.

Limitations. While ARI demonstrates impres-
sive results, it also presents several limitations for
ongoing refinement. Firstly, The efficacy of gener-
ating abstract guidance heavily relies on the capa-
bilities of LLMs. Smaller-scale LLMs may strug-
gle to produce high-quality abstract guidance, thus
potentially restricting their application. Secondly,
the ARI framework depends on multi-step reason-
ing to arrive at final answers, a process moder-
ately influenced by the LLM’s reasoning efficiency,
which extends the duration of inference. Finally,
our method is primarily concentrated on complex
temporal reasoning, with its effectiveness in other
reasoning domains remaining to be examined. Fu-
ture research should aim to refine these methods to
make them more adaptable to various models and
problem domains, enhance the balance between
reasoning efficiency and depth, and expand their
scope to include a broader range of reasoning tasks.
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A Appendix

A.1 More Details about Baseline Methods
In our evaluation, we compared several baseline
methods.

• Pre-trained LMs: To evaluate BERT (De-
vlin et al., 2019) and ALBERT (Lan et al.,
2020), we generate their LM-based question
embedding and concatenate it with the entity
and time embeddings, followed by a learn-
able projection. The resulted embedding is
scored against all entities and timestamps via
dot-product.

• EmbedKGQA (Saxena et al., 2020) is de-
signed with static KGs. To deal with mul-
tiple temporal granularities, timestamps are
ignored during pre-training and random time
embeddings are used.

• CronKGQA (Saxena et al., 2021a) is de-
signed for single temporal granularity. To deal
with multiple granularities, time embeddings
at the year/month granularity are drawn at ran-
dom from corresponding day embeddings.

• MultiQA (Chen et al., 2023) is designed for
multi-granularity temporal granularity with a
transformer-based time aggregation module.

• ChatGPT *. We use ChatGPT to provide
*https://chat.openai.com/

Train Dev Test

Single
Equal 135,890 18,983 17,311

Before/After 75,340 11,655 11,073
First/Last 72,252 11,097 10,480

Multiple
Equal Multi 16,893 3,213 3,207
After First 43,305 6,499 6,266
Before Last 43,107 6,532 6,247

Total 386,787 587,979 54,584

Table 3: Statistics of question categories in MULTITQ.

Train Dev Test

Simple Simple Entity 90,651 7,745 7,812
Simple Time 61,471 5,197 5,046

Complex
Time Join 55,453 3,878 3,832
First/Last 118,556 11,198 11,159

Before/After 23,869 1,928 2,151
Total 350,000 30,000 30,000

Table 4: Statistics of question categories in CRONQUES-
TIONS.

direct answers to the questions.

• KG-RAG. To validate the performance of the
LLM in the presence of relevant background
knowledge, we extracted relevant quaternions
(up to 20) from the TKG based on the entity
and time information appearing in the ques-
tion, and put them in the prompt for ChatGPT
to answer as a retrieval-enhanced way of com-
parison.

• ReAct KB:To address the applicability of Re-
Act (Yao et al., 2023) to our task, we de-
signed a variant of ReAct by integrating our
knowledge-agnostic module, which generates
all feasible actions (using the same atomic
action templates as ARI). LLMs were then
prompted to select one action from the avail-
able options. Parameter settings remained con-
sistent with our ARI approach, including the
use of the same Named Entity Linking (NEL)
method and reasoning length.

• CoT KB:We introduce the CoT KB method,
which integrates a knowledge-based module
into the Chain-of-Thought (CoT) (Wei et al.,
2022) framework. This allows the LLM to
interact with KG under the guidance of ex-
amples, thereby obtaining the final answer
more effectively. We manually constructing 9
specific instance examples with detailed rea-
soning steps to guide the LLM, while keeping
other settings unchanged.
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A.2 Datasets Statistics

CRONQUESTIONS (Saxena et al., 2021b) is a
dataset for temporal knowledge graph question an-
swering. The entities and times present in the ques-
tions are annotated. CRONQUESTIONS has four
question types, including both simple and complex
temporal questions.

MULTITQ (Chen et al., 2023) is a complex
temporal question answering dataset with multi-
granularity temporal information. Compared to
existing datasets, MULTITQ features in a few ad-
vantages, including large scale, ample relations and
multiple temporal granularity, which hence better
reflects real-world scenarios.

We summarize the number of questions in MUL-
TITQ across different types in Table 3 and Table 4.
In Table 5, we present sample questions from MUL-
TITQ as per question type, time granularity and
answer type.

Property Sample Question
By question type

Equal Which country provided humanitarian
aid to Sudan in 2007?

Before/After Who commended the Military of Mali
before the Armed Rebel of Mali did?

First/Last When did the Militant of Taliban first
commend the Government of Pakistan?

Equal Multi In 2012, who last did Barack Obama
appeal for?

Before Last Who was threatened by Benjamin
Netanyahu last before Middle East?

After First Who first wanted to negotiate with Evo
Morales after the Citizen of Brazil did?

By time granularity

Year Who first made Abu Sayyaf suffer from
conventional military forces In 2015?

Month In Dec, 2008, who would wish to
negotiate with the Senate of Romania?

Day In Jul 21st, 2011, who criticized the
Media of Ecuador?

By answer type
Entity Which country visited Japan in 2013?

Time When did China express intent to meet
with the Government of Pakistan?

Table 5: Representative examples from MULTITQ.

A.3 Action Templates

Our approach is designed to be both generalizable
and scalable. The templates in ARI are not highly
manually defined high-level functions, but rather
finely-grained atomic operations (e.g., extracting
time, entity extraction, etc.). These atomic oper-
ations can be flexibly combined to generalize a
wide range of complex actions, demonstrating their

versatility and extensibility.
Our action templates in ARI strictly follow the

definition of functions in Table 6. We employ sev-
eral specialized functions to facilitate precise infor-
mation retrieval. The getTime function retrieves the
timing of specific events, based on given entities
and relation. For temporal positioning, getBefore,
getAfter, and getBetween identify entities or events
relative to specified time frames. In terms of entity
queries, getTailEntity and getHeadEntity ascertain
linked entities based on existing relation, with an
optional time constraint. For queries targeting spe-
cific time instances, getFirst and getLast pinpoint
entities with the earliest and latest occurrences, re-
spectively. Responses are then articulated using the
answer function, providing a streamlined method
for answering queries within the TKG.

Our method exhibits low coupling with tem-
plates, making it adaptable to new data and do-
mains. The extensibility of atomic templates is
straightforward, allowing for easy incorporation
of additional templates as needed. For instance, if
we were to extend our approach to handle spatio-
temporal data questions, adding a spatial atomic
operation would be a straightforward task without
the need for significant modifications.

A.4 Details about the Instruction Format
In Figure 5, we illustrate an example of reason-
ing using the ARI model. Table 8 shows some
exemplars of ARI. During each step of the process,
the LLM receives guidance from abstract meth-
ods and selects the optimal action from available
paths, continuing until it deems an answer has been
sufficiently formulated or the maximum reasoning
length is reached. Figure 8 presents the complete
set of instructions used in our experiments, com-
prising components such as task definition, func-
tional interpretations of potential actions, the cur-
rent temporal question under consideration, histor-
ical reasoning steps, available candidate actions
for the current round, feedback from the previous
round’s action, and requirements for output format-
ting.

A.5 Impact of Cluster Quantity
In Figure 7, we show the reduced dimensional clus-
tering diagram for the 10 categories of questions
in the experiment. To verify the effect of different
number of clusters on the results, we present the im-
pact of the number of historical reasoning process
clusters on the results. As shown in Figure 6. We
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Figure 5: A demonstration sample of ARI reasoning on MULTITQ.

Action template Comments

getTailEntity(head,rel,time) Identify the tail/object entity based on the head/subject entity and relation
getHeadEntity(tail,rel,time) Identify the head/suject entity based on the tail/object entity and relation

getTime(head,rel,tail) Retrieve the time of a specific event based on the head entity, relation and tail entity
getBetween(entities,Time1,Time2 Identify entities/events that occurred between two specific times

getBefore(entities,time) Identify entities/events that occurred before a given time
getAfte(entities,time)r Identify entities/events that occurred after a given time
getFirst(entities,time) Pinpoint entities with the earliest occurrence
getLast(entities,time) Pinpoint entities with the latest occurrence
answer(entities/time) To provide your answer, use the answer function

Table 6: Action templates in ARI.We employ these specialized functions to facilitate precise information retrieval.
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Figure 6: Accuracy v.s Number of Clusters of ARI on
MULTITQ.

observe an initial increase followed by a decline
in performance for both simple and complex prob-
lems. This pattern can be attributed to the fact that
when the number of clusters is too low, the LLM
is unable to distill concise and effective abstract
methods from the noisy and abundant historical
paths. Conversely, when the number of clusters
is too high relative to a fixed number of historical
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Figure 7: Clustering results for historical inference ques-
tions.

samples, each category contains too few samples to
provide the LLM with sufficient information to re-
fine abstract methods. Thus, we observe a trend of
improvement that eventually reverses as the num-
ber of clusters increases.
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A.6 Error Analysis
For error analysis, we randomly sample 100 er-
ror instances from the test set and summarized the
following three types of typical errors: (1) Retriev-
ing irrelevant entities (in MULTITQ), meaning the
model obtained wrong entities from the KG; Al-
though our entity linking model can achieve a high
prediction accuracy, wrong entities still exist in
some questions. (2)Low-quality abstract method-
ological guidance. Within the dataset, there exist
complex problems for which the historical reason-
ing processes consistently led to incorrect conclu-
sions. This lack of sufficient correct reasoning
histories hampers the LLM’s ability to synthesize
and refine effective abstract methodologies. Conse-
quently, the low-quality abstract methods derived
by the LLM prove inadequate in guiding subse-
quent reasoning processes, leading to a cascade of
errors. (3) Uncertainty outputs of LLMs. Despite
the constraint that LLMs can only select from can-
didate actions or provide final answers, there are
instances where they do not strictly adhere to the
given instruction. This non-compliance leads to
the failure of our predefined graph query methods,
consequently impeding effective reasoning.

This demonstrates that more efforts are needed
to strengthen the model’s reasoning capabilities,
particularly in enhancing the reasoning capabili-
ties of LLMs and diversifying their reasoning pro-
cesses. It is crucial to provide a richer array of
effective historical information for the generation
of abstract methods. This approach is vital to pre-
vent the LLMs from falling into a repetitive cycle
of errors.

A.7 Generalizability of Method on Other
LLMs

Model LLM only ARI
Llama-2 Chat 7B 0.040 0.105

GPT-4 0.125 0.411

Table 7: Accuracy of ARI with Other LLMs on MUL-
TITQ

To assess the effectiveness of the ARI across
various LLMs, we conducted experiments using
the open-source model Llama-2-7B-chat and
GPT-4. Our findings indicate that models with
greater inherent capabilities yield better direct in-
ference outcomes, presumably due to the acqui-
sition of more extensive knowledge during train-
ing. Furthermore, the performance enhancements

in ARI models built upon these base models are
more pronounced. Notably, the ARI model based
on GPT-4 achieved a score of 0.411 on the MUL-
TITQ benchmark, representing a relative improve-
ment of 40.2% over the current state-of-the-art
models. This significant advancement underscores
our model’s robust generalization capabilities.

Our work focuses on enhancing LLM reasoning
with abstract guidance, minimizing irrelevant noise
by isolating them from direct knowledge sources.
Unlike mainstream LLM agents designed for in-
teractive environments, we employ a knowledge-
agnostic module for environmental interactions, al-
lowing the LLM to make decisions based on ab-
stract guidance alone. Additionally, the study is
open to incorporating interactive decision-making
elements from recent LLM advancements, aiming
to enhance the project’s effectiveness and broaden
its applicability in future research.
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Question 1: In which month did the City Mayor of Philippines first praise Ona?
Action 0 getTime(City_Mayor_(Philippines),Praise_or_endorse,Ona)
Response 0 entities = [(’City_Mayor_(Philippines)’, ’2014-10-07’)]
Action 1 getFirst({entities})
Response 1 entities = [(’City_Mayor_(Philippines)’, ’2014-10-07’)]
Action 2 answer(2014-10)
Response 2 Correct!
Question 2: Before Mali’s militant, which country was the last to criticise France?
Action 0 getTime(Militant_(Mali),Criticize_or_denounce,France)
Response 0 entities = [(’Militant_(Mali)’, ’2013-01-21’)]
Action 1 getFirst({entities})
Response 1 entities = [("Government_(Cote_d’Ivoire)", ...]
Action 2 getLast({entities})
Response 2 entities = [(’Royal_Administration_(Spain)’, ’2015-12-24’)]
Action 3 answer(Royal_Administration_(Spain))
Response 3 Correct!
Question 3: Who was the last to give a criticism to Iran before Pervez Musharraf did?
Action 0 getTime(Pervez_Musharraf,Criticize_or_denounce,Iran)
Response 0 entities = [(’Pervez_Musharraf’, ’2006-01-17’)]
Action 1 getHeadEntity(Iran,Criticize_or_denounce,no time)
Response 1 entities = [(’Shirin_Ebadi’, ’2005-01-05’), ...]
Action 2 getBefore({entities},2006-01-17)
Response 2 entities = [(’Shirin_Ebadi’, ’2005-01-05’),...]
Action 3 getLast({entities})
Response 3 entities = [(’Angela_Merkel’, ’2006-01-16’)]
Action 4 answer(Angela_Merkel)
Response 4 Correct!
Question 4: At what time did Xi Jinping first make optimistic remarks on Japan?
Action 0 getTime(Xi_Jinping,Make_optimistic_comment,Japan)
Response 0 entities = [(’Xi_Jinping’, ’2008-04-18’), ...]
Action 1 getFirst({entities})
Response 1 entities = [(’Xi_Jinping’, ’2008-04-18’)]
Action 2 answer(2008-04-18)
Response 2 Correct!
Question 5: Who wanted to cooperate with Japan in November, 2005?
Action 0 getHeadEntity(Japan,Express_intent_to_cooperate,2005-11)
Response 0 entities = [(’Government_Official_(Russia)’, ...]
Action 1 answer(South_Korea)
Response 1 Correct!

Table 8: Exemplars of ARI for MULTITQ
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f’’’Please use the tool provided below to interact with the knowledge graph. You
will find a list of actions categorized into time-based queries, entity queries,
and specific time queries. There may be more than one answer to the question,

but you only need to answer one correct answer that satisfies the question.

To solve this question, you need to first identify the entities and relationships in
the question, selecting the appropriate actions to retrieve the required

information, and finally, providing the correct answer.

Time-based Queries:
Retrieve the time of a specific event based on the head/subject entity, relation and

tail/object entity by using the $get_time(HEAD, RELATION, TAIL)$ function, .
Identify entities/events that occurred before a given time by using the $get_before(

ENTITY_LIST, SPECIFIED_TIME)$ function.
Identify entities/events that occurred after a given time by using the $get_after(

ENTITY_LIST, SPECIFIED_TIME)$ function.
Identify entities/events that occurred between two specific times by using the

$get_between(ENTITY_LIST, START_TIME, END_TIME)$ function.

Entity Queries:
Identify the tail/object entity based on the head/subject entity and relation by

using the $get_tail_entity(CURRENT_HEAD, RELATION, OPTIONAL_TIME_CONSTRAINT)$
function.

Identify the head/suject entity based on the tail/object entity and relation by
using the $get_head_entity(CURRENT_TAIL, RELATION, OPTIONAL_TIME_CONSTRAINT)$
function.

Specific Time Queries:
Pinpoint entities with the earliest occurrence by using the $get_first(ENTITY_LIST)$

function.
Identify entities with the latest occurrence by using the $get_last(ENTITY_LIST)$

function.
To provide your answer, use the $answer(YOUR_ANSWER)$ function.

Note: Always enclose the selected action in $ and provide a reason for your choice
if necessary.

Examples for your reference: {examples}
(end of examples)

Current Challenge:

Question: {question}

Methodology: {methodology}
(end of methodology)

Previous Actions: {history}
(end of previous actions)

Available Actions: {actions}

Choose your next action from the available actions above, ensuring its completeness.
If you have found the answer, remember to use the answer function.

Organize your output by strictly following the format below:

Action:
<Choose your next action from the available actions above. Note: Always enclose the

selected action in $. Replace {your specified time} with a specified time in the
format YYYY or YYYY-MM or YYYY-MM-DD>

Reason:
<Explain the reason for choosing this action.>’’’

Figure 8: Prompt for the action selection.
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f’’’Carefully analyze the following correct and incorrect examples. From these,
extract and summarize the corresponding patterns and principles. Based on these
examples, provide a comprehensive methodology that describes how to correctly
tackle this type of problem, highlighting the key steps and common pitfalls to
avoid.

Task Defination: <Task Defination>
(end of Task Defination)

Here is an example output:
Example 1:
Overall methodology Instruction:
This type of problem involves the sequential determination of events, e.g. Who {

Relation R} {entity C} before {entity B}, to find the answer {entity A} we need
to reason in three steps, firstly to determine the specific temporal anchors, i.
e., the occurrence time t of {entity B, Relation, and entity C}, and then to
find out which head entities have generated a Relation R connection with {entity
C}. Then, we find out which head entities and {entity C} have been associated

with Relation R, and finally filter out the answers that satisfy the time
requirement before t. The specific steps are as follows. The steps are as
follows

Step-by-step Guide:
1. Firstly, use get_time to find the time, $get_time(entity B, Relation R, entity C)

$, to get the quaternion {entity B, Relation R, entity C, Time t};
2. use the get_head_entity method to get the head entity, $get_head_entity(entity C,

Relation R, entity C)$, to be able to get a list of quaternions;
3. use the get_before method to filter the entities that satisfy the constraints,

$get_before({entities},t)$, to be able to obtain a list of entities that satisfy
the conditions

4. complete the reasoning process by answering the found answer $answer(entity A)$

(end of example output)

Here is the correct samples and incorrect samples for the current question type:
Correct samples:
{correct_examples}

Incorrect samples:
{incorrect_examples}
(end of samples)

Now start writing. Please design a methodology that describes how to correctly
tackle this type of problem. The goal is to provide a comprehensive guide that
highlights the key steps and common pitfalls to avoid when approaching this type
of problem.organize your output by strictly following the output format as

below:

Overall Instruction:
<Define this methodology in detail. Provide a concise guide or inference. Note that

the guidance you provide should be at a methodological level, for this type of
question, not for a specific one. >

Step-by-step Guide:
<A step-by-step guide or procedure detailing how to approach and solve this kind of

question. Note that the steps proposed should be specific and relevant to this
type of question, tell which type of action should use in each step and the
reason>’’’

Figure 9: Prompt for the abstract methodology instruction generation.
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