
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4586–4601
August 11-16, 2024 ©2024 Association for Computational Linguistics

One-Shot Learning as Instruction Data Prospector
for Large Language Models

Yunshui Li1,2† Binyuan Hui3 Xiaobo Xia4 Jiaxi Yang1,2 Min Yang1*

Lei Zhang1,2 Shuzheng Si Ling-Hao Chen Junhao Liu
Tongliang Liu4 Fei Huang3 Yongbin Li3*

1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences
3Alibaba Group 4The University of Sydney

{ys.li, min.yang}@siat.ac.cn, binyuan.hby@alibaba-inc.com

Abstract

Contemporary practices in instruction tuning
often hinge on enlarging data scaling without a
clear strategy for ensuring data quality, inadver-
tently introducing noise that may compromise
model performance. To address this challenge,
we introduce NUGGETS, a novel and efficient
methodology that leverages one-shot learning
to discern and select high-quality instruction
data from extensive datasets. NUGGETS as-
sesses the potential of individual instruction
examples to act as effective one-shot learning
instances, thereby identifying those that can
significantly improve performance across di-
verse tasks. NUGGETS utilizes a scoring sys-
tem based on the impact of candidate examples
on the perplexity of a diverse anchor set, facil-
itating the selection of the most advantageous
data for instruction tuning. Through compre-
hensive evaluations on two benchmarks, includ-
ing MT-Bench and Alpaca-Eval, we show that
instruction tuning with the top 1% of exam-
ples curated by NUGGETS substantially out-
performs conventional methods employing the
entire dataset.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; OpenAI, 2023; Google, 2023; Bai et al.,
2023; Li et al., 2023a) have showcased remarkable
capabilities (Wei et al., 2022; Schaeffer et al., 2023;
Liu et al., 2023; Cheng et al., 2024) across a wide
range of language tasks by scaling the model size
and training data. Despite their proficiency, it is im-
perative to further enhance their alignment with hu-
man instructions. This alignment process involves
supervised fine-tuning (SFT) on input-output pairs,
known as instruction tuning. Instruction tuning
is a crucial step, serving not only to activate the

*Corresponding authors
†Work done during the internship at Alibaba Group.
https://github.com/pldlgb/nuggets

valuable knowledge acquired by LLMs during pre-
training but also to facilitate their interaction with
humans in a manner that aligns with natural con-
versational dynamics.

Considerable efforts in instruction tuning have
been concentrated on collecting larger (Chung
et al., 2022; Wang et al., 2022b), more di-
verse (Sanh et al., 2022; Sun et al., 2023; Wang
et al., 2023b), and intricate (Xu et al., 2023a; Wei
et al., 2023) datasets. This is commonly achieved
through human crowd-sourcing (Aghajanyan et al.,
2021; Ouyang et al., 2022; Tang et al., 2022)
or extracting data from larger pre-existing mod-
els (Wang et al., 2022a; Taori et al., 2023; Chiang
et al., 2023; Xu et al., 2023a). Despite the growth in
the size of datasets employed for instruction tuning,
certain studies (Zhou et al., 2023; Chen et al., 2023;
Cao et al., 2023) suggest that smaller yet valuable
datasets tend to be more effective in harnessing
the capabilities of LLMs. Blindly expanding the
volume of instruction data without ensuring qual-
ity may introduce noise and lead to hallucination
issues (Zhang et al., 2023c; Zhao et al., 2023a).
However, there is a lack of standard criteria for
selecting high-quality instruction data (Li and Qiu,
2023; Har-Peled and Mazumdar, 2004; Xia et al.,
2023a; Zhang et al., 2024). As depicted in Fig-
ure 1, the common practice depends on empirical
methods for data selection (Xia et al., 2023b), in-
troducing bias in determining data combinations
and adjusting based on outcomes. This trial-and-
error approach elevates alignment costs for models.
We posit that optimal instruction combinations are
present within the extensive data available, yet an
efficient and cost-effective identification method
remains underexplored.

In this paper, we introduce NUGGETS, a sim-
ple yet efficient method that harnesses LLMs as
data explorers through one-shot (in-context) learn-
ing. This method facilitates extracting high-quality,
valuable data from expansive instruction datasets.

4586

https://github.com/pldlgb/nuggets

Large Language Model

Instruction Set

Finetuning
Manipulate

Instruction Set

Nuggets 1 Golden Subset

➕
Finetuning

➕

No Good Enough
Instruction Subset

➕ Finetuning

… …

➕
Finetuning

No Good Enough

×N

× N

Suboptimal LLM

The desired LLM

The desired LLMLarge Language Model

Manipulate

Manipulate

The Iterative Trial-and-error Method

The Proposed Nuggets Method via One-shot Learning

Figure 1: The comparison between our NUGGETS and previous empirical methods. In contrast to empirical
methods (blue area), NUGGETS (orange area) can directly sample a gold subset, offering a more direct contribution
to model fine-tuning.

Intuitively, an instructional example holds value in
training if it serves as an excellent one-shot demon-
stration for a specific task. If it can facilitate many
tasks, it will be worth being treated as a prime data
focus, i.e., "gold instruction". Another notewor-
thy perspective arises from the observation that
in-context learning (Dai et al., 2022; Yang et al.,
2023; Wang et al., 2023a) employs prompting to
implicitly fine-tune the model, while instruction
tuning operates through gradient descent. Leverag-
ing the performance of in-context learning offers a
promising avenue to predict the effects of instruc-
tion tuning. Concretely, we first select a set that
spans multiple tasks, designated as the anchor set,
and the dataset of instructions to be optimized is
identified as the candidate set. One example is se-
quentially chosen from the candidate set to act as
a one-shot example for in-context learning. Sub-
sequently, it is scored based on its impact on the
perplexity of each anchor example. This scoring
mechanism enables the inference of dependencies
between anchor and candidate examples, providing
a reference standard for data selection.

To evaluate the effectiveness of the proposed
NUGGETS, we conduct extensive evaluations on
two widely recognized benchmarks, namely MT-
Bench (Zheng et al., 2023) and Alpaca-Eval (Li

et al., 2023d). We choose a popular and powerful
LLM, LLaMA (Touvron et al., 2023a), as our base
model. Experimental findings demonstrate that
the NUGGETS’ data filtering strategy engenders a
significant improvement in comparison to vanilla
fine-tuning approaches.

We summarize our main contributions as fol-
lows:

• We present NUGGETS, a methodology de-
signed to dynamically assess the quality of
instructional examples by using LLMs them-
selves. NUGGETS is expected to extract the
most valuable data from a vast pool of instruc-
tion data for the purpose of fine-tuning.

• Fine-tuning LLMs with solely the top 1% of
highest-scoring instructional examples yields
superior results than using the entire instruc-
tion dataset. This observation underscores
the significance of prioritizing the quality and
strategic composition of the training data over
sheer volume.

• The results of extensive experiments substanti-
ate our hypotheses regarding "golden instruc-
tions", indicating that the effectiveness of an
instructional example is measured by its im-
pact on the task generalization capability of

4587

the model following the fine-tuning process.
This observation holds considerable promise,
potentially providing valuable insights for fu-
ture endeavors in data quality screening.

2 Related Work

Instruction Tuning Recent works have intro-
duced a series of techniques that aim to refine large
language models (LLMs), showcasing their ability
to generalize effectively to instructions not encoun-
tered before. For instance, T5 (Raffel et al., 2020)
pioneered the initial effort of training various nat-
ural language processing (NLP) tasks in a unified
text-to-text format. FLAN (Wei et al., 2021) in-
troduced the novel concept of instruction tuning,
aiming to improve zero-shot task performance by
transforming NLP tasks into natural language in-
structions during model training. Furthermore, In-
structGPT (Ouyang et al., 2022) handled a wide ar-
ray of human-created instructions encompassing di-
verse forms and a broad range of task types tailored
for real-world user scenarios. In the absence of the
source code release for these notable projects by
OpenAI, subsequent efforts by Alpaca (Taori et al.,
2023; Peng et al., 2023) and Vicuna (Chiang et al.,
2023) were undertaken to explore open-domain in-
struction tuning, employing the open-source LLM
LLaMA (Touvron et al., 2023a).

Instruction Construction The fine-tuning in-
struction datasets by previous methods are often
created manually or tailored to specific tasks. To
alleviate the issue of extensive human annotations
and manual data gathering, various semi-automated
techniques have emerged. Self-Instruct (Wang
et al., 2022a) randomly selected a limited num-
ber of instances from the initial task pool and used
them as demonstrations to guide a language model
in generating new instructions, along with their cor-
responding input-output pairs. Evol-Instruct (Xu
et al., 2023a) adopted a progressive modification
strategy for the original instructions, which facil-
itated precise control over the difficulty and com-
plexity levels of the generated instructions. Tree-
Instruct (Zhao et al., 2023b), in contrast to Self-
Instruct or Evol-Instruct, guided LLMs by instruct-
ing them to append a specified number of new
nodes to the semantic tree of an existing instruction
rather than directly manipulating the text sequence.
Conversely, certain investigations are oriented to-
wards augmenting the performance of LLMs by
leveraging a reduced yet higher-quality set of in-

struction examples. LIMA (Zhou et al., 2023)
demonstrated remarkably strong performance by
strategically selecting a thousand high-quality data
points for learning. InstructMining (Cao et al.,
2023) introduced a collection of carefully chosen
natural language indicators for evaluating the qual-
ity of instruction-following data. Notably, this ap-
proach necessitates the division of data into mul-
tiple bins. Consequently, it encounters limitations
in assessing the quality of individual examples at a
fine-grained level. INSTAG (Lu et al., 2023) pro-
posed an open-set instruction tagging method to
identify the semantics and intentions of human in-
structions through tags, providing definitions and
quantified analyses of instruction diversity and
complexity. Moreover, ALPAGASUS (Chen et al.,
2023) utilized the capabilities of an external and
powerful model, ChatGPT, to directly evaluate each
example. Despite the proven efficacy of this ap-
proach, a notable limitation lies in its inability to
account for the inherent variations present in each
model subjected to fine-tuning. It predominantly re-
lies on the predilections of ChatGPT. Although Li
et al. (2023c) proposed a self-guided method for
selecting data in instruction tuning, it still requires
preliminary fine-tuning of the model, introducing
uncertainty into subsequent operations.

3 NUGGETS

Motivation As illustrated in Figure 1, the con-
ventional paradigm for enhancing instructional data
in the fine-tuning process of large language mod-
els (LLMs) has predominantly relied on empirical
methods. These methods encompass the applica-
tion of heuristic rules, expert analysis, and itera-
tive adjustments to the data guided by feedback on
model performance. Notably, this trial-and-error
approach imposes significant costs in terms of both
human effort and computational resources.

Recent scholarly consensus suggests that instruc-
tion tuning significantly enhances the task gener-
alization capabilities of pre-trained models across
various specific tasks (Longpre et al., 2023; Zhang
et al., 2023a,b; Shu et al., 2023). In light of this,
we posit the hypothesis of a golden instruction: the
efficacy of an instructional example is gauged by
its influence on the task generalization capability
of the model subsequent to the fine-tuning proce-
dure. As the extent of improvement becomes more
conspicuous, the instruction gravitates towards clas-
sification as “golden instruction”.

4588

According to this hypothesis, a straightforward
method involves fine-tuning an independent model
using an instruction example and then comparing
the performance of the fine-tuned model with the
base model on a predefined dataset containing mul-
tiple tasks. This process aims to discern whether
the given example qualifies as a “golden instruc-
tion”. However, this method would lead to an im-
practical proliferation of fine-tuned models, equiva-
lent to the number of distinct instructions. Further-
more, fine-tuning with only a single example may
introduce unstable updates to the model’s gradi-
ents, making it challenging to ascertain the genuine
acquisition of the example. Motivated by the in-
herent duality between In-Context Learning (ICL)
and gradient descent (Dai et al., 2022; Aizerman
et al., 1964; Yang et al., 2023; Irie et al., 2022),
we “fine-tune” the instruction implicitly through
one-shot learning, replacing the need for actually
fine-tuning the model. More information can be
found in Discussion 5.

Overview The framework of our NUGGETS is
illustrated in Figure 2. Firstly, we evaluate the pro-
ficiency of LLMs across a diverse range of tasks
using a predefined set of tasks, denoted as the zero-
shot score. Subsequently, we designate each ex-
ample from the instruction dataset as a distinct
one-shot prompt, concatenating it in front of the
predefined tasks. We then recalibrate the model’s
completion level for these tasks, referred to as the
one-shot score. By exploiting the disparity between
one-shot and zero-shot scores, we can compute
the golden score for each instruction. Once the
golden scores for all instructions are computed, we
can identify the highest-scoring subset, deemed
the golden subset, which is subsequently provided
directly to the model for the fine-tuning process.

3.1 Algorithm Details

Zero-Shot Score Given a predefined task set, it
encompasses a variety of m tasks, where each task
is structured as [Task (T),Answer (A)]. Each word
in Task or Answer is denoted as wT

i or wA
i . Let

LLM denote the pre-trained base large language
model we use. For the j-th task that is represented
by Tj , the probability of zero-shot inference by the
model can be calculated by continuously predicting
the next tokens based on the given task and the

preceding words:

sjzsl =
1

L

L∑

i=1

log p(w
Aj

i |C;LLM),

C = [Tj , w
Aj

1 , w
Aj

2 , . . . , w
Aj

i−1],

(1)

where L is the number of words of the ground-truth
answer A. The score sjzsl is employed to signify the
extent of the model’s proficiency on the j-th task.
A higher sjzsl denotes superior model performance
on the j-th task, whereas a lower sjzsl implies infe-
rior performance. Therefore, we can acquire the
model’s performance across m tasks as:

Szsl = [s1zsl, s
2
zsl, . . . , s

m−1
zsl , smzsl]. (2)

One-Shot Score With an instruction tuning
dataset D, we aim to identify a set of ex-
amples Dgold that most closely align with the
golden instructions. For each example zk =
[InstructionQ

k (IQk), InstructionA
k (IAk)], we ini-

tially perform implicit instruction tuning on the
base model using that specific example. Here,
InstructionQ

k denotes the question associated with
the k-th example zk ∈ D, while InstructionA

k sig-
nifies its corresponding answer. Subsequently, we
employ the model with in-context learning to con-
duct another round of testing on the tasks within
the predefined task set. That is,

sjiit(zk) =
1

L

L∑

i=1

log p(w
Aj

i | IQk, IAk︸ ︷︷ ︸
One-Shot Prompt

, C; LLM),

C = [Tj , w
Aj

1 , w
Aj

2 , . . . , w
Aj

i−1],

(3)

where IQk and IAk can be considered one-shot
prompt. Similarly, we can obtain the performance
of the model after implicit fine-tuning across m
different tasks:

Sk
iit = [s1iit(zk), s

2
iit(zk), . . . , s

m−1
iit (zk), s

m
iit (zk)].

(4)
Afterward, we use the Golden Score (GS) to reflect
the impact of this instruction tuning example on the
base model. The GS of the example zk is calculated
as

GS(zk) =
1

m

m∑

i=1

I
[
siiit(zk) > sizsl

]
∈ [0, 1],

(5)

4589

- Generate a meaningful quote about education.

- Education is not about accumulating knowledge,
but rather about learning how to think for yourself.

One-Shot Learning : For each instruction in , calculate its corresponding One-Shot Score for a
series of predefined tasks

A - What is the capital city of France?

B - Calculate the result of this equation: 6 + 4 x 11

C - How does the internet of things (IoT) work?

- Pairs.

- The result of the equation is 110.

- The Internet is a vast and intricate network
that enables communication …

Predefined
Task Set

As One-Shot Prompt

➕

Task A

Task B

Task C

- Pairs.

- The result of the equation is 50.

- The internet of things (IoT) uses physical
sensors and devices connected …

① Calculate the Zero-Shot Score of a series of predefined tasks

②

③ Calculate the golden score for each instruction

④ Sort by Golden Score and select the subset of data with the highest golden scores

Golden Score = One-Shot Score - Zero-Shot Score = - = 0.67

1.00 0.33

Instruction Set 1 Golden Subset

 Nuggets(, , Predefined Task Set)

Figure 2: The illustration of the framework of our NUGGETS. Note that we do not directly let the model generate
answers for assessment. Instead, we calculate the model’s logit scores on the ground truth answers as zero-shot
scores or one-shot scores.

where I[·] is the indicator function. At a high level,
the GS measures the increment of performance
improvement of the model after one-shot learning
through the given instruction.

In this study, we calculate the GS score for each
instructional example, facilitating the generation
of a ranked list of scores encompassing the entire
set of examples. Our objective is to explicitly fine-
tune the base model by selectively employing a
small subset comprising the most pivotal examples.
Specifically, we prioritize examples exhibiting high
golden scores, aiming to achieve superior outcomes
compared to utilizing the entire dataset.

4 Experiments

4.1 Experimental Setup
Instruction Dataset We adopt the Alpaca
dataset (Taori et al., 2023) as instruction data. It
is an important resource in the open-source com-
munity for instruction tuning, which is constructed
by employing the self-instruct (Wang et al., 2022a)
method to distill instruction data from text-davinci-

003. The success of this dataset in fine-tuning
the LLaMA model has sparked a series of explo-
rations into instruction fine-tuning (Li et al., 2023b;
Ji et al., 2023; Xu et al., 2023b). Besides, we per-
form more types of instruction datasets to verify
the transferability of NUGGETS, please refer to B.

Predefined Task Set The predefined task set
plays a crucial role in computing golden scores
for instructions. These data are employed to evalu-
ate the model’s ability to generalize across diverse
tasks. The adequacy of the predefined task set is
contingent upon its encompassing a substantial vol-
ume of data and incorporating a broad range of
tasks. As the Alpaca dataset inherently possesses
these attributes, we randomly choose 1,000 exam-
ples from it to constitute the predefined task set.

Evaluation Datasets This work uses two meth-
ods to assess the model’s capabilities. The first
approach involves rating the responses generated
by models on a scale ranging from 1 to 10. For
this purpose, we utilize the GPT-4 labeled MT-

4590

Model Nums Helpful_Base Koala Self-instruct Oasst Vicuna Length Results

LLaMA - 0.00 1.28 1.19 0.53 1.25 2,980 0.87
Alpacafull 52,002 20.15 25.64 27.77 25.00 15.00 396 25.43

Alpaca≤0.5 9,542 7.75 5.12 13.09 9.57 8.75 241 10.96
Alpaca>0.5 42,460 24.03 20.51 28.57 29.78 15.00 413 26.06
Alpaca>0.8 7,525 34.10 30.76 30.95 35.10 30.00 519 32.48
Alpaca>0.85 619 37.20 26.90 25.00 29.30 22.50 617 28.20

Table 1: The win_rate results of various models under the Alpaca-Eval benchmark evaluation.

Model Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Overall

LLaMA 4.6 4.5 5.2 1.0 1.20 2.2 5.0 4.1 3.47
Alpacafull 8.5 5.8 3.3 1.0 2.0 4.5 6.5 7.1 4.83

Alpaca≤0.5 7.2 5.1 2.1 1.3 1.9 5.5 5.3 6.9 4.41
Alpaca>0.5 8.3 5.7 3.5 1.1 1.7 5.0 6.6 7 4.86
Alpaca>0.8 8.3 5.9 5.6 1.8 2.5 4.0 7.3 7.4 5.34
Alpaca>0.85 6.6 6.3 4.9 1.0 2.3 3.3 6.3 7.3 4.87

Table 2: Experimental results of various models on the GPT-4 labeled MT-Bench benchmark.

Bench (Zheng et al., 2023) dataset, which evalu-
ates instruction-following proficiency across eight
categories: writing, roleplay, extraction, reasoning,
math, coding, STEM, and humanities. Notably,
since we only fine-tune on single-turn instruction
data, the evaluation is restricted to Turn 1 of MT-
Bench, similar to previous studies (Cao et al., 2023;
Zheng et al., 2023; Chen et al., 2023). The second
method involves comparing the model’s generated
responses with those produced by the Davinci-003
model, employing the well-established Alpaca-
Eval dataset (Li et al., 2023d). This dataset adopts
the “win_rate” as the evaluation metric.

Implementation Details In our experiments, we
designate the LLaMA-7B model as the founda-
tional model. To ensure a fair comparison, we also
set the maximum input length for the models fine-
tuned with the Alpaca dataset to be consistent with
LLaMA, which is 2048. In the model fine-tuning
phase, we employ the Adam optimizer with a learn-
ing rate of 2 × 10−5 and utilize a batch size of
64, conducting training over three epochs. In the
subsequent model evaluation phase, we maintain
all parameter settings consistent with the original
work (Li et al., 2023d; Zheng et al., 2023).

4.2 Experimental Results

The Alpaca dataset comprises a total of 52,002 in-
struction examples, and the distribution of their
golden scores is illustrated in Appendix A. Among
these examples, 42,460 instances exhibit a golden
score surpassing 0.5. In addition, a subset of ex-

amples closely aligned with the golden instruc-
tions has been selected, specifically those attaining
golden scores above 0.8 and 0.85. In particular,
there are 7,525 examples with golden scores sur-
passing 0.8 and 619 examples with golden scores
exceeding 0.85. Notably, the latter subset consti-
tutes a mere 1% of the entire dataset.

We conduct instruction tuning on the LLaMA
model using various subsets of examples dis-
tinguished by their golden scores: those with
scores less than 0.5, greater than 0.5, greater
than 0.8, greater than 0.85, and the complete
dataset. The fine-tuned models are denoted as
Alpaca≤0.5, Alpaca>0.5, Alpaca>0.8, Alpaca>0.85,
and Alpacafull, respectively.

Main Results The experimental results are pre-
sented in Table 1 and Table 2 for the Alpaca-Eval
and MT-Bench benchmarks, respectively. As ex-
pected, Alpaca>0.8 produces the most impressive
outcomes. This can be attributed to its ability to
maintain an optimal balance between the volume
and quality of the instructions it utilizes, leading
to the most desirable results. We also note that in-
corporating lower-quality instructions adversely af-
fected model fine-tuning. This trend is clear when
we see that Alpaca≤0.5 lagged behind Alpacafull
in performance, while Alpaca>0.5 shows a slight
edge over Alpacafull. Remarkably, Alpaca>0.85, us-
ing only 1% of the dataset for fine-tuning, achieved
results comparable to or even surpassing those of
Alpacafull. This underscores the efficacy of our
data selection method. More qualitative results can

4591

50k

25k

5k

wi
n_

ra
te

8,367

43,625

34,104

22,559

5,419

566 19

11,452

40,550

35,339

27,345

12,792

5,303

741

9,549

42,459

34,713

23,465

7,524

619 0

15k

20k

10k

30k

35k

40k

45k

KMeans100

Random100

Ran
dom

100
0

35

20

8

14

17

11

23

26

29

32

…

0
Alpaca<=0.5 Alpaca>0.5 Alpaca>0.6 Alpaca>0.7 Alpaca>0.8 Alpaca>0.85 Alpaca>0.9

KMeans100 Random100 Random1000

instructions

Figure 3: The distribution of the golden score for the instruction dataset across different predefined task sets, along
with the corresponding fine-tuning results on the Alpaca-Eval benchmark.

Predefined Task Set Alpaca≤0.5 Alpaca>0.5 Alpaca>0.6 Alpaca>0.7 Alpaca>0.8 Alpaca>0.85 Alpaca>0.9

K-Means100 11.91 24.44 23.94 25.93 34.25 25.25 17.35

Random100 9.65 22.28 24.16 26.56 31.67 27.74 26.34

Random1000 10.96 26.06 24.46 28.43 32.48 28.21 -

Table 3: Win_rate results on Alpaca-Eval Benchmark across different predefined task sets

be found in Appendix C.

Ablation on Predefined Task Sets To evaluate
how different predefined task sets affect the selec-
tion of instruction data for fine-tuning, we include
two additional predefined task set variations. One
is randomly exampled from the Alpaca dataset but
with a smaller task set size, which is limited to 100
examples. The other one entails clustering the Al-
paca dataset into 100 clusters using the K-Means
algorithm and selecting the centroids of each clus-
ter as examples of the task set.

We use the two predefined sets to calculate
golden scores for the Alpaca dataset separately.
The distribution of golden scores is depicted in
Figure 3. We select instruction data with golden
scores less than or equal to 0.5, greater than 0.5,
greater than 0.6, greater than 0.7, greater than 0.8,
greater than 0.85, and greater than 0.9 for model
fine-tuning, respectively. Table 3 suggests that with
random sampling, increasing the size of the task set
can enhance the identification of high-quality in-
struction data. The logic behind this is that a larger
encompasses a broader diversity of data, facilitat-
ing a more nuanced assessment of an instruction’s
effect on model task generalization. However, a
shift occurs when K-Means is employed to cherry-

pick more distinct examples for the task set. With
as few as 100 examples, K-Means outshines the
results from 1,000 examples acquired through ran-
dom sampling. In this instance, Alpaca>0.8 deliv-
ered a superior performance with just 5,419 exam-
ples, compared to the 7,524 examples seen with
Random1000. This outcome also indirectly con-
firms the validity of our hypothesis regarding the
definition of golden instructions.

Ablation on Instruction Sets To delve deeper
into the generalization capabilities of NUGGETS

across varied instruction datasets, we undertake a
series of experiments utilizing the Alpaca-GPT4
dataset (Peng et al., 2023). It generates instruc-
tional data from the powerful GPT-4 model (Ope-
nAI, 2023), which is considered to have superior
data quality. Additionally, it shares the same ques-
tions in instructions with the Alpaca dataset, which
facilitates our direct comparison between the two.

Inspired by Table 3, we employ the K-Means
algorithm on the Alpaca-GPT4 dataset to sample
100 examples, forming the predefined task set. Sub-
sequently, we apply the NUGGETS method to score
all instructions in the dataset with the golden score,
as depicted in Figure 4. Compared to the Alpaca
dataset, the Alpaca-GPT4 dataset boasts a higher

4592

50k

25k

5k

wi
n_

ra
te

15k

20k

10k

30k

35k

40k

45k

80

40

8

24

32

16

48

56

64

72

0
Alpaca<=0.5 Alpaca>0.5 Alpaca>0.6 Alpaca>0.7 Alpaca>0.8 Alpaca>0.85 Alpaca>0.9

Alpaca-GPT4 Alpaca

instructions

Alpaca-GPT4

Alpaca

9,038

42,964 43,625

38,092

34,104

22,559

32,778

25,100

4,519

16,943

566

4,250

19

67.66

68.70 69.34
71.79 72.05 71.39

19.23

11.91

24.44

8,367

23.94 25.93

34.25

25.25

17.35

full data

full data
25.43

66.54

Figure 4: The distribution of the golden score for the instruction dataset across different instruction sets, along with
the corresponding fine-tuning results on the Alpaca-Eval benchmark. Both predefined task sets utilize K-Means to
sample 100 examples from their respective instruction datasets.

GS≤0.5 GS>0.5 GS>0.6 GS>0.7 GS>0.8 GS>0.85 GS>0.9 Full Data

LLaMA2 NUM 3,730 48,272 40,905 28,644 10,409 2,411 87 52,002
Win_rate 13.17 27.09 27.85 27.62 33.92 34.98 27.08 26.47

Mistral NUM 78 51,924 51,610 49,398 36,068 23,147 9,356 52,002
Win_rate 0 12.26 11.10 12.45 11.28 10.60 13.53 9.85

Table 4: Win_rate results on Alpaca-Eval Benchmark across two different foundation models.

number of instructions with golden scores: 25,100
instructions exceed a score of 0.8, 16,943 surpass
0.85, and 4,250 instructions exceed 0.9. These
numbers far exceed the corresponding high-scoring
instructions in the Alpaca dataset. This also demon-
strates that the golden score can serve as an abso-
lute metric to assess the quality of instructional
data. The results from model fine-tuning indicate
that on the Alpaca-GPT4 dataset, conclusions align
with those of previous experiments. The large lan-
guage models fine-tuned on subsets with golden
scores less than or equal to 0.5 exhibit the poorest
performance, with a win rate of only 19.23% in the
Alpaca-Eval benchmark. In contrast, the models
fine-tuned on subsets with golden scores greater
than 0.85 demonstrate superior performance, boast-
ing a high win rate of 72.05%. This success can
be attributed to the dual assurance of quantity and
quality in this particular subset. It is worth empha-
sizing that fine-tuning on a small and high-quality
dataset consistently and significantly outperforms
the results of fine-tuning on the full dataset. Over-
all, the models fine-tuned using Alpaca-GPT4 sig-
nificantly outperform those fine-tuned with Alpaca.

This implicitly corroborates the superior quality
of the Alpaca-GPT4 dataset compared to the Al-
paca dataset. For more experiments on instruction
datasets, please refer to Appendix B.

Ablation on Foundation Models To verify the
transferability of the NUGGETS method, we con-
ducted experiments on different foundation models
using the Alpaca instruction dataset. We selected
LLaMA2 (Touvron et al., 2023b) and Mistral (Jiang
et al., 2023) at the 7B size as the new base models.
The distribution of the golden scores and the per-
formance of models fine-tuned on corresponding
subsets of instructions are shown in Table 4. We
found that the NUGGETS method is also applicable
to other models. LLaMA2 achieved the best results
under fine-tuning on subsets with a golden score
greater than 0.85, reaching 34.98, which is signif-
icantly higher than the 26.47 achieved under full
data. Although the absolute value of the win_rate
for the Mistral series of fine-tuned models is some-
what low, their performance is also significantly
boosted by the NUGGETS data filtering.

4593

5 Discussion: One-Shot Learning as
Implicit Instruction Tuning

Transformer has risen as the prevailing architecture
for language models, where self-attention plays
a crucial role as a pivotal element within Trans-
former. Let Xins,Xtest ∈ Rdin denote the instruc-
tion tuning sample and the test input respectively.
Xins can be likened to IQk and IAk in Equation 3,
while Xtest can be seen as T and wA

1 , w
A
2 , . . . , w

A
i−1.

That Q = WQX
⊤
test be the attention query vector,

K = WK [Xins∥Xtest] be the attention key vector
and V = WV [Xins∥Xtest] be the attention value
vector, where ∥ represents concatenation operation,
WK ,WV ,WQ ∈ Rdout×din are the projection ma-
trices for computing the attention queries, keys, and
values, respectively. The result of self-attention in
an arbitrary layer for a head is formulated as:

Attention(K,V,Q)

= WV [Xins∥Xtest]Softmax
(
WK [Xins∥Xtest]

⊤Q√
din

)

≈ WV [Xins∥Xtest] (WK [Xins∥Xtest])
⊤ Q

= WV Xtest(WKXtest)
⊤

︸ ︷︷ ︸
Only test input.

Q +WV Xins(WKXins)
⊤

︸ ︷︷ ︸
Only instruction sample.

Q

= Wzsl Q +∆Wiit Q
= (Wzsl +∆Wiit) Q, (6)

where
√
din serves as a scaling factor. The term

WV Xtest(WKXtest)
⊤ could be denoted as Wzsl,

which represents the zero-shot learning scenario
where no instruction tuning is performed since it
solely focuses on the test input. In addition, the
term WV Xins(WKXins)

⊤ can be seen as implicit
instruction tuning ∆Wiit achieved via the meta-
gradient (Dai et al., 2022; Yang et al., 2023) derived
from the instruction sample. Readers can refer to
previous papers (Dai et al., 2022; Aizerman et al.,
1964; Irie et al., 2022) for more details on implicit
instruction tuning.

6 Conclusion

This paper presents NUGGETS, a method leverag-
ing LLMs to discern more pivotal data for instruc-
tion tuning. Grounded in one-shot learning, this
approach facilitates the identification of examples’
value, enabling efficient data selection without de-
pendence on additional annotation and associated
costs. Benefiting from NUGGETS, we observe im-
proved instruction following abilities even with
smaller training subsets. Furthermore, we posit that

our method underscores the significance of metic-
ulous data selection, offering valuable insights for
future instruction fine-tuning endeavors.

Limitations

Although the efficacy of the proposed approach
has been confirmed through empirical experiments,
opportunities for refinement persist. One avenue
for improvement involves a thorough investigation
into the inclusion of a diverse and compact set of
predefined tasks during the golden scoring phase.
This exploration aims to enhance the efficiency of
model evaluation on instructional data, leading to
improved identification of high-quality instructions
suitable for subsequent model fine-tuning. Sec-
ondly, due to resource constraints, the majority
of experiments in this study are confined to the
LLaMA-7B model. While this model holds sig-
nificant influence within the large language model
open-source community, comprehensive validation
across a broader spectrum of models is imperative
to ensure the generalizability of the proposed ap-
proach. Lastly, to fortify the empirical foundation
of our findings, it is crucial to subject the proposed
method to validation on a more extensive array of
instructional datasets. This step aims to ascertain
the robustness and applicability of the methodol-
ogy across a diverse range of instructional contexts,
contributing to its broader utility in real-world sce-
narios. These outlined avenues for future work are
anticipated to refine and extend the scope of our
proposed method.

Acknowledgments

Min Yang was supported by National Key
Research and Development Program of China
(2022YFF0902100), National Natural Science
Foundation of China (62376262), the Natural
Science Foundation of Guangdong Province
of China (2024A1515030166), Shenzhen Sci-
ence and Technology Innovation Program
(KQTD20190929172835662), Shenzhen Basic
Research Foundation (JCYJ20210324115614039).
This work was supported by Alibaba Group
through Alibaba Innovative Research Program.
Xiaobo Xia was supported by the Australian
Research Council project: DE190101473 and
Google PhD Fellowship. Tongliang Liu is partially
supported by the following Australian Research
Council projects: FT220100318, DP220102121,
LP220100527, LP220200949, and IC190100031.

4594

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,

Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In EMNLP, pages 5799–5811.

MA Aizerman, EM Braverman, and LI Rozonoer. 1964.
Theoretical foundation of potential functions method
in pattern recognition autom. Remote Contr.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. arXiv
preprint arXiv:2005.14165.

Yihan Cao, Yanbin Kang, and Lichao Sun. 2023. In-
struction mining: High-quality instruction data se-
lection for large language models. arXiv preprint
arXiv:2307.06290.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xuxin Cheng, Zhihong Zhu, Hongxiang Li, Yaowei
Li, Xianwei Zhuang, and Yuexian Zou. 2024. To-
wards multi-intent spoken language understanding
via hierarchical attention and optimal transport. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17844–17852.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui,
and Furu Wei. 2022. Why can gpt learn in-context?
language models secretly perform gradient descent as
meta optimizers. arXiv preprint arXiv:2212.10559.

Google. 2023. Palm 2 technical report. arXiv preprint
arXiv:2305.10403.

Sariel Har-Peled and Soham Mazumdar. 2004. On core-
sets for k-means and k-median clustering. In STOC,
pages 291–300.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber.
2022. The dual form of neural networks revisited:
Connecting test time predictions to training patterns
via spotlights of attention. In ICML, pages 9639–
9659.

Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang
Niu, Lei Zhang, Baochang Ma, and Xiangang Li.
2023. Exploring the impact of instruction data
scaling on large language models: An empirical
study on real-world use cases. arXiv preprint
arXiv:2303.14742.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. Camel: Communicative agents for" mind"
exploration of large scale language model society. In
NeurIPS.

Lei Li, Yuwei Yin, Shicheng Li, Liang Chen, Peiyi
Wang, Shuhuai Ren, Mukai Li, Yazheng Yang,
Jingjing Xu, Xu Sun, et al. 2023b. M3it: A large-
scale dataset towards multi-modal multilingual in-
struction tuning. arXiv preprint arXiv:2306.04387.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023c. From quantity to quality: Boosting
llm performance with self-guided data selection for
instruction tuning.

Xiaonan Li and Xipeng Qiu. 2023. Finding support
examples for in-context learning. In Findings of
EMNLP, pages 6219–6235.

4595

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2308.12032
http://arxiv.org/abs/2308.12032
http://arxiv.org/abs/2308.12032

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023d. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao,
Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji rong
Wen. 2023. Do emergent abilities exist in quantized
large language models: An empirical study. arXiv
preprint arXiv:2307.08072.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. 2023. # instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
In ICLR.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS, pages
27730–27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,
et al. 2022. Multitask prompted training enables
zero-shot task generalization. In ICLR.

Rylan Schaeffer, Brando Miranda, and Oluwasanmi
Koyejo. 2023. Are emergent abilities of large
language models a mirage? arXiv preprint
arXiv:2304.15004.

Manli Shu, Jiongxiao Wang, Chen Zhu, Jonas Geiping,
Chaowei Xiao, and Tom Goldstein. 2023. On the
exploitability of instruction tuning. arXiv preprint
arXiv:2306.17194.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin
Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. 2023. Principle-driven self-
alignment of language models from scratch with
minimal human supervision. arXiv preprint
arXiv:2305.03047.

Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong
Wen. 2022. Mvp: Multi-task supervised pre-training
for natural language generation. arXiv preprint
arXiv:2206.12131.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspective
for understanding in-context learning. In EMNLP.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, et al. 2023b. How far can camels go?
exploring the state of instruction tuning on open re-
sources. arXiv preprint arXiv:2306.04751.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An-
jana Arunkumar, David Stap, et al. 2022b. Super-
naturalinstructions: Generalization via declarative
instructions on 1600+ nlp tasks. In EMNLP, pages
5085–5109.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2021. Finetuned language
models are zero-shot learners. In ICLR.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Met-
zler, Ed Huai hsin Chi, Tatsunori Hashimoto, Oriol

4596

https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Vinyals, Percy Liang, Jeff Dean, and William Fedus.
2022. Emergent abilities of large language models.
Transactions on Machine Learning Research.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and
Tongliang Liu. 2023a. Moderate coreset: A universal
method of data selection for real-world data-efficient
deep learning. In ICLR.

Xiaobo Xia, Jiale Liu, Shaokun Zhang, Qingyun
Wu, and Tongliang Liu. 2023b. Coreset selection
with prioritized multiple objectives. arXiv preprint
arXiv:2311.08675.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023a. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023b. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv
preprint arXiv:2304.01196.

Jiaxi Yang, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Iterative forward
tuning boosts in-context learning in language models.
arXiv preprint arXiv:2305.13016.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-
Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. 2024. Ideal: Influence-driven selective annota-
tions empower in-context learners in large language
models. In ICLR.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023a. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Shilong Zhang, Peize Sun, Shoufa Chen, Min Xiao,
Wenqi Shao, Wenwei Zhang, Kai Chen, and Ping
Luo. 2023b. Gpt4roi: Instruction tuning large lan-
guage model on region-of-interest. arXiv preprint
arXiv:2307.03601.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, et al. 2023c. Siren’s song in the ai
ocean: A survey on hallucination in large language
models. arXiv preprint arXiv:2309.01219.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023a. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Fei Huang, Yongbin Li, and Nevin L Zhang. 2023b.
A preliminary study of the intrinsic relationship be-
tween complexity and alignment. arXiv preprint
arXiv:2308.05696.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

4597

A The Distribution of Golden Score

As shown in Figure 5, in a total of 52,002 cases, there are 9,549 instructions with a gold score of less
than 0.5, indicating that these data have a side effect on overall task completion. Besides, there are 7,524
instructions with a gold score greater than 0.8, suggesting that the model improves the task completion
rate through one-shot learning from these data, which can be considered high-quality instruction data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10000 20000 30000 40000 50000

9,549

44,478

51,383

G
ol

de
n

Sc
or

e
(G

S)

17,289

28,537

Figure 5: The distribution of the golden score for the Alpaca instruction dataset.

B Experiment on Other Instruction Sets

Based on the LLaMA-7B model, we conducted experiments on several other instruction datasets, further
validating the effectiveness of our NUGGETS method.

B.1 Code Alpaca
The Code Alpaca instruction dataset (Chaudhary, 2023) is designed to develop large language models
capable of following instructions and generating code. Leveraging self-instruct (Wang et al., 2022a)
technology, it has produced 20,000 examples of instruction data. We use HumanEval (Chen et al., 2021)
as a benchmark to evaluate the model’s code generation capabilities. It is used to measure functional
correctness for synthesizing programs from docstrings. It consists of 164 original programming problems,
assessing language comprehension, algorithms, and simple mathematics, with some being comparable to
simple software interview questions. We adopt the approach outlined by Chen et al. (2021) to calculate
pass rates at k values of 1, 10, and 100 for each problem. Essentially, pass@1 predicts the probability of a
model producing a correct solution on the first try, while pass@10 and pass@100 predict the probability
of achieving a correct solution within 10 and 100 tries, respectively. We generate 200 completions at a
temperature setting of 0.2 (Luo et al., 2023) to estimate pass@1, pass@10, and pass@100 rates. The
experimental results are shown in the Figure 6. Out of 20,000 instructions, 4,715 instructions have a gold
score greater than 0.85, achieving the best pass@1 and pass@10 results in the HumanEval benchmark,
superior to the fine-tuning results of the full dataset. Additionally, this experiment also proves that the
NUGGETS method can be applied to fine-tuning for specific tasks, demonstrating good transferability.

B.2 WizardLM
The WizardLM instruction dataset (Xu et al., 2023a), which employs Evol-Instruct to iteratively refine an
initial set of instructions into more complex ones, contains 70,000 instruction examples. The distribution
of the golden scores and the performance of models fine-tuned on corresponding subsets of instructions
are shown in Table 5. We can observe that the quality distribution of the WizardLM dataset is relatively
balanced, with 65,190 instruction examples having a golden score greater than 0.8, accounting for 93% of

4598

16.8

25.4
26.6

22.1

3.2

12.9

21.321.3
19.9

1.6

GS<=0.5

50k

25k

5k

Hu
ma

nE
va

l

15k

20k

10k

30k

35k

40k

45k

30

15

3

9

12

6

18

21

24

27

0
GS>0.5 GS>0.6 GS>0.7 GS>0.8

instructions

Full Data Pass@1

Full Data Pass@10

Full Data Pass@100

Pass@100Pass@100Pass@1

2,150

17,850

11,373

4,715

153

71.39

0.7

14.4 13.7
14.5

7.1

26.8

13.6

19.9

Figure 6: The distribution of the golden score for the Code Alpaca instruction dataset, along with the corresponding
fine-tuning results on the HumanEval benchmark. Predefined task sets utilize K-Means to sample 100 examples
from the Code Alpaca instruction dataset.

GS≤0.5 GS>0.5 GS>0.6 GS>0.7 GS>0.8 GS>0.85 GS>0.86 GS>0.87 Full Data

NUM 480 69,520 69,377 68,898 65,190 40,223 23,579 3, 316 70,000

Win_rate 19.42 58.08 57.40 56.21 59.81 58.40 57.81 54.68 57.65

Table 5: The distribution of golden scores for the WizardLM dataset and the evaluation results of models fine-tuned
on corresponding score subsets on the Alpaca-Eval benchmark.

the total number of instructions. In the evaluation of the Alpaca-Eval benchmark, models fine-tuned on
subsets with golden scores greater than 0.8 achieved a win rate of 59.81, outperforming models fine-tuned
on the full dataset.

B.3 FLANv2

We sampled 50,000 examples from the FLANv2 (Chung et al., 2022) dataset to constitute the instruction
tuning data for this experiment. Additionally, the Predefined task set was also derived from these 50,000
examples, using the K-Means algorithm to sample 100 examples. We evaluated the performance of the
fine-tuned model using MMLU (Hendrycks et al., 2020) in a 5-shot setting. MMLU is a test designed
to measure a text model’s multitask accuracy. The test encompasses 57 tasks, including elementary
mathematics, US history, computer science, law, and more. The experimental results are shown in the

GS≤0.5 GS>0.5 GS>0.6 GS>0.7 GS>0.8 GS>0.85 GS>0.9 Full Data

NUM 1,361 48,639 46,009 39,046 17,037 4,798 321 50,000

Acc 34.68 41.38 41.92 41.87 41.97 35.51 26.41 40.45

Table 6: The distribution of golden scores for the sampled FLANv2 dataset and the evaluation results of models
fine-tuned on corresponding score subsets on the MMLU benchmark.

table. It can be observed that the model fine-tuned with examples having a golden score greater than 0.8
(totaling 17,037 examples) achieved the best results, followed by those fine-tuned with examples having a
golden score greater than 0.6 (totaling 46,009 examples). Additionally, we noted that the model fine-tuned

4599

with examples having a golden score less than 0.5 (totaling 1,361 examples) outperformed the model
fine-tuned with examples having a golden score greater than 0.9 (totaling 321 examples).

We speculate that the reason for this outcome is that the MMLU evaluation itself is a knowledge-
intensive assessment, which thus imposes higher demands on the quantity of fine-tuning examples. In
the future, some optimizations in the selection of the Predefined Task Set may potentially improve this
situation.

C Case Study

To evaluate NUGGETS qualitatively, we also select some instruction examples from the Alpaca dataset for
case studies, as shown in Figure 7. We observe that noisy instructions without outputs display extremely
low golden score values. Such examples consistently score very low throughout the instruction dataset.
Additionally, instructions with hallucinatory outputs and some that are a bit confusing also typically
exhibit lower golden scores. In contrast, instructions with higher scores often possess fluent language and
meticulous logic, and are oriented towards assisting humans in problem-solving. Therefore, we believe
that the high golden scores can represent high-quality instruction tuning data.

4600

[Instruction] Create a pictogram to show the meaning of the following phrase: "The wheels on the bus go
round and round."
[Picture of a bus with circles around its wheels][Output]

[Golden Score] 0.193

[Instruction] Write six original rhymes for the provided word.

1. To ride a skate is where I'd like to go,It zooms past skiers, 'cause I'm so pro.
2. The skateboarding ramp seemed so tall,But I made it over with no stall.
3. I take a ride on my trusty skate,And carve the roads with a twist of fate.
4. I spin around the rink so full,Check me out, I'm lookin' cool.
5. You don't believe I can skate on the sand,But watch me do it with a little hand!
6. Skateboard's my name and it's my game, […]

[Output]

[Golden Score] 0.403

[Input] Skate

[Instruction] Construct a timeline to show the development of artificial intelligence over the last 5 years.
" "[Output]

[Golden Score] 0.046

[Instruction] What are three qualities that a good product manager should possess ?

A good product manager should possess strong communication skills, a strategic mindset, and
the ability to collaborate with different members of the organization.

[Output]

[Golden Score] 0.803

[Instruction] Create a fact sheet about AI.

What is AI?
AI (Artificial Intelligence) is the science and engineering of programming machines to think
and act on their own.
What can AI do?
AI can be used to automate mundane tasks, analyze complex data and patterns, identify trends,
provide personalized services, and more.
Who uses AI?
AI is used by many industries, […]

[Output]

[Golden Score] 0.803

[Instruction] Describe the following place. Output the description.

[Output]

[Golden Score]

[Input] The Grand Canyon
The Grand Canyon is one of the most incredible natural wonders in the world. The canyon
spans 277 miles in length and can be up to 18 miles wide in certain places. With towering cliff
walls, evergreen forests, and the mighty Colorado River running its length, it truly is an awe-
inspiring sight. The area around the canyon is home to diverse wildlife, including endangered
species like the California condor and the desert tortoise. Visiting the Grand Canyon is an
unforgettable experience that is sure to take your breath away.

0.859

Figure 7: Examples of instructions and their corresponding golden scores.

4601

