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Abstract

Projecting intermediate representations onto
the vocabulary is an increasingly popular in-
terpretation tool for transformer-based LLMs,
also known as the logit lens (Nostalgebraist).
We propose a quantitative extension to this ap-
proach and define spectral filters on interme-
diate representations based on partitioning the
singular vectors of the vocabulary embedding
and unembedding matrices into bands. We find
that the signals exchanged in the tail end of
the spectrum, i.e. corresponding to the singu-
lar vectors with smallest singular values, are
responsible for attention sinking (Xiao et al.,
2023), of which we provide an explanation.
We find that the negative log-likelihood of pre-
trained models can be kept low despite sup-
pressing sizeable parts of the embedding spec-
trum in a layer-dependent way, as long as atten-
tion sinking is preserved. Finally, we discover
that the representation of tokens that draw atten-
tion from many tokens have large projections
on the tail end of the spectrum, and likely act
as additional attention sinks.

1 Introduction

Large foundation models dominate the state of the
art in numerous Al tasks. While we understand how
these models work in terms of elementary opera-
tions, and black-box evaluations help characterize
observable behaviours, we lack a clear understand-
ing of the connection between the two.

There is a growing body of work providing in-
sights into properties of model components, e.g.
(Voita et al., 2019; Pimentel et al., 2020; Voita
and Titov, 2020; Geva et al., 2022; Meng et al.,
2022; Voita et al., 2023), as well as identifying
and explaining fundamental phenomena, often with
the support of simple models (Elhage et al., 2021,
2022; Olsson et al., 2022; Shai; Todd et al., 2023).

Most recent works assign a central role to the
model’s residual stream (RS) as the shared com-
munication channel between model components.

Figure 1: Spectral filters project signals exchanged be-
tween components onto selected subspaces as defined
by the spectral decomposition of the vocabulary embed-
ding and unembedding matrices of the model.

In this perspective, the probability distribution of
a token is initialised from the projection of the
embedding of the previous token through the un-
embedding matrix, and receives additive updates
from attention heads and MLP components, each
reading from the residual stream of the same or
previous tokens. The role played by components
is interpreted projecting their contribution on the
probability distribution over vocabulary items, in
what is referred to as the logit lens (Nostalgebraist;
Geva et al., 2020). We extend this approach and
introduce logit spectroscopy, the spectral analysis
of the content of the residual stream and of the pa-
rameter matrices interacting with it. Equipped with
this tool, we look at the part of the residual stream
spectrum that is most likely to be neglected by the
logit lens: the linear subspace spanned by the right
singular vectors of the unembedding matrix with
the smallest singular values. Drawing an analogy
with “dark matter” in astrophysics, that interacts
with light only indirectly, we dub projections onto
this subspace dark parameters, features, activations
etc.

We were motivated by the thought that LLMs
could learn to use signals in the dark linear sub-
space to maintain global features responsible for
long-range dependencies while minimizing their
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interference with the next token prediction. We dis-
covered instead that dark signals are instrumental to
implementing the recently described phenomenon
of attention sinks (Xiao et al., 2023), of which we
provide a detailed account. We also show that the
negative log likelihood of pretrained models can
be kept low despite suppressing large swaths of
the unembedding spectrum, as long as the dark sig-
nals required for attention sinking are untouched.
Finally, we find a significant positive correlation be-
tween the average attention received by a token and
the relative prevalence of dark signals in its resid-
ual stream, and find evidence that tokens uniformly
receiving substantial attention are likely acting as
additional attention sinks.

2 The LLaMa2 models

We chose LLaMa2 models (Touvron et al., 2023)
as the object of our study as they were the most
competitive models with open-access weights at the
time we started this work. In particular we studied
pretrained models (without instruction fine-tuning)
with 7B, 13B, and 70B parameters.

Table 1 presents the key dimensional hyperpa-
rameters of these models. All LLaMa2 models
share the same tokenizer, with 32,000 vocabulary
items. Table 3, in Appendix A, summarizes the
standard notation we use to refer to model compo-
nents, and a high-level diagram of the architecture
is in Figure 2.

We point out a few differences between LLaMa2
models and the original transformer architecture
(Vaswani et al., 2017). RMSnorm (Zhang and
Sennrich, 2019) is applied before every attention
component, MLP component, and the final unem-
bedding projection. RMSnorm includes a learned
rescaling vector that is applied after the normal-
ization proper. In all cases, we absorb this rescal-
ing vector into the matrices downstream from the
rescaling: this is mathematically equivalent and
simplifies the analysis.

LLaMa2 models use SwiGLU activation func-
tions (Shazeer, 2020). This means that MLP com-
ponents have three parameter matrices instead of
the more familiar two.

Finally, LLaMa2 models use rotary positional
embeddings (Su et al., 2023). While important
for the functioning of the model, their effect is
independent of the phenomena we are focusing on.

3 Model parameter properties

Let W, = UuEuVuT be the singular value decom-
position of the vocabulary unembedding matrix
(and similarly for W,). Figure 3 shows the dis-
tribution of the singular values (SVs) of W, for
LLaMa2 13B. There is a single large SV' followed
by a tail that declines only at the very end (the
distribution for LLLaMa2 7B and LLaMa2 70B is
similar). The SV distribution of the W, embedding
matrix is also similar, but the top SV is only twice
as large as the second one, with a longer “head” of
relatively large SVs.

We use the adjective U-dark (E-dark) to charac-
terize anything that happens in the linear subspace
spanned by the 5% right singular vectors (RSVs)
of W,, (W,) with the smallest SVs, the dark basis.

We gain an initial insight into whether dark sig-
nals are exchanged by projecting rows and columns
of parameter matrices on the dark bases. Wy, W,
and W,, project the residual stream onto either the
latent space used to compute attention scores or the
latent space used to compute the attention output,
so they “read” from the residual stream; similarly
Wi and W3 map from the residual stream onto
the activation layer of the MLP components. We
project the columns of these matrices on the RSVs
of W, to estimate and visualize their aptitude to
read from the dark subspace®. Conversely, W, and
W5 map from latent spaces back into the residual
stream, therefore we project their rows to check
their aptitude to write into the dark subspace. We
computed and plotted the norms of the d vectors
of dimension dy, or d,,, obtained with these projec-
tions, e.g.:

P =

{H(VJ)zWyH% (/S {k7Q7U7173} (1)

(VD)W 2,y € {0, 2}

We discovered a great variety in where, in the
bases formed by the RSVs of W, and W, model
components are equipped to read from and write
into. Figure 4 gives a sense of such variety.

The projections of MLP matrices also clearly in-
dicate that some MLP components can write mostly
into the dark subspace (see Fig.5 for the projection
of 13B/LO/W3 on W,,).

Projecting unembeddings on the first singular vector
shows that it is highly representative of token frequency.

2We adopt the convention that input vectors are row vectors
and are multiplied by parameter matrices on the right.
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Model Layers | RS dim | MLP dim | Attn heads | KV heads
LLaMa2 7B 32 4096 11008 32 32
LLaMa2 13B 40 5120 13824 40 40
LLaMa2 70B 80 8192 14336 64 8

Table 1: Dimensional hyper-parameters of the LLaMa2 models. The 70B model uses grouped-query attention, with
64 attention heads sharing 8 key and value matrices.
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Figure 2: Schema of transformer-based autoregressive LMs. Initialized (bottom) with the embedding of z;_;, the
residual stream receives additive updates by attention and MLP components layer after layer. At the end a projection
through the unembedding matrix W,, and a softmax yield the probability distribution from which the next token is
sampled. The red and yellow blocks show the two positions where we applied spectral filters (Sec. 4).
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Figure 3: Distribution of the singular values of the un-
embedding matrix W,, of LLaMa2 13B. The U-Dark
subspace is the one spanned by the last 5% right singular
vectors.
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Figure 4: The projections of four W, matrices of
LLaMa2 70B on the RSVs of W,,. Different heads are
equipped to write into different subspaces, with some
targeting the dark subspace.

There are therefore components that are
equipped for communicating through the dark sub-
space. In the following section we explore if such
communication actually takes place and how it
manifests itself.

4 Spectral filtering

One possible explanation for the existence of com-
ponents that communicate through the dark sub-
space is that they are useless, and the model learned
to divert their output to subspaces with little bear-
ing on the vocabulary logits. To see if this is the
case, we perform a series of experiments, where
we patch some of the intermediate representations
by projecting them onto the RSVs of W, and W,
with largest singular vectors, therefore removing
dark signals. We measure the average negative log-
likelihood (NLL) of tokens in a sample of prompts:

Projection of W2 on SVs of Wu
W2/Wu. Aggregated, layer: 0

21
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Figure 5: The projection of the rows of W5 at LO of
LLaMa2 13B on the RSVs of W,,. Note the large values
at the very right end of the spectrum, indicating the
ability to write in the U-Dark space.
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Figure 6: W filters project vectors onto subspaces that
are dark according to both the embedding and the un-
embedding matrix decomposition.

if dark signals are irrelevant noise then we expect
NLL to be largely unaffected when they are filtered
out.

We split the singular vectors of W, into 20
bands: {Vy,1,...,Vy 20}, of cardinality d/20, and
similarly for W,. V,, 1 contains the 5% of singu-
lar vectors with largest singular values, V,, o the
next 5%, and so on. Let V,, ;. be the matrix ob-
tained concatenating [V,, ; ...V, k], and (Fig. 1)
let @, ;.1 = VuJ:kVuT’j:k (similarly for W,). We
can then project any d-dimensional vector onto
the U-dark (E-dark) space by multiplying them by
Dy, 20:20 (resp. Pe 20:20).

We form a hierarchy of nested filters ®,, 1.;: mul-
tiplying a vector by ®,, 1.5, projects it onto the sub-
space of the kd/20 “least dark” dimensions. We
also define filters that combine singular vectors of
W, and W, (Fig. 6):

Uy = (I — ¢ (k41):20Pu,(k+1):20), k= 1,...,19

2)
and we set Uy = . Multiplying a vector by Wy,
filters away projections onto subspaces of both W,
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Figure 7: The effect of filtering 13B/L3/MLP with the
filters defined in Section 4. 'Rnd’ indicates filtering
projection on subsets of a random orthonormal basis,
for reference.

and W, that get darker as k grows. Wig filters out
only vector components in the 5% dark subspace
of both W,, and W,. These definitions make ®,, 1,
®, 1, and W), comparable when looking at the frac-
tion of kept/discarded singular vectors, although,
since it discards a double projection, W, retains
more information. We create a dataset (ccnet-405)
of 405 prompts (13,268 tokens) in English, from
CCNET (Wenzek et al., 2019). We ran inference
on ccnet-405 applying spectral filters to the output
of MLP components, one by one (Fig. 2 (yellow
box)) and measured the average NLL. We similarly
measure NLL when filtering the RS after the contri-
butions of a given target layer have been added to it
(Fig. 2 (red box)). See App. B for implementation
details.

4.1 Discussion

When filtering MLP layers of LLaMa2 13B, the
effects of masking L.O and L3 dwarf all others.

When filtering the output of the MLP at L3 (Fig.
7) the loss remains poor until the last 5% of the
spectrum is included for both the ® spectral fil-
ters. The fact that the W curve is always above the
random filter indicates that this MLP exerts strong
influence operating in the dark subspace. See Ap-
pendix C for a discussion of 13B/LO/MLP.

Figure 17 in App. C shows that MLP compo-
nents with a similar propensity for writing dark
signals exist also in LLaMa2 7B (L1) and 70B (L2
and L8).

We also look at what happens to the negative log-
likelihood when filtering the residual stream after

a given layer (Figures 2 (red box) and 8). Even
a mild bottleneck after L3 results in a significant
increase in NLL, in line with the observation that
the MLP in L3 writes in the dark space. If we filter
only signals that are dark to both W, and W,, (Fig.
8(b)), we see bottlenecks continuing to be more
harmful than random direction removal (Fig.8(a))
up until L20-25.

Dark signals exist and play an important role in
achieving low perplexity, but what is this role?

5 Attention sinks

(Xiao et al., 2023) describe attention sinks: the
special Beginning of Sentence (BoS) ‘Token 0’
receives a disproportionate amount of attention.’
This happens because often an attention head
should not activate in a given context, but the nor-
malisation in the attention scores forces a constant
amount of attention to be distributed to previous
tokens. The model therefore learns to sink excess
attention by allocating it to the BoS token and mak-
ing allocating attention to the BoS token inconse-
quential, i.e. a "no-op’.

Figure 9 shows how the norm of the Token 0
residual stream progresses over layers, and the con-
tributions from MLPs and MHAs components. We
plot the overall norm, and the norms of the projec-
tion on the U-Dark space and of the projection on
its orthogonal complement (U-Light).*

After an initial phase of input enrichment that ap-
parently does not need an attention sink, the MLP
at L3 blasts off a vector of large norm and almost
completely U-dark. This vector acts as an attention
collector for heads in need of a sink according to
the mechanism described in detail in Appendix D,
and is kept around until the last few layers, where
the combined action of MLPs and attention heads
first erases it and then replaces it with the vec-
tor that encodes the probability distribution of the
model over generation-initial tokens.

We confirmed that dark signals are primarily
used to sink attention with an additional experi-
ment (Fig. 10). We apply spectral filters at the exit
of a layer but, rather than suppressing the filtered

¥Xiao et al. (2023) include the first four tokens in their
operational definition of attention sinks, for achieving effective
streaming decoding. In our observations the BoS token is by
far the one attracting the most attention.

“Note that the composition of the residual stream of Token
0 is always the same, irrespective of the prompt, because
Llama 2 models initialize it with the embedding of the special
<BoS> token, and since they are autoregressive there is no
context that could influence it.
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Figure 8: NLL of LLaMa2 13B on ccnet-405 when filtering the residual stream after a given layer (vertical axis),
retaining an increasing number of SVs (horizontal axis) of (c) W, or (d) W,,. (b) filters from the residual stream
only its double projection onto both the W, and W,, dark spaces. (a) shows, for comparison, the effect of adding
more and more dimension in a random orthogonal base. See Fig.19 for similar heatmaps for LLaMa2 7B and 70B.
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Figure 9: (Top) The composition of the RS of the BoS
token for LLaMa2 13B as a function of the layer. (Bot-
tom left) The norms of the contribution of MLP layers
to the BoS RS. (Bottom right) The norms of the contri-
bution of Multi-Head Attention components to the BoS
RS.
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Figure 10: Shavings swap experiment: rather than being
suppressed, the subspaces blocked by spectral filters
are swapped with the corresponding ones from a token
at the same position but in a different sample. This
swap perturbs all residual streams except the one for
Token 0, since this is identical for all samples due to the
autoregressive nature of the model.

component, we add it into the corresponding resid-
ual stream of a different sample, at the same token
position and layer. Since the content of the RS of
the BoS is the same irrespective of the input, this
procedure leaves it intact, while perturbing all other
RS:s.

The resulting NLL heatmap is in Fig.11 (left).
Unlike in those in Fig. 8, there is no step-decrease
in NLL when the last 5% of singular vectors is
added. Conversely, if we apply spectral filters
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Figure 11: NLL of LLaMa2 13B on ccnet-405 when
filtering the residual stream after a given layer (vertical
axis). (Left:) Swapping the filtered vector components
between RS at the same layer and token position, but in
a different sample, perturbing all RSs except the BoS
one. (Middle:) Filtering only the residual stream of
the BoS token. (Right:) Applying the sink-preserving
spectral filters €2,, , to a section of the residual stream
of LLaMa?2 13B right after a layer.

m>

Figure 12: € filters project vectors on the head of the
spectrum, but also on the tail end to preserve attention
sinking.

only to Token 0, the step-decrease is clearly visible
(Fig.11 (middle)). We conclude therefore that the
primary function of the dark subspace is to enable
the crucial attention sink mechanism.

6 Sink-preserving spectral filters

The finding that dark signals are essential to enable
attention sinks leads to the question: what would
be the impact of spectral filters that preserve dark
signals but filter away one or more bands before
them? Let €1, ;. be a new family of spectral filters
(Fig. 12):

Qur = (Va1:k; Viu20:20)) ([Vau 185 V20:20]) -
3)
Fig. 11 (right) shows that low values of NLL
are achieved even when masking a significant num-
ber of components. As an example (Fig. 13) NLL
grows only from 2.47 to 2.74 when suppressing
25% of the SVs by applying (2, 14 after L12. We

NLL with different RS filters at L12
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o
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Figure 13: NLL by number of retained dimensions when
applying different spectral filters at L12. Error bars in-
dicate three standard deviations over five repeats with
samples from the same source and of the same approxi-
mate size as ccnet-405.

validated these results by repeating the experi-
ment with a sample of code from the DeepMind
Code Contest dataset (Li et al., 2022) consisting
of 117 prompts (14,641 tokens), Fig. 20, and with
LLaMa?2 7B and 70B (Fig. 19).

6.1 The effect of inhibiting attention sinks on
generation quality

So far we have looked at the effect of spectral filters
on the negative log-likelihood of prefixes that were
fed as prompts to our models. It is interesting to
also observe the impact on generated continuations
when applying these same filters.

Layers 2-4 are the most fragile to random and ¥
filtering (Tab. 2), while generations remain coher-
ent with () filtering irrespective of where the filter
is applied, when 10-20% of the singular vectors
are suppressed. We notice that the application of ¥
filters often results in the model entering repetitive
patterns. This is consistent with the possibility that
attention heads largely copy representations from
the RSs of previous tokens, and inhibiting attention
sinking results in over-copying. More examples
can be found in App. E.

7 Dark Signals and Attention Bars

Inspecting attention matrices in our sample we see
that there are frequently a few tokens that also re-
ceive a large amount of attention, giving rise to
characteristic attention bars (e.g. Fig. 14). We
hypothesized that such bars could correspond to
tokens whose residual streams are similar to that of
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Prompt: If you’re interested in Grizzly Bear viewing
in and around the northern Gulf of Alaska, consider
a chartered flight with Trygg Air Alaska based out of
King Salmon with service to and from Anchorage.

W (90%): The EA, a GS, the E, A, for a total, the GS,
the E, the S, the E, the S, the 15, the 16, the 15, the 16,
the 15, the 17, the

Rnd (90%): What is the most beautiful thing that has
ever been? What is the most beautiful thing that has
ever been? It is not about the most beautiful thing that
has ever been. The most beautiful thing that has ever
been. It is not about the most beautiful thing that has
ever been. It is not

Q4 (90%): The Grizzly Bear is one of the largest land
carnivores in the world. Males can reach a weight of
800 pounds and females can reach a weight of 400
pounds. The Grizzly Bear is one of the most powerful
predators in North America

Table 2: Sample generations by LLaMa2 13B with spec-
tral filters applied right after L3.

Figure 14: Attention matrix at L39 averaged across
heads for a sample. Brighter columns correspond to
tokens that are attended by many following tokens
(LLaMa2 13B, Token 0 is removed for readability).

Token 0, and therefore become additional attention
sinks.

We define High-Mean Low-Variance (HMLV)
token-layer pairs those with mean received atten-
tion from subsequent tokens above 7, = .018 and
variance below 7, = .01. We selected thresholds
manually so that most HMLV tokens appear as “at-
tention bars” in attention matrices®. This heuristic
yields 12,236 HMLYV token-layer pairs for LLaMa2
13B on ccnet-405 out of a total of 404,748 token-
layer pairs for the same tokens and layers consid-
ered. We ignore the BoS token, the last 4 tokens of
each sequence, and layers 0-3, since the attention

SEmpirically, this heuristic appears more accurate for lay-
ers from L15 on. It might be better, but more laborious, to
define layer-specific thresholds.

U-Dark ratio mean by layer Key-key mean dot product with BoS by layer

2007 — Al tokens

~/ — Alltokens
—— HMLV attn tokens N\ -200

—— HMLV attn tokens

Figure 15: Mean U-Dark ratio (left) and key-key dot
products with the BoS RS (right) for high-mean low-
variance attention tokens and across all tokens, by layer.

sink is not in place in the 13B model yet.
We define the U-Dark ratio as a measure of the
prevalence of U-Dark signals in a representation:

udr(hl) = || ®u20:2014| @
(I = ®u 2020 bt |
i.e. the norm ratio between the projection of the
residual stream onto the U-dark space, and the pro-
jection on its orthogonal complement.
We also define the key dot-product as the average
dot product between the keys projected through

matrices Wp:

1
kdp(l) = TH||T| Z<hzl€WI?,la héW;?,z> (5)
It

Intuitively, this value quantifies the extent to
which a residual stream appears similar to the one
of Token zero, as far as attention allocation is con-
cerned.

We measured the average U-Dark ratio and key
dot product for HMLVs, and contrasted them with
the same statistics taken over all token-layer pairs.
Results are in Fig. 15.

Starting around L13 the U-Dark ratio of HMLV's
grows considerably, whereas it remains constantly
below .75 for the overall population. At the same
time, the gap in key dot product also grows, as the
kdp for the overall population steadily decreases,
while that for HMLVs stabilizes. Analogous plots
for the LLaMa2 7B and 70B models show differ-
ent profiles, but an even more marked difference
between HMLVs and the general population (Ap-
pendix F). These measures support the hypotheses
that HMLVs are token-layer pairs that appear very
similar to Token 0, as far as attention allocation is
concerned, and therefore become additional atten-
tion sinks.

8 Related work

In this work we adopt the framework introduced
in (Elhage et al., 2021), which highlights the cen-
tral role played by the residual stream as working
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memory and communication channel across com-
ponents, and suggests the presence of subspaces
with differentiated functions. The logit lens was
first introduced by (Nostalgebraist), and has been
since used and extended in a number of interpre-
tation studies, including (Dar et al., 2022; Geva
et al., 2022; Belrose et al., 2023; Din et al., 2023;
Katz and Belinkov, 2023; Voita et al., 2023). Of
these, Dar et al. (2022) analyse models projecting
parameter matrices onto the vocabulary space, an
approach we are also following in Section 3.

Our hypothesis that the subspace most orthogo-
nal to the vocabulary representation could encode
non-sparse latent features that should not interfere
with the distribution over the immediate next token
appeared supported by (Elhage et al., 2022), where
they show that, in basic models, important non-
sparse features tend to be assigned principal compo-
nents rather than being in superposition with sparse
features. (Sharkey et al., 2022) showed that sparse
autoencoders can recover a ground-truth assign-
ment of features to linear subspaces by means of
sparse autoencoders in an artificial and simplified
setting and a 31M parameter LLM, with d = 256;
(Cunningham et al., 2023) apply a similar method
to larger Pythia 70M and Pythia 410M models. Our
results with €2 filters with the much larger LLaMa2
models indicate that the residual stream could be
used at less than full capacity, at least for some of
the layers, raising the question of what model of
superposition would best apply to them.

The concept of Attention Sinks was introduced
by Xiao et al. (2023), who noticed that performance
of streaming models dropped abruptly once the first
tokens moved out of the attention sliding window
context. We take here the next step in explaining
how this process works, showing how it happens
thanks to a very limited and specific portion of the
spectrum.

Sharma et al. (2023) show that it is possible
to preserve and even improve the performance of
the GPT-J (Wang and Komatsuzaki, 2021) model
while dropping large portions of component matri-
ces based on the SVD decomposition of the ma-
trices themselves. We also focus on spectral de-
composition, but using the spectrum of the unem-
bedding matrix, in accordance with the logit lens
approach and the intuition that it represents a com-
mon ground for all the components in a model.

9 Conclusions and Future work

A better understanding of the inner workings of
transformer models is important to find strategies
to make them safer. In this work we explored a
novel way to look at transformers, extending the
logit lens approach into logit spectroscopy by intro-
ducing spectral filters. We explored the hypothesis
that dark signals could be used to maintain global
features while minimizing their interference with
the next token, but we discovered that the main
role of dark signals is in enabling attention sinking.
We reconstructed how attention sinking works in
LLaMa2 models, and we showed that, as long as
attention sinking is preserved, they still achieve low
negative log-likelihood even when significant por-
tions of the unembedding spectrum are suppressed.
Finally, we found a positive correlation between
the attention received by a token and the relative
prevalence of dark signals in its residual stream,
especially in the upper layers.

The results on spectral filtering with dark signal
preservation, combined with the observation that
transformers are invariant to basis changes in the
residual stream, suggest that it could be possible
to first "canonicalize" a model so that its resid-
ual stream dimensions match the V,, columns, and
then compress away from components dimensions
that are low in the spectrum but are not used for
attention sinking. We consider such a form of spec-
tral compression an interesting direction for future
work.

Finally, while our exploration of the connec-
tion between “attention bars”, prevalence of dark
signals, and similarity with the Token O residual
stream suggests that attention bars are additional
attention sinks, increasing the granularity of the
spectral bands in the dark subspace could lead to
additional discoveries.

10 Limitations

We limited our attention to the LLaMa2 family of
models, and only to the pretrained models prior
to their instruction and safety fine-tuning. It is
possible that other models do not realise attention
sinks in the same way, or that they might not need
them.b

The number of conditions tested in our detailed
spectral filtering experiments meant that we could
use only a text sample of limited size. While we did

®For example by using off by one softmax (Miller).
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repeat some of the experiments using a code sam-
ple, we cannot exclude that there could be some
differences when using samples from drastically
different distributions, e.g. in languages using dif-
ferent scripts.

11 Ethical Considerations

While our aim in studying the behaviour of LLMs
is to make them more transparent, controllable, and
trustworthy, it is conceivable that increased under-
standing could also benefit malicious agents intend-
ing to undertake harmful actions. Besides these
generic considerations, we cannot see problematic
ethical issues arising from this work.
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A Notation

Table 3 summarizes the notation used throughout
the paper.

B Implementation details

Spectral filtering experiments were run on up to 8
NVIDIA A100 GPU servers with 80GB of memory
each, the slowest (for the 70B models) taking up to
4 hours to complete. They were implemented mod-
ifying the public Llama inference code’. Inference
used nucleus sampling with the default parameters
(top-p=.9, T=.6).

C Additional spectral filtering
experiments

When filtering the output of the MLP of LLaMa2
13B at LO with filters ®. ;.;, log-likelihood remains
poor (around 9) (Fig.16) until about 90% of W.’s
RSVs are retained. This indicates that the MLP in
LO exerts its effect by writing mostly into an E-dark
subspace. The fact that the NLL recovers steadily
starting from when about 40% of the RSVs of W,
are retained, and that the curve for the W, filters is
close to the random masking, show that this MLP
writes mostly in the target unembedding space.

Figure 17 plots the NLL loss when applying
spectral filters to the MLP at L1 in LLaMa?2 7B,
and at L2 and L8 in LLaMa?2 70B. The loss pro-
files of component 7B/L1/MLP (left) are similar to
those of 13B/L3/MLP: it exerts its influence in a
subspace that is dark to both embeddings and un-
embeddings, and indeed it is the MLP that creates
the attention sink vector in the Token O residual
stream. 70B/L2/MLP and 70B/L8/MLP are the
components responsible for the attention sink in
70b (Fig. 18). Unlike with 7B and 13B, the at-
tention sink vector in Token O is U-Dark but not
E-Dark, and is formed in two steps at L2 and LS.

Figure 19 shows NLL loss heat-maps for
LLaMa2 7B (top) and 70B (bottom) when spec-
tral filters are applied to the RS at the layer on the
vertical axis.

Figure 20 displays similar heat-maps for
LLaMa2 13B, using a sample of code fragments
from the solutions of the DeepMind Code Contest
dataset rather than ccnet-405.

https://github.com/facebookresearch/llama
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v Vocabulary

L<X> Layer X

H<Y> Head Y

d Model dimension

dp, Head dimension

dm MLP hidden layer dimension

hl € R4 Intermediate repr. for Token ¢ at layer [
W.,ze{1,2,3} | MLP matrices (W7, W3 € Rdm), W, € RImxd
W., z € {k,q,v,0} | Attention matrices (W, W, W,, € R¥dn W, € Rdnxd)
W, z € {e,u} Embeddings and unembeddings (€ RIVI*4)

Vy,y € {e,u} right singular vectors of emb. and unemb. matrices

Table 3: Notation for referring to model components.

NLL with different MLP filters at LO

nats
[=]

41— md
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T T T T
0% 25% 50% 75%
Fraction of basis vector retained

34 — ode
— du

100%

Figure 16: The effect of filtering 13B/LO/MLP with the
filters defined in Section 4.

D Attention sink mechanics

In this appendix we offer a more detailed account
of the attention sinking mechanism described in
Section 5.

Consider the case when a given head H at layer
I < L is irrelevant when predicting a token ¢, per-
haps because H specializes in a different kind of
contexts, or in text from a different distribution (e.g.
code, a different language, etc.).

Recall (Fig. 2) that the final representation htL at
a token ¢ is the sum of the embedding of the pre-
vious token (BoS for Token 0) and of all contribu-
tions from MLPs and attention heads at all layers,
including H. Since, in MHA components, non-
linearities are only involved in the determination of

attention scores, the overall contribution of head H
to the RS of ¢ can be decomposed into the sum of
micro-contributions, each corresponding to a spe-
cific token s < t. Each such micro-contribution
is the projection of the hidden representation at a
previous token s right before layer [ through W
and WOH scaled by the attention score a ;:

S(H t) =) ashWIW) (6)

s<t

where we omit the layer index [ and transposition
operators to avoid clutter. Since attention scores are
the outputs of a softmax, they are non-negative and
such that ), as; = 1, therefore the contribution
of H to the RS of ¢ is a convex combination of
the projection of the RSs h; of all tokens s < ¢
through the matrix product W2 WH  Interestingly,
LLaMa 2 parameters are such that the projection
of the RS of Token 0 through WX WH has much
smaller norm than the projection of all other input
tokens, and this for all H.

Since Token O has no token to its left, all its at-
tention is focused on itself. This means that Fig. 9
(bottom right) can also be read as a plot of the
norms for the combined micro-contributions from
Token O of all attention heads. Fig. 21 (left) shows
the same plot limited to the layers where the at-
tention sink is in place, whereas Fig. 21 (right)
shows a similar plot for a random token (most to-
kens look like this). Note the different scale on the
vertical axis: projections from Token 0 are much
smaller compared to other tokens. They are also

4803



NLL with different MLP filters at L1

NLL with different MLP filters at L2

NLL with different MLP filters at L8

nats
nats

IS

w

— md 9

— oe 8
— ou

nats

5% 25% 50% 75% 100% 5% 25%
Fraction of basis vector retained

50% 75% 100% 5% 25% 50% 75% 100%
Fraction of basis vector retained

Fraction of basis vector retained

Figure 17: NLL filtering of MLPs in LLama2 7B (left) and 70B (middle) and (right) highlighting layers operating

in the dark space.
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Figure 18: Token O residual stream in LLaMa2 70B. (left): RS norms by layer; (middle) norm of MLP contributions;

(right) norm of MHA contributions.

darker. When they are added to the RS of a token ¢,
they have negligible influence on the corresponding
logitsg. This in turn means that the (undesirable)
perturbation from the irrelevant head H is mini-
mized if the head assigns as much attention weight
as possible to s = 0, i.e. ap; = 1 — € for a small
e > 0.

E Generation examples

Tables 4 and 5 show continuations from a same
prompt generated by LLaMa2 13B models with
three different filters. The left column is from a
model filtered at a single layer with the filter ¥
that ablates the double projection on the 20% (resp.
10%) dark subspaces; the middle column is from a
model where the filtering removes 20% (resp. 10%)
random projections; the right column is generated
with an equivalent (2 filtering. The row header in-
dicates the layer immediately after which the filter
was applied. Since the W filter ablates the result of
a double projection, we would expect its impact to
be less noticeable. This is not the case: both the

8We verified that the reduction in entropy due to projec-
tions from Token 0, when sampling with 7" = 1, is always one
or two orders of magnitude lower than the reduction gained
by the same projections from other tokens.

U-filtered and the randomly-filtered models at L.3°
are disrupted already at 10%, but the randomly-
filtered one starts recovering already when the filter
is moved to L4, while the W-filtered one keeps gen-
erating nonsense as the filter is moved up to L10
and beyond. Generations with 2 filtered-models
remain largely coherent irrespective of where the
filter is placed, for levels of suppression up to 20%.

F High-Mean Low-Variance received
attention tokens

High-Mean Low-Variance token-layer pairs (HM-
LVs) are defined in Sec. 7 as token-layer pairs
whose received attention over subsequent tokens
has mean above 7, = .018 and variance below
7, = .01. HMLVs tend to be associated to char-
acteristic attention bars in attention matrices. Fig-
ure 22 shows the U-Dark ratio and Key dot-product
metrics, by layer, for HMLVs and for the general
population. HMLVs have much larger U-Dark Ra-
tio than the general population, and also much
larger key-dot product with the BoS token, sup-
porting the hypotheses that they appear similar to
the BoS token to subsequent tokens, and therefore
behave as additional attention sinks.

The impact on the random-filter at L3 suggests that L3 is
where the residual stream is used at its full capacity.
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Figure 19: Negative Log-Likelihood when filtering the Residual Stream one layer at a time in LLaMa2 7B (top)
and LLaMa?2 70B (bottom). White cells correspond to configurations where NLL diverged for at least one of the
samples.

Figure 20: NLL filtering of MLPs in LLLaMa2 13B on a sample of code from the DeepMind Code Contest dataset.
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Projections of pos 0 RS by layer. Projections of pos 6 RS by layer.
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Figure 21: Norms of the combined projections of all attention heads from Token O (left) and from a generic random
token (right). Note the different scale on the vertical axis: projections from Token 0 are much smaller, as well as
darker.
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Figure 22: U-Dark Ratio and key dot-product metrics for the HMLVs and for the general population, by layers, for
LLaMa?2 7B (top) and 70B (bottom). See Section 7 for definitions.
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Prompt: Tuatara are lizard-like reptiles that can be traced back to the time of the dinosaurs. For the first time in
200 years, researchers have discovered a baby tuatara on mainland New Zealand.

W (80%)

Rnd (80%)

Q. (80%)

L3

When, “b/3,on,h,a The “t The
A.e.c.t,a,w,d, The,a,d,th, The,th,
The, The,t,d, The,d, on,

At the time of the early 2000-600,
2000 and 2000: 2000, 2000, 2000
and 2000: 2000, 2000,

Tuatara are one of the largest rep-
tiles in the world and are native
to New Zealand. However, due
to predation, habitat loss and the
introduction of mammalian preda-
tors, they are now limited to a few
small islands. The tuatara is a
small lizard-like re

L5

The first “tone” is the one, the first,
the one, the first, the S, the first,
the, the, the, the, the, the, the, the,
the, the, the, the, the, the, the, the,
the, the, the, the

In the 1990s, the public is on the
100th and 100th. The 100th is the
100th. The 100th is the 100th. The
100th is the 1

A baby tuatara has been found
for the first time in 200 years, ac-
cording to a new study. Tuatara
are lizard-like reptiles that can be
traced back to the time of the di-
nosaurs, according to the study.
The last time a tuat

L7

, in the, The , in the, the , in the,
The , the , the, and , the , the, the,
the, the, the, the, the, the, the, the,
the, the, the, the, the, the, the,

Ali T and/2d. Ali T and 2d. Ali T
and 2d. Ali T and 2d. A. Ali T and
2d. A. A. AliTand 2d. A. A.

Tuatara are lizard-like reptiles that
can be traced back to the time of
the dinosaurs. For the first time in
200 years, researchers have discov-
ered a baby tuatara on mainland
New Zealand. Researchers from
Massey University in New

L10

a y/t, a right The half, but, the, the,
the, the, the, the, the, the, the, the,
the, the, the, the, the, the, the, the,
the, the, the, the, the, the, the, the

A single baby tuatara is a rare sight.
It’s been 18 years since a baby tua-
tou

The discovery was made by the De-
partment of Conservation (DOC)
and the University of Otago, which
have been working on a project to
monitor tuatara on the mainland.
The last time a tuatara was found
on the mainland was in the 1800s.

L14

Tuatara are lizard-like reptiles that
can be traced back to the time of
the dinosaurs. For the first time in
200 years, researchers have discov-
ered a baby tuatara on mainland
New Zealand. The E on a the, on
the, the, at, 200, with, from, on,
the, the, the, the, the, the, the, the,
the, the, the, the, the, the, the, the,
the, the, the, the

The small, taura taura, is 3000
years old, and it is the most im-
portant reptile in the world. Taura
Taura is a 3000-year-old reptile
that is the most important re 3000
years old re

Tuatara are lizard-like reptiles that
can be traced back to the time of
the dinosaurs. For the first time in
200 years, researchers have discov-
ered a baby tuatara on mainland
New Zealand. The discovery of
the tuatara, which is

L27

The newborn, which is only the
13th of its kind, was discovered on
the “danger” Steph’, an, an, an, an,
and the, and the, and the, and the,
and the, and the, and the, and the,
and the, and the

New Zealand’-Tiawan The island
nation of New Zealand is a long
way from the rest of the world, but
that doesn’t mean it’s alone. It’s
the world’s most isolated nation,
but it’s also home to some of the
world’s most unique and interest-
ing

This is the first time in 200 years
that a baby tuatara has been found
on the mainland of New Zealand.
The discovery was made by a
group of researchers led by the
University of Otago. The tuatara
was found on the east coast of the
North Island,

L36

The Tuatara is an iconic New
Zealand native. The reptiles can
live for more than 100 years and
are found on the main islands of
the country and a few smaller is-
lands. The last time a tuatara was
born on the mainland was in 1895,

The small lizard, weighing just 40
grams, was found in the South Is-
land’s Kahurangi National Park.
The species is usually found on
the Chatham Islands, which are a
group of small islands east of the
South Island. The last time a tu-
atara

The discovery was made in a cave
system in the remote Waitomo
district, 300 kilometres south of
Auckland. The young tuatara is
about 10cm long and is the first
recorded sighting of a juvenile tu-
atara on the mainland. The cave
system is

Table 4: Generations from LLaMa2 13B with Residual Stream filtered at one layer, comparing removing 20%
random projections, ¥ filtering, and 2,, filtering. Note that generations can be a mixture of true and hallucinated

content.

4807




Prompt: If you're interested in Grizzly Bear viewing in and around the northern Gulf of Alaska, consider a
chartered flight with Trygg Air Alaska based out of King Salmon with service to and from Anchorage.

¥ (90%)

Rnd (90%)

Qv (90%)

LO

Trygg Air Alaska is a small
air taxi company based in King
Salmon, Alaska. The com-
pany provides chartered flights
from King Salmon to Anchorage,
Alaska, which is the nearest city
to King Salmon with an airport.
T§he company is owned by a man
named Try

The Alaska Department of Fish
and Game (ADFG) has been con-
ducting an aerial survey of the Gulf
of Alaska for Grizzly Bears since
2006. The survey is conducted
each summer to estimate the num-
ber of bears in the Gulf. The sur-
vey area covers

The flight is a one-hour scenic trip
that flies over the Alaska Peninsula
and Bristol Bay. You’ll be able to
view the Alaskan wilderness and
Grizzly Bears in their natural habi-
tat. The flight includes a stop at
the Brooks Camp for a

L3

The EA, a GS, the E, A, for a total,
the GS, the E, the S, the E, the S,
the 15, the 16, the 15, the 16, the
15, the 17, the

What is the most beautiful thing
that has ever been? What is the
most beautiful thing that has ever
been? It is not about the most beau-
tiful thing that has ever been. The
most beautiful thing that has ever
been. It is not about the most beau-
tiful thing that has ever been. It is
not

The Grizzly Bear is one of the
largest land carnivores in the world.
Males can reach a weight of 800
pounds and females can reach a
weight of 400 pounds. The Grizzly
Bear is one of the most powerful
predators in North America

L4

The ACS, or, the A.S.E. The
A.S.S.AS. on the E.S.A. The
A.S.EEE.AS. on the E.S.A. The
A.S.S.A

The Grizzly Bear is a wild crea-
ture and not a domesticated pet, so
when you’re dealing with a wild
creature, you have to be careful
with your approach and how you
do it. The Grizzly Bear is a wild
creature and not a domesticated
pet, so when you’

Trygg Air Alaska is a family
owned and operated air service
based out of King Salmon, Alaska.
We offer flightseeing tours and
charter services to the Alaska
Peninsula, Bristol Bay, and the
Aleutian Islands. We have been
flying in the region since 19

L6

The cost is about $1,500 per per-
son, but the trip is about a month
long. The Gulf of Alaska is the
only place in the world the bears
are a problem. The trip is the same,
but the bears are not. The bears are
the same

Trygg Air Alaska is a charter
service offering air transportation
between Anchorage, Alaska and
King Salmon, Alaska. With a fleet
of two Piper Cherokee 6 aircraft,
Trygg Air Alaska offers an eco-
nomical alternative to commercial
airlines and private aircraft. The

Trygg Air Alaska is a small air
charter service based out of King
Salmon, Alaska. They provide
flight services to and from Anchor-
age and the remote communities
of King Salmon, Iliamna, and Bris-
tol Bay. Trygg Air Alaska offers a
range of services, including scen
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The Tail, the Beans, and the
Salmon The Tail, the Beings, and
the Salmon The Tail, the Beings,
and the Salmon The Tail, the Be-
ings, and the Salmon The Tail, the
Beings, and the Salmon

Trygg Air Alaska is a family
owned business, with the same
values as our Alaskan ances-
tors: honesty, integrity and hard
work. We’ve been in the air since
2010 and we’ve flown more than
500,000 miles over the beautiful

Trygg Air Alaska is a family
owned and operated airline based
in King Salmon, Alaska. Trygg
Air Alaska has been providing
charter services to the Grizzly Bear
Viewing lodges in and around the
Gulf of Alaska since 1989. We
have the
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A Grizzly Bear viewing charter
with Try The best time to see bears
is from the end of the first week of
the 2018/19 salmon run, through
to the end of the 2019/2020 salmon
run. The sal

Grizzly Bear viewing is an amaz-
ing experience. The bears are beau-
tiful, majestic and awe-inspiring.
The bears are also dangerous, and
there are a lot of things to consider
before you set out to view them.
Trygg Air Alaska is dedicated to
providing

Grizzly Bear viewing can be ar-
ranged in conjunction with fishing
trips or as a separate trip. Fly-out
trips can be arranged to view the
Grizzly Bears at Brooks Falls, Mc-
Neil River, Katmai National Park,
Lake Clark National Park,
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Trygg Air Alaska offers chartered
flights for the purpose of view-
ing grizzly bears in and around
the northern Gulf of Alaska. The
northern gulf of Alaska is the only
place in the world where grizzly
bears are known to catch and eat
the endanger

Grizzly Bear Viewing from the
air The Gulf of Alaska is home
to a large population of Grizzly
Bears. There are approximately
1000 bears in the area, which is
considered one of the largest Griz-
zly Bear populations in the world.
In addition

Grizzly Bear Viewing, Fishing and
More. Trygg Air Alaska is a char-
ter air service based out of King
Salmon, Alaska. Trygg Air Alaska
has been operating for over 20
years. Trygg Air Alaska offers
charters to the Katmai National

Table 5: Generations from LLaMa2 13B with Residual Stream filtered at one layer, comparing removing 10%

random projections, W filtering, and €2, filtering.
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