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Abstract

While (large) language models have signifi-
cantly improved over the last years, they still
struggle to sensibly process long sequences
found, e.g., in books, due to the quadratic scal-
ing of the underlying attention mechanism. To
address this, we propose NextLevelBERT, a
Masked Language Model operating not on to-
kens, but on higher-level semantic represen-
tations in the form of text embeddings. We
pretrain NextLevel BERT to predict the vector
representation of entire masked text chunks and
evaluate the effectiveness of the resulting doc-
ument vectors on three types of tasks: 1) Se-
mantic Textual Similarity via zero-shot docu-
ment embeddings, 2) Long document classi-
fication, 3) Multiple-choice question answer-
ing. We find that next-level Masked Language
Modeling is an effective technique to tackle
long-document use cases and can outperform
much larger embedding models as long as the
required level of detail of semantic informa-
tion is not too fine. Our models and code are
publicly available online.

1 Introduction

While the Transformer model is the basis for most
large language models, its attention mechanism
scales quadratically with respect to the length of
the input sequence (Vaswani et al., 2017). This
makes it prohibitive to process longer input se-
quences such as books or movie scripts. To ad-
dress this limitation, the most common strategy
has been to sparsify or approximate the attention
operation (Beltagy et al., 2020; Zhang et al.; Ki-
taev et al., 2019; Han et al., 2023), or to extend
the positional information during inference (Press
et al., 2022; Chen et al., 2023). Other approaches
to process long documents include switching to
a retrieval augmentation approach (Lewis et al.,
2020), modeling long-range dependencies via a
graph structure (Zhang et al., 2022; Bugueiio and
de Melo, 2023), as well as compressing the input

either via an explicit memory module (Rae et al.,
2019; Zemlyanskiy et al., 2021) or via hierarchical
processing (Pappagari et al., 2019; Ivgi et al., 2022).
Further related work is discussed in Section 5.

From a cognitive perspective, language is widely
regarded as a hierarchical process (Lashley, 1951;
Davis and Johnsrude, 2003; Everaert et al., 2015),
enabling connections between distant pieces of in-
formation. When investigating the differences be-
tween how human brains and typical large language
models process language, Caucheteux et al. (2023)
found that humans seem to use a predictive coding
hierarchy (Friston and Kiebel, 2009) to anticipate
words at multiple time spans.

Beyond word-level predictions, the original
BERT architecture (Devlin et al., 2019) also in-
cludes next sentence prediction as one of the pre-
training tasks, but this still is based on individual
tokens as input. Masked language modeling has
previously been explored at the level of short spans
of tokens (Joshi et al., 2020), but again assuming
tokens as inputs.

We present NextLevel BERT, a masked language
model operating entirely at larger timescales, with
inputs that are not individual tokens but rather
generic chunks of text (e.g., sentences or larger
spans of tokens). For each chunk, we obtain a repre-
sentation using a pretrained encoding model. Some
of these chunks are then masked and the respective
representations need to be predicted based on the
context. Our results show that applying masked
language modeling to higher-level semantic repre-
sentations results in meaningful document vectors.
NextLevelBERT uses only a third of the number
of parameters of its strongest contender, but show-
cases stronger performance than other commonly
used approaches during downstream testing as long
as the task does not require a high level of semantic
detail at the token level.

Our contributions are as follows: We apply
masked language modeling in a novel way on text
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Figure 1: NextLevel BERT’s architecture. In a hierarchical setup, the frozen sentence encoder first generates
independent chunk vectors from the input document. The chunk vectors v, and v,, are masked and need to
be predicted from the surrounding context. Through its higher-level Masked Language pretraining objective,
NextLevel BERT learns to produce contextualized versions of the chunk vectors.

embeddings and pretrain NextLevel BERT on a siz-
able collection of very long documents (average
document length: ~125,000 tokens). We obtain a
hierarchical model that can 1) generate contextu-
alized chunk vectors and 2) aggregate these into
meaningful long-document representations. We
demonstrate NextLevelBERT’s effectiveness on
three diverse tasks from the long-document domain
and investigate the impact of masking strategy and
model initialization during pretraining.

2 Next-Level Masked Language Modeling

Our goal is to obtain a masked language model that
operates on higher-level semantic units. Instead of
predicting masked tokens based on other tokens in
the context, we predict masked text chunk represen-
tations based on other text chunk representations.

2.1 Design Considerations

As a starting point, we consider a basic ROBERTa
model (Liu et al., 2019), which we then adapt to
operate on generic text vectors instead of tokens.
Analogously to the original RoBERTa, we disre-
gard BERT’s original Next Sentence Prediction
task and only train the model with a masked lan-
guage modeling (MLM) objective.

The original MLM objective in BERT and
RoBERTa assumes that some randomly chosen to-

kens are masked or replaced by random tokens.
The model is trained to predict the original tokens
at these positions. To succeed, the model needs
to take the surrounding tokens as context into ac-
count as well as learn general syntactic and seman-
tic patterns. We hypothesize that pretraining with
an MLM objective but generalized to generic vec-
tor representations will learn similar patterns on a
semantically more abstract level.

The NextLevel BERT architecture is illustrated in
Figure 1 and explained in detail in the next section.

2.2 NextLevel BERT Architecture

Input Encoding Given a document we first split
it into smaller chunks of text, either at the level of
sentences or as fixed-length chunks, typically of
size 16 to 512 tokens. Each text chunk is encoded
independently with a pretrained encoder-only lan-
guage model, so that we obtain a sequence of vec-
tors. We encode all documents in this manner,
keeping the pretrained encoder’s weights frozen.

For each input sequence, we insert a trainable
[CLS] vector in the first position and then pack
multiple documents separated by a [SEP] vector to-
gether until the model’s maximum sequence length
is reached.
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Masking We then perform masking by randomly
picking each text chunk vector with a probabil-
ity of 15%. Out of the selected vectors, we re-
place 80% with a [MASK] sentence vector, 10%
with a random sentence vector from another sam-
ple in the minibatch, and leave the last 10% un-
changed. This is identical to RoOBERTa’s masking
procedure, except that our representations are not
regular token-level ones. The embeddings for the
special [MASK], [CLS], and [SEP] tokens are ran-
domly initialized before training the model.

Prediction We obtain predictions for the masked
sentence objective from an MLP-based task head.
In this masked language modeling setup, the
model’s objective is to predict the original input
vector. While regular vocabularies have a fixed
size, our model needs to cope with a potentially
infinite inventory of sentence embeddings. Our
model thus is trained to predict the entire original
d-dimensional chunk vector. Accordingly, instead
of the usual cross-entropy loss, we incorporate a
Smooth L1 loss, which worked best in initial exper-
iments.

Discussion With the typical input length of pre-
trained Transformer-based language models of 512,
as well as our own model’s input length of 512, the
overall receptive field of the model can be stretched
to a maximum of 512x 512 = 262,144 tokens. The-
oretically, this may be extended further by adopt-
ing well-known techniques for larger context sizes,
which NextLevelBERT can then amplify. For in-
stance, if a basic token-level LM’s context size
is extended from 512 to 4,096 tokens, this could
increase NextLevel BERT’s effective context size
quadratically up to 16,777,216 tokens.

3 Experiments

Dataset Pile Books 3 BookSum MuLD-Mov QuALITY
Training 156,266 - 1,256 2,009
Validation 19,532 - 166 514
Testing 19,539 5,206 86 2,086
# tokens (avg.) ~ 125,000 3,958 34,706 5,430
# tokens (max.) 30,368,036 42,158 130,356 7,992

Table 1: Overview of the number of documents per
dataset. For the BookSum STS task, we test in a zero-
shot setting.

To study the overall effectiveness as well as the
influence of different chunk encoders and chunk
sizes, we pretrain NextLevelBERT on the books3

dataset and then evaluate the model on three down-
stream tasks: 1) Zero-shot semantic textual simi-
larity (STS) with document vectors, 2) document
classification, 3) multiple-choice question answer-
ing. We believe that these task types, while not
exhaustive, are representative of common appli-
cation scenarios for long-document embeddings.
Furthermore, they are all story-based, and likely
particularly dependent on long-range connections.

3.1 Pretraining

Data The books3 dataset is a collection of
197,000 books in plain-text format that is also part
of The Pile (Gao et al., 2020), a larger collection of
Web text from diverse domains and sources that is
frequently used for language modeling. Books are
particularly useful due to their length as well as the
presence of long-range dependencies that a model
may attempt to capture.

Setup We pretrain each version of the model for
20 epochs on the encoded books3 dataset for up
to five days on four Tesla V100-SXM2-32GB. Pre-
training time is shorter for larger chunk sizes. We
use a cosine learning rate schedule (max. 1074
with linear warm-up (first 5% of the total number
of steps) and the AdamW (Loshchilov and Hutter,
2018) optimizer (81 = 0.9, B2 = 0.999, weight
decay: 0.01). Unless otherwise stated, we use a
global batch size of 512, a masking rate of 15% and
a smooth L1 loss. By default, to encode the input
chunks into vectors, we use the MiniLM-L6 model
from the Sentence Transformers library!. In prac-
tice, we encode the input chunks during preprocess-
ing, since this can be done very efficiently in large
batches over multiple GPUs and can be cached for
later reuse. We initialize the NextLevelModel’s
weights with the pretrained weights of the chunk
encoder, since we found that this is crucial for con-
vergence (see Section 4.5).

Pretrained Chunk Encoder Models To evaluate
the choice of chunk encoder, we pretrain several
NextLevelBERT versions with different SBERT
encoder models (Reimers and Gurevych, 2019a).
Our focus is on the following three lightweight
models with moderate embedding sizes to keep
computation costs and memory usage low.

(1) MiniLM-L6 (Wang et al.,, 2020) is a
lightweight BERT-based distilled model with
strong performance on the GLUE benchmark. We

"https://www.sbert.net/index.html
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use the version with six layers.?

(2) MPNet (Song et al., 2020) is an encoder-
only model that leverages permuted language mod-
eling and improved position modeling to address
drawbacks from previous encoder-only language
models. It demonstrates strong performance for
sentence embedding tasks. It is almost four times
larger than the MiniLM-L6 model in terms of pa-
rameters and uses a larger embedding dimension-
ality of 768. This might be advantageous for mod-
eling longer text, since the additional dimensions
can capture more information.

(3) DistilRoBERTa (Sanh et al., 2019) is a dis-
tilled version of RoBERTa-base. This model is
smaller than MPNet while also offering a larger
embedding dimensionality of 768.

3.2 Downstream Evaluation

We use the following three benchmark datasets.
Additional statistics on the datasets are provided in
Table 1.

BookSum is an English language narrative sum-
marization dataset that provides human-written
summaries at the level of paragraphs, chapters, and
entire books (Kryscinski et al., 2021). We use the
chapter-level version from the Huggingface Hub?
and recast the task as a Semantic Textual Similarity
one by positing that each chapter should be most
similar to its respective summaries rather than to
other summaries. The dataset contains 5,206 full-
text chapters and 10,910 summaries.

MuLD-Movie Character Classification (MuLD-
Mov). The MuLD (Multitask Long Document)
benchmark is a collection of six datasets for
probing long document capabilities (Hudson and
Al Moubayed, 2022). Since NextLevelBERT is
an encoder-only model, we disregard the tasks re-
quiring generative capabilities and focus on the
task of movie character classification. For a given
English language movie script and character name,
the model needs to determine whether the character
is the hero or the villain.

QuALITY (Pang et al., 2022) is a multiple-
choice question answering dataset on English lan-
guage long documents, including both fiction and
non-fiction, with an average length of 5k tokens.

2https://huggingface.co/nreimers/
MinilLM-L6-H384-uncased

3https://huggingface.co/datasets/kmfoda/
booksum

For each question, four candidate answers are given.
Since the authors have not released labels for the
test set, we split the validation set in half at the
document level and use one of these halves for
testing.

Experimental Setup To ensure consistency in
the evaluation process, we set it up as similarly
as possible across all models. For the BookSum
dataset, we generate document embeddings by aver-
aging the output embeddings of pretrained models
without any additional fine-tuning. We retrieve the
top 10 predictions based on cosine similarity and
evaluate them in terms of Mean Reciprocal Rank
(MRR) and hit rate.

For MuLD-Mov. and QUALITY, we add a simple
classifier head with a hidden layer size of 768 and
ReLU activation and subsequently fine-tune the en-
tire model with a learning rate of 5 x 10~°. For
QuALITY, we concatenate the document vector
with an explicit encoding of the question and can-
didate answer and predict four scores via softmax
on the minibatch-level, one per question-answer
pair. For MuLD-Mov., we instead concatenate the
encoded question: "Is the character <NAME> be-
having like a hero or a villain?", where <NAME>
is replaced by the actual character’s name. We use
a sigmoid function (threshold at 0.5) to predict the
binary label.

3.3 Baselines

We evaluate against the following baselines:

Longformer (Beltagy et al., 2020), an encoder-
only model that uses a local attention window and
selected global attention tokens. It is a widely
known model for long document tasks. We use
the base version with a maximum token length of
4,096.

SBERT (Reimers and Gurevych, 2019b) is a set
of models trained in a cross-encoder setting for
STS tasks. We use BERT-based versions, mostly
with a 512 token limit to maintain high encoding
efficiency. Input text beyond the token limit is
truncated.

Avg. SBERT consists of the same SBERT em-
beddings of the input chunks that NextLevel BERT
uses, but simply mean-pools them. Theoretically,
the model therefore has access to all information
in the document and can directly show the ef-
fect of contextualizing the text embeddings with
NextLevel BERT. We therefore select the MiniLM
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BookSum MuLD-Mov  QuALITY
Model & Chunking Context Emb-Dim. Size(MB) MRR HR@10 Acc F1 Acc
NextLevel BERT
— Sentence-based ~12,288 384 160 3199 51.11 80.47 82.79 32.12
— 16 8,192 384 160 29.78 49.64 58.14 73.53 24.20
—32 16,384 384 160 2452 4426 58.14 73.53 30.45
— 64 32,768 384 160 3899 64.89 59.77 74.18 31.58
— 128 65,536 384 160 60.27 81.81  72.33 73.67 32.49
— 256 131,072 384 160 6545 85.57 83.49 85.70 31.23
— 512 262,144 384 160 48.04 72.13 64.65 72.97 29.03
Avg. SBERT: MiniLM
— Sentence-based N/A 384 80 3094 50.85 58.14 73.53 32.51
— 16 N/A 384 80 25.63 43.64 58.14 73.53 31.93
—32 N/A 384 80 38.64 5993 58.14 73.53 31.69
— 64 N/A 384 80 5035 73.18 58.14 73.53 31.81
— 128 N/A 384 80 5937 80.85 58.14 73.53 31.95
— 256 N/A 384 80 56.84 7849  58.14 73.53 31.89
— 512 N/A 384 80 29.25 4898 58.14 73.53 31.67
SBERT: MiniLM 512 384 80 30.87 4835 58.14 73.53 31.96
Longformer-base 4,096 768 595 1.92 448 58.14 73.53 26.41
Nomic Embed 8,192 768 550 65.07 8490 60.47 73.85 36.58

Table 2: Evaluation results (in %, averaged over five fine-tuning runs). Best results per dataset and metric are
presented in bold. The sentence-based NextLevel BERT model’s context size is estimated from Books3’s average
sentence length. For the Chunk Mean approach, there is no overall context limit due to the simple mean-pooling

aggregation.

model that NextLevel BERT uses in our default set-
ting to encode text chunks.

Nomic Embed (Nussbaum et al., 2024) is a text
embedding model for document lengths up to 8,192
tokens. Based on a BERT architecture, the model
is trained via Masked Language Modeling and both
unsupervised as well as supervised contrastive tex-
tual similarity tasks. We choose this model as a
highly competitive baseline with a long context
window yet relatively small size at 137M parame-
ters.

4 Results

4.1 Downstream Task Evaluation

In Table 2, NextLevel BERT achieves the best re-
sults on both the BookSum semantic similarity and
the MuLD-Movie Character task. This shows that
language modeling on top of sentence embeddings
can indeed enhance document-level embeddings.
NextLevelBERT and Nomic Embed appear to
best handle the BookSum dataset. BookSum full-
text chapters are much longer than their respective
summaries. Additionally, there are often multiple
similar chapters from the same book, which can

be difficult to distinguish due to the shared topic
and character names. The Avg. SBERT approach
serves as a strong baseline while the basic SBERT-
MiniLM model falls off, indicating that processing
the entire text length is crucial for this task. We
attribute the poor performance of the Longformer
model on BookSum to the fact that it is trained for
classification tasks rather than providing general
document embeddings.

On the MuLD-Mov. dataset, five out of seven
NextLevel models as well as Nomic Embed are
able to surpass chance level (58%, i.e., a major-
ity class classifier). All other models fail to do so,
even the Avg. SBERT baseline, which does well
on the other datasets. Notably, our sentence-based
and 256er-chunked NextLevel BERT models also
outperform the Longformer baseline from Hudson
and Al Moubayed (2022) (82.58 F1), the original
benchmark paper, without any task-specific pre-
processing. To attain their score, the authors first
extracted the most important passages based on
character name frequency. We hypothesize that
a good performance on MuL.D is dependent on a
model’s ability to process the entire text as well as
exchange contextual information internally.
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BookSum MuLD-Mov  QuALITY

Encoder Model Embed. Dim. MRR HR@10 Acc F1 Acc
NextLevel BERT

- MiniLM-256 384 65.45 85.57 83.49 85.70 31.23

- MPNet-256 768 5.97 11.03 58.14 73.53 27.74

- DistilRoBERTa-256 768 43.05 66.75 58.14 73.20 29.51
SBERT: MiniLM 384 30.87 48.35 58.14 73.53 31.96
SBERT: MPNet 768 44.26 67.17 58.14 73.53 33.05
SBERT: DistilRoBERTa 768 27.95 45.91 58.14 73.53 32.83

Table 3: Evaluation results (in %, averaged over five fine-tuning runs) for NextLevel BERT pretrained on the text
chunk embeddings of various encoder models. All next-level models use text chunks of size 256.

On the QUALITY dataset, Nomic Embed is the
strongest model, presumably due to its sufficient
context size for this dataset and the fact that it can
provide token-level details to answer the questions.
The Avg. SBERT baselines mostly reach a higher
accuracy than NextLevelBERT. Since the chunks
that are mean-pooled by Avg. SBERT are also the
inputs to NextLevelBERT, a lower performance
suggests that NextLeve] BERT may actively dis-
regard some of the incoming information. This
is likely due to the fact that during pretraining,
NextLevelBERT learned to focus on reconstructing
general events and to ignore local details that would
be hard to predict from the chunk-level context.
QUuALITY consists of questions such as “Why does
Joseph lie about the water supply?”, which require
non-trivial consideration of local details. In gen-
eral, this is a difficult dataset for all the tested mod-
els and the results are generally barely above the
chance level of 25%. This is partly reflected in the
dataset’s leaderboard*, where end-to-end encoder-
only models without additional preprocessing or
fine-tuning on related datasets report similar ac-
curacy. The dataset’s current SOTA mostly relies
on large (>7B) decoder-only models, training on
a large-scale task-specific reading comprehension
corpus, and/or retrieval augmentation.

For the same effective context size of 8,192 to-
kens, Nomic Embed outperforms NextLevel BERT-
16 on all datasets. This and the overall results indi-
cate that NextLevelBERT makes heavy use of the
pretrained encoder model’s ability to contextualize
the incoming chunk’s text. Smaller chunk sizes,
such as 16, likely limit this effectiveness.

*https://nyu-mll.github.io/quality/

4.2 TImpact of Chunking Strategy

The results in Table 2 illustrate how the optimal
choice for dividing the input text into chunks can
vary between use cases. We hypothesize that there
is a trade-off between increasing the receptive field
by using larger chunks and losing information due
to higher levels of compression necessary to encode
longer text chunks in fixed-size sentence embed-
dings. This is supported by the fact that in the
cases where the next-level models’ context size is
not sufficient, performance quickly degrades. A no-
table exception is NextLevel BERT with sentence-
based chunking on the MuLD dataset. With an
average context size of ~12k tokens and MuLD’s
average document length being 34,706 tokens, it
still outperforms almost all other models. A possi-
ble explanation is that the movie scripts that MuLD
consists of are dialogue-heavy and the sentence-
based chunking plus the contextualization abilities
of the model contribute to successfully predicting
the role of the character without seeing the whole
document.

BookSum MulLD-Mov  QuALITY
NextLeveBERT MRR HR@10 Acc F1 Acc
with 15% 65.52 8557 8093 8345 31.88
with 30% 61.14  82.10 69.07 75.86 30.08
with 40% 64.21 84.81 7279 7754 29.53
simpler masking  0.77 129 58.14 73.53 24.69
random init. 1.18 1.78  58.14 73.45 26.44

Table 4: Results for alternative masking rates (1-3),
replacing all selected inputs with the [MASK] vector
(4), and a randomly initialized model (5). All models
use text chunks of size 256. We report the average over
five fine-tuning runs.
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4.3 Impact of Encoder Model

Downstream results for NextLevel BERT with dif-
ferent text encoder models are compared in Ta-
ble 3. We observe that the effectiveness of the orig-
inal encoder model does not automatically trans-
late to similar outcomes in the next-level setting.
Surprisingly, pretraining on MiniLLM leads to the
best downstream results, although it is the smallest
model in terms of parameters as well as embedding
dimensionality. A possible explanation is that cap-
turing the intricacies of a 384-dimensional embed-
ding space during pretraining is easier than those
of a 768-dimensional space.

4.4 Impact of Document Length on Model
Performance

To investigate how the models perform with re-
gard to the length of the document, we visualize
the MRR on BookSum per document length in Fig-
ure 2. Here, Figure 2a provides a general plot cover-
ing all document lengths, while Figure 2b shows a
more fine-grained view of documents shorter than
768 tokens to study if the design for long docu-
ments comes at the cost of degraded performance
on shorter texts. NextLevel BERT outperforms the
other models, except Nomic Embed, across all doc-
ument lengths with a margin of up to 20% MRR.
Even on the shorter documents, it generally im-
proves over the other models starting from 341
tokens. On the longest documents, all models ex-
hibit a MRR of 1, but this is due to the low number
of samples at these lengths. Notably, Longformer
seems unable to generate any useful document em-
beddings for any sequence length out-of-the-box.

4.5 Pretraining Effects

Masking Rate Wettig et al. (2023) found that
BERT’s original masking rate of 15% is not opti-
mal for many pretraining scenarios. They recom-
mend masking more tokens the larger the model
is and exclusively replacing tokens with a mask
token instead of also retaining the original token or
replacing it with a random one at a certain chance.
To verify if these findings translate to NextLevel-
BERT, we compare BERT’s original masking strat-
egy versus the recommendations by Wettig et al.
(2023) with masking rates between 15-40%. We
train the models for 20 epochs on books3 and show
the results in Table 4. The different masking rates
show mixed results, which are dependent on the
task. Interestingly, using only the mask token as

replacement for prediction targets had a destructive
effect on our model’s downstream performance,
preventing it from learning useful representations.

Token-Pretrained vs Random Initialization To
measure the effect of initializing NextLevel BERT
with the chunk encoder weights, we train two ver-
sions of the same model, one initialized with the
weights of the sentence encoder and one with ran-
dom initialization. We compare their downstream
performance in Table 4. For the MuLD-Movie
and the QUALITY tasks, the model with random
initialization does not score above chance level.
On BookSum it also underperforms, indicating
that it was not able to learn meaningful representa-
tions. Together, these results reveal that initializing
NextLevelBERT with the chunk encoder weights
is essential to its downstream capabilities.

5 Related Work
5.1 Efficient Attention

Numerous approaches have been proposed to in-
crease the context length by making the attention
mechanism more scalable, typically by sparsify-
ing or approximating the attention operation: Belt-
agy et al. (2020) use a combination of local and
global attention to circumvent the quadratic scal-
ing. They train the Longformer, a BERT-based LM
that can incorporate a context size of up to 4,096
tokens, showing improved results on long docu-
ment classification. Building on the Longformer,
Xiao et al. (2022) pack multiple documents into
the same sequence and mask salient sentences to
generate multi-document summaries. The Pooling-
former (Zhang et al., 2021) adds a second level
of pooling-combined attention to achieve linear
computational complexity, while the Reformer (Ki-
taev et al., 2019) proposes attention with locality-
sensitive hashing to reduce the attention operation
to linearithmic time. Finally, HyperAttention (Han
et al., 2023) efficiently approximates the attention
matrix and enables computing attention in near-
linear time.

5.2 Hierarchical Approaches for Long
Contexts

Hierarchical approaches usually divide the input
text into text chunks. These are then processed
in parallel and aggregated at different levels. Hi-
erarchical models thus enable large context sizes
through high parallelization and compressed se-
quence lengths. After the advent of Transformer-
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Figure 2: MRR on BookSum for different document lengths. NextLevelBERT’s performance is particularly strong
for longer documents but is able to maintain embedding quality even for short documents. The bars depict the

number of samples per length on a log scale.

based language models, hierarchical Transformer
architectures have been proposed for (long) doc-
ument classification (Pappagari et al., 2019; Dai
et al., 2022). They usually leverage a pretrained
Transformer to encode smaller chunks of text into
vector representations. These are then jointly pro-
vided to another Transformer model, which is
trained to predict the document class.

There are several extractive summarization ap-
proaches that adopt related kinds of hierarchical
architectures (Zhang et al., 2019; Xu et al., 2020;
Ruan et al., 2022). They are all based on a two-
level BERT model (Devlin et al., 2019) that first
encodes sequences of tokens into sentence vectors
and then adds another module that operates on the
sentence level. Zhang et al. (2019) pretrain their
model HIBERT on a large document corpus and
mask entire sentences. Unlike NextLevel BERT, HI-
BERT inserts the mask on a token level, thus leak-
ing information on the masked sentences’ length.
It also includes a decoder component that takes the
masked sentences’ representations and reconstructs
the original sentence tokens. This results in seman-
tically equivalent sentences that differ on the token
level being disregarded and the task thus remains
next-token prediction, albeit with the local sentence
context removed. They also restrict each input to
30 sentences, limiting long-range dependencies.
Building on HIBERT, Xu et al. (2020) pretrain a
hierarchical BERT model, but mask at the encoded
sentence level instead of at the token level. They
pretrain on their summarization data instead of a

large corpus of general documents and also decode
the sentence vectors into a sequence of tokens with
a next-token prediction objective. Lastly, Ruan
et al. (2022) do not pretrain their model at all. They
focus on adding structural information to HIBERT
by adapting the positional embeddings based on the
input text’s structure. Thus, all variations of these
hierarchical BERT models are designed solely for
extractive summarization, predict the masked sen-
tences at a token level, and have not been evaluated
for other tasks, domains or with regard to long con-
texts. They hence differ from NextLevel BERT in
both their design and application.

5.3 Embedding-based Loss Objectives

The process of encoding sequences of data and pre-
dicting the next item in the sequence’s latent repre-
sentation has also been used in other domains. To
generate images autoregressively, Lee et al. (2022)
use a variation of a Vector-Quantized Variational
Autoencoder (VAE) to encode sequences of image
patches into discretized codebook representations.
Their model learns to predict the latent representa-
tion of the next patch in the sequence. The decoder
of the VAE then outputs pixel-level images from
the generated latent patch sequence. In reinforce-
ment learning, Lee et al. (2022) use cubic masking
patches to corrupt video sequences as an auxiliary
task for learning a state representation model. The
model learns to reconstruct the uncorrupted videos’
latent representations. Similar approaches have
also been suggested in Hafner et al. (2020, 2022).
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In NLP, sentence embedding approaches, such as
DeCLUTR (Giorgi et al., 2021) and Denoising Au-
toencoder with Transformers (Moradshahi et al.,
2023), learn to generate text embeddings for se-
mantic similarity via a self-supervised loss on the
embedding space. DeCLUTR samples text pairs
that are adjacent, overlapping, or where one sample
subsumes the other to obtain positive pairs for a
contrastive loss. The Denoising Autoencoder cor-
rupts input sentences and learns to reconstruct the
original sentence.

6 Conclusion

Successfully modeling long-range dependencies
is an important step towards building language
models with general language understanding. In-
spired by the idea of modeling language at a coarser
resolution than that of tokens, we have proposed
NextLevelBERT, and transferred masked language
modeling from the token level to general text repre-
sentation vectors. We pretrained NextLevelBERT
on a large collection of books and evaluated the re-
sulting text representations on three diverse down-
stream tasks in a long document setting. Our results
show that next-level masked language modeling
leads to sensibly contextualized text chunk repre-
sentations and generates useful long-document vec-
tors, especially for tasks that do not require specific
token-level information. Additionally, NextLevel-
BERT is very parameter-efficient, using only a third
of the parameters of the Nomic Embed model while
maintaining similar performance.

In the future, combining the predictions of a next-
level model with a token-level component based on
the required granularity could be a way of preserv-
ing token-level details. Furthermore, pretraining
NextLevelBERT on data from more diverse do-
mains could improve its performance in general
and extend its usefulness to a wider range of tasks.
Lastly, while not straightforward, adapting decoder-
only models to the next level could translate similar
gains as in the MLM setup to generative language
models.

Limitations

Our NextLevel BERT model currently has limited
usefulness for tasks from domains and styles dis-
similar to those covered by the books3 dataset,
since it is not pretrained on other data. Our experi-
ments thus far only cover the English language, and
further languages remain to be explored. Encoding

the input text chunks can either be conducted dur-
ing preprocessing or on-the-fly during training. The
former offers increased parallelization and time ef-
ficiency, but the entire pretraining dataset needs to
be saved as vectors. This can take up a lot of space,
especially for large embedding dimensionalities.
The latter does not require additional storage but
significantly slows down training, since batch sizes
in the encoder do not match those of the NextLevel
component. This means that NextLevelBERT is
limited to encoder models with relatively few pa-
rameters and a small embedding dimensionality.

Ethical Considerations

The Pile and the books3 dataset have become the
subject of controversy due to the inclusion of copy-
righted materials, which are widely used to train
large language models. While there is no final ver-
dict on whether training Generative Al models on
such data constitutes fair use, there is a growing
consensus that the wishes of authors to have their
work excluded from Generative Al model training
ought to be respected. Our study uses this data
exclusively for academic purposes, to assess the
merits of masked language modeling at a higher
level on longer documents. Our model is not gen-
erative and it is hence impossible to use it to repro-
duce non-trivial verbatim snippets of text from the
books3 dataset. Moreover, we will take care not to
share any such data as part of our code repository.

As a text encoder model pretrained without spe-
cific anti-bias measures and building on other text
encoder representations, NextLevel BERT is likely
to exhibit various kinds of social biases.
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