StepCoder: Improving Code Generation
with Reinforcement Learning from Compiler Feedback

Shihan Dou'*’, Yan Liu'*, Haoxiang Jia?, Enyu Zhou', Limao Xiong',
Junjie Shan?, Caishuang Huang!, Xiao Wang'!, Xiaoran Fan'!, Zhiheng Xi',
Yuhao Zhou!, Tao Ji', Rui Zheng', Qi Zhang'®, Tao Gui*’, Xuanjing Huang'®'
1 School of Computer Science, Fudan University
2 Huazhong University of Science and Technology
3 KTH Royal Institute of Technology
4 Institute of Modern Languages and Linguistics, Fudan University
® Shanghai Collaborative Innovation Center of Intelligent Visual Computing
{shidou21, y_liu}22 @m.fudan.edu.cn

Abstract

The advancement of large language models
(LLMs) has significantly propelled the field of
code generation. Previous work integrated re-
inforcement learning (RL) with compiler feed-
back for exploring the output space of LLMs
to enhance code generation quality. However,
the lengthy code generated by LLMs in re-
sponse to complex human requirements makes
RL exploration a challenge. Also, since the
unit tests may not cover the complicated code,
optimizing LLMs by using these unexecuted
code snippets is ineffective. To tackle these
challenges, we introduce StepCoder, a novel
RL framework for code generation, consisting
of two main components: CCCS addresses the
exploration challenge by breaking the long se-
quences code generation task into a Curriculum
of Code Completion Subtasks, while FGO only
optimizes the model by masking the unexe-
cuted code segments to provide Fine-Grained
Optimization. In addition, we furthermore con-
struct the APPS+ dataset for RL training, which
is manually verified to ensure the correctness
of unit tests. Experimental results show that
our method improves the ability to explore the
output space and outperforms state-of-the-art
approaches in corresponding benchmarks'.

1 Introduction

Code generation or program synthesis aims to au-
tomatically generate source code that adheres to a
specified programming requirement, which is typi-
cally described in natural language (Svyatkovskiy
et al., 2020; Gulwani et al., 2017). Recently, with
the development of large language models (LLMs),
techniques based on LLM (Li et al., 2023a; Luo
et al., 2023b) have demonstrated impressive ability
* Equal contributions.
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in code generation. However, challenges persist
in aligning these models with complex human re-
quirements (Hendrycks et al., 2021; Roziere et al.,
2023), indicating a gap that still exists in fully meet-
ing user expectations.

In this context, learning from compiler feedback
exhibits impressive potential to improve the com-
prehension of complicated human requirements
and the quality of generated codes (Le et al., 2022).
This feedback from compilation and execution re-
sults is instrumental in directly ascertaining the
functional correctness of programs (Wang et al.,
2022a; Li et al., 2022). Researchers (Liu et al.,
2023; Shojaee et al., 2023) introduce reinforcement
learning (RL) and leverage compiler feedback from
unit tests as a reward metric to guide the exploration
of the output space of LLMs. The intention is for
the policy model to favor actions that yield higher
rewards increasingly. Nevertheless, the optimiza-
tion of LLMs for code generation via RL presents
several hurdles. First, the increasing complexity of
human requirements often results in the generation
of longer code sequences, which makes exploration
struggle (Hao et al., 2023; Ladosz et al., 2022). Sec-
ond, in cases where a single unit test fails to cover
the complex code, unexecuted code snippets may
emerge that are not relevant to the reward. Render-
ing optimization based on the entire code sequence
is potentially imprecise. Additionally, our analy-
sis reveals quality limitations in existing datasets
like APPS (Hendrycks et al., 2021) for RL training,
which impedes accurate learning from compiler
feedback through RL.

To tackle these challenges, we first introduce
StepCoder, an innovative framework developed for
enhancing code generation through reinforcement
learning. StepCoder integrates two key compo-
nents: Curriculum of Code Completion Subtasks
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(CCCS) and Fine-Grained Optimization (FGO).
CCCS is designed to alleviate the complexities as-
sociated with exploration in code generation, while
FGO is designed to provide more precise and ef-
fective optimization strategies. Specifically, CCCS
employs a step-by-step strategy to break down com-
plex exploration problems (i.e., code generation)
into a curriculum of easier sub-tasks (i.e., code
completion). As the training progresses, the diffi-
culty of code completion tasks rises by increasing
the portion of code that needs to be completed.
Eventually, the aim is for the model to evolve to a
stage where it can effectively generate code solely
from human requirements, thus fulfilling the origi-
nal training goal of code generation. On the other
hand, the key insight of FGO is that code snippets
that are not executed in a unit test do not contribute
to the final reward calculation. Therefore, FGO
uses a dynamic masking technique to mask unexe-
cuted snippets from unit test evaluations, ensuring
that the model is optimized utilizing only the rele-
vant code segments.

Subsequently, our endeavor involves the devel-
opment of APPS+, a dataset of superior quality
specifically curated for code generation. APPS+ is
meticulously designed to exclude code segments
that exhibit syntax errors, are irrelevant to the stip-
ulated problem, or fail to produce any output. Ad-
ditionally, we have taken measures to standardize
the format of inputs and outputs in unit tests to
guarantee deterministic output comparisons.

We evaluate the effectiveness of popular LLMs
on APPS+. The results reveal that although LLMs
show progressive improvements, they face diffi-
culties with complex human requirements. We
further evaluate our method on several extensively
used benchmarks including MBPP (Austin et al.,
2021) and HumanEval (Chen et al., 2021). The ex-
perimental results show that StepCoder effectively
eases the exploration difficulty in code generation,
outperforming other reinforcement learning-based
methods in effectiveness. The main contributions
of our paper are as follows:

* We introduce StepCoder, a novelty training
method via RL, including CCCS and FGO.
CCCS makes exploration easier by break-
ing down the complicated goals into sub-
objectives curriculum. FGO provides fine-
grained optimization by only utilizing the ex-
ecuted code in unit tests.

* We constructed APPS+, a high-quality dataset

I import random

_____
mm : executed code
def test(): B unexecuted code

for _ in range(int(input())):

rows[@] = p[::2]

rows[1] = p[1::2]

if sign(rows[@][0]) != sign(rows[1][0]):
print(@)
continue

for r in range(2, max_rows):
for n in range(max_col - 1):
rows[r][n] = rows[r - 1][@] * rows[r -
2][e] * rows[r - 1][n + 1]

2][n +
1] - rows[r -

last = sign(rows[@][0])

flag =_1
for i in range(1, len(rows)):
curr = sign(rows[i][@])
if rows[r] == [@ for _ in range(max_col)]:
for n in range(max_col):
rows[r][n] = rows[r - 1][n] * (max_pow +
4 - (r+1)-2%(n+1))
elif rows[i][@] == @:
if any([x != @ for x in rows[i]]):
flag = @
break
else:
curr = last
if curr != last:
flag = ©

break
last_=_curr

Figure 1: The canonical solution of an instance in the
APPS dataset. We collect the conditional statements
by analyzing their abstract syntax tree, and some con-
ditional statements are highlighted with a grey dashed
box. When inputting s = [1\n10 12 1 5 3\n], only 75%
of the code fragment is executed, highlighted with a
green background.

designed for code generation. APPS+ pro-
vides a more rigorous evaluation of LLMs’
capabilities and a foundation to introduce re-
inforcement learning in the training phase.

* Experiments show that StepCoder can im-
prove the exploration efficiency and effective-
ness and outperform other methods.

2 Motivation

In this section, we clearly illustrate the challenges
faced by reinforcement learning in code generation
using a simplified example from APPS (Hendrycks
etal., 2021), which was widely used for RL training
in code generation.

Exploration problems of RL in code genera-
tion. In tackling complicated sequence but sparse
reward challenges, exploration methods play a cru-
cial role (Yang et al., 2021; Ladosz et al., 2022).
When a policy model explores a trajectory with
high returns, it undergoes optimization, making
it inclined to take similar actions in the future
(Williams, 1992; Salimans and Chen, 2018).
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Consider the code shown in Figure 1, aimed
at fulfilling a given human requirement. We first
collect the conditional statements (CS) that are in-
dicated by the dashed box by analyzing its abstract
syntax tree. Conditional statement introduces new
independent paths, increasing the complexity of the
program (Shepperd, 1988). Suppose P»(CS;) de-
notes the probability that the policy model with pa-
rameter # completes the i-th conditional statement.
The probability that the policy model correctly gen-
erates this code according to human requirements
can be expressed as follows:

3
P o P[] Po(CSy), 1)
=1

where F, is the probability of other code snippets
except the code labeled in the figure. Typically, we
initialize the policy model with the SFT model in
sequence generation tasks to facilitate easier ex-
ploration (Ouyang et al., 2022; Zheng et al., 2023;
Wang et al., 2024; Dou et al., 2024). However,
the limited performance of the SFT model in code
generation still leads to the probability Py(CS;) at
low values (Shojaee et al., 2023; Roziere et al.,
2023). The increasing complexity of human re-
quirements in code generation tasks often leads to
a corresponding rise in the number of conditional
statements. This escalation can result in a substan-
tial decrease in the probability P»(CS;), potentially
leading P to an exponential reduction. Such a sce-
nario exacerbates the challenges associated with
exploration in large language models. An alterna-
tive approach to facilitate exploration is through
reward shaping, a technique where designers artifi-
cially introduce rewards more frequently (Ladosz
et al., 2022). However, in unit test feedback, re-
wards can only be obtained after the execution of
the completely generated code. Consequently, the
exploration of high-return trajectories in tasks with
complex sequences and sparse rewards poses a sig-
nificant challenge in optimizing the policy model.
Optimization problems of RL in code genera-
tion. We first introduce the RL fine-tuning process
in code generation. Formally, for a learned policy
model 7y with parameter 6, we treat the prediction
of each token as an action a taken by 7y according
to the history token sequences. The history token
sequences can be viewed as the state s. Given a
human requirement x, we denote the solution code
y generated by 7y as an episode, and 7(z, y) is the
reward function from the compiler based on com-
pilation and execution. Updating the parameters

of 7y by using gradient policy algorithm (Sutton
et al., 1999) can be represented as follows:

max Bz y)~pr, [Xt: Al log(yelyrie—1,7:0)]  (2)

where A is the advantage computed by the Gen-
eralized Advantage Estimator (GAE) (Schulman
et al., 2015) from reward r, to reduce the variability
of predictions.

In code generation, rewards are contingent upon
the correctness of the unit test sample, which is
only relevant to the code snippet being executed, as
shown in Figure 1. It indicates that some actions in
the code are irrelevant to the reward, which leads
to inaccurate advantage. Therefore, optimizing the
policy model my with all actions is ineffective by
using Equation 2.

3 Method

In this section, we elaborate on the methodological
details of StepCoder, which provide an easier ex-
ploration and fine-grained optimization for RL in
code generation, respectively, as shown in Figure 2.

3.1 Priliminaries

Suppose D = {(z;,yi, u;, e;) )\ is the training
dataset for code generation, which z, y, u denotes
the human requirement (i.e., the task description),
the canonical solution and the unit test samples,
respectively. e; = {st;, en; }]E;'O is a list of condi-
tional statements by automatically analyzing the
abstract syntax tree of the canonical solution y;,
which st and en represent the start position and the
end position of the statements, respectively. e is
sorted in ascending order based on the start posi-
tion st. For a human requirement z, its canonical
solution y can be represented as {a; }._,. In code
generation, given a human requirement x, the final
states are the set of codes passing the unit tests u.

3.2 StepCoder

StepCoder integrates two key components: CCCS
and FGO. CCCS is designed to break the code
generation tasks into a curriculum of the code com-
pletion subtasks. It can alleviate the exploration
challenge in RL. FGO is specifically designed for
code generation tasks to provide fine-grained opti-
mization by computing only the loss of executed
code snippets.

CCCS. In code generation, the solution to a com-
plicated human requirement usually involves a long
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Figure 2: The overview of our method. In code generation, the environment with sparse and delayed rewards and
the complicated human requirement that involves a long sequence make exploration challenging for the Vanilla RL.
In CCCS, we break down a complicated exploration problem into a curriculum of sub-tasks. Utilizing a portion of
the canonical solution as the prompt enables the LLM to explore starting from simple sequences. The computation
of rewards is only relevant for the executed code snippets, and it is imprecise to optimize the LLM with the entire

code (i.e.,
executed tokens (i.e.,

action sequence taken by the policy model. Mean-
while, the feedback from the compiler is delayed
and sparse, i.e., the policy model only receives the
reward after generating the entire code. In this sce-
nario, exploring is difficult. The core of our method
is to break down such a long sequence of explo-
ration problems into a curriculum of short, easily
explorable sub-tasks. We simplify code genera-
tion to code completion sub-tasks. These sub-tasks
are automatically constructed from the canonical
solution in the training dataset.

Consider a human requirement z, early in the
training phase of CCCS, the starting point s* of
exploration is the states near the final states. Specif-
ically, we provide the human requirement x and the
front part of the canonical solution z, = {a;}5,
and the policy model is trained to complete the
code based on ' = (z,,). Let § be the com-
bined sequence of ), and the output trajectory T,
i.e. § = (zp, 7). The reward model provides the
reward r according to the correctness of the code
snippet 7 with ¢ as input, where we use the same
setting as previous approaches (Le et al., 2022;

). In FGO, we mask unexecuted tokens (i.e., M) in unit tests and only compute the loss function using
) to provide a fine-grained optimization.

Shojaee et al., 2023) as follows:

+ 1, if § passed all unit tests
—0.3, if gy failed any unit test

r x? ] - . ~ .
(@.9) —0.6, if § happened runtime error

— 1, if § happened compile error.

3
We use the Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017) to optimize the
policy model 7y by utilizing the reward r and the
trajectory 7. In the optimization phase, the canoni-
cal solution’s code segment x;, used for providing
prompts is masked, such that it does not contribute
to the gradient for the policy model my update.
CCCS optimizes the policy model 7y by maximiz-
ing the objection function as follows:

Objective(6) = £,/ ) D, [r(z,9)

— Blog(m(r|2)) /7 (7]2))] @)
where 7'¢f is the reference model in PPO, which is
initialized by the SFT model.

As the training progresses, the starting point s*
of exploration gradually moves towards the begin-
ning of the canonical solution. Specifically, we set
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a threshold p for each training sample. Each time
the cumulative correct proportion of code segments
generated by 7 is greater than p, we move the
starting point toward the beginning. In the later
stages of training, the exploration of our method
is equivalent to the exploration process of origi-
nal reinforcement learning, i.e., s* = 0, where
the policy model generates code using only human
requirements as input.

The starting point s* is sampled at the beginning
position of the conditional statements to complete
the remaining unwritten code segments. Specifi-
cally, a program with a greater number of condi-
tional statements results in increased independent
paths, leading to a higher logical complexity (Shep-
perd, 1988). This complexity necessitates more
frequent sampling to improve the quality of train-
ing, while programs with fewer conditional state-
ments need less frequent sampling. This sampling
method allows for a balanced and representative
sampling of code structures, catering to both com-
plex and simple semantic constructs in the training
dataset. To accelerate the training phase, we set the
i-th sample’s number of curricula equal to [v/E; ],
where F; is its number of conditional statements.
The i-th sample’s stride of the training curriculum
is [[ fELJ] instead of one.

The key insight of CCCS can be summarized as
follows: 1) It is easy to explore from the states near
the goal (i.e., final states). 2) Exploring starting
from the states distant from the goal is challenging,
but it becomes easier when can leverage states that
have already learned how to reach the goal.

FGO. The relationship between reward and ac-
tion in code generation differs from other reinforce-
ment learning tasks such as Atari (Mnih et al., 2015;
Lillicrap et al., 2015). In code generation, we can
exclude a set of actions irrelevant to computing the
rewards in generated code. Specifically, as men-
tioned in Section 2, for a unit test, the feedback
from the compiler relates only to the code snippets
being executed. However, in vanilla RL optimiza-
tion objectives, as shown in Equation 4, all actions
of the trajectory are engaged in the computation
of the gradient used in the policy update, which is
imprecise.

To improve the precision of optimization, we
mask actions (i.e., tokens) that are not executed
in unit tests when computing the loss for updating
the policy model. The full algorithm of CCCS and
FGO is detailed in Algorithm 1.

4 Experiments

In this section, we first introduce APPS+, a high-
quality dataset for code generation by manually
verifying based on the APPS dataset. Then, we
elaborate on the experiment details and the experi-
mental results.

4.1 Dataset Preprocessing

Reinforcement learning requires an amount of high-
quality training data. During our investigation,
we found that among the currently available open-
source datasets, only APPS meets this requirement.
However, we found there are incorrect instances,
such as missing input, output, or canonical solu-
tion, canonical solutions that were uncompileable
or unexecutable, and discrepancies in execution
output.

To refine the APPS dataset, we excluded in-
stances lacking input, output, or canonical solu-
tions. Then, we standardized the formats of input
and output to facilitate the execution and compari-
son of unit tests. We conducted unit tests and man-
ual analysis for each instance, eliminating those
with incomplete or irrelevant code, syntax errors,
API misuse, or missing library dependencies. For
discrepancies in output, we manually reviewed the
problem description, correcting the expected output
or eliminating the instance.

Finally, we construct the APPS+ dataset, con-
taining 7,413 instances. Each instance includes
a programming problem description, a canonical
solution, a function name, unit tests (i.e., inputs
and outputs), and starter code (i.e., the beginning
part of the canonical solution). Appendix A illus-
trates an example from APPS+. The top section of
the figure shows the problem description, and the
section below presents the canonical solution, unit
tests, and metadata. Further details of APPS+ are
discussed in Appendix B.1.

4.2 Experiment Details

Benchmarks. In our study, we initially evaluated
our method and baselines on our pre-processed
APPS+ dataset and further assessed it on sev-
eral widely-used benchmarks in code generation,
i.e., MBPP (Mostly Basic Programming Problems)
(Austin et al., 2021) and HumanEval (Chen et al.,
2021). We evaluate the MBPP and HumanEval
benchmark in a zero-shot learning setting which is
the same as previous approaches (Le et al., 2022;
Shojaee et al., 2023). In this setting, we fine-tune
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APPS+

Models Size Introductory Interview Competition|Overall
Base Models
CodeLlama (Roziere et al., 2023) 13B 18.7 11.0 0.0 13.0
CodeLlama-Python (Roziere et al., 2023) 13B 29.0 12.3 2.9 17.9
DeepSeek-Coder-Base (Guo et al., 2024) 6.7B 13.0 10.3 5.0 10.9
Supervised Fine-tuned Models
StarCoder (Li et al., 2023a) 15.6B 6.3 4.1 0.7 4.7
CodeLlama-Instruct (Roziere et al., 2023) 13B 33.3 11.0 1.4 18.7
WizardCoder-Python-V1.0 (Luo et al., 2023b) 13B 39.7 15.1 4.3 23.6
DeepSeek-Coder-Instruct (Guo et al., 2024)  6.7B 49.4 18.7 3.6 29.2
SFT on APPS+ 6.7B 50.1 19.0 6.4 29.8

Reinforcement Learning-based Models (Using DeepSeek-Coder-Instruct-6.7B as the backbone)

Vanilla PPO 6.7B 53.7 20.1 5.0 31.7
PPOCoder (Shojaee et al., 2023) 6.7B 54.4 20.3 6.4 32.1
RLTF (Liu et al., 2023) 6.7B 55.1 20.8 6.4 32.7
StepCoder (Ours) 6.7B 59.7 23.5 8.6 36.1
w/o CCCS 6.7B 58.7 21.7 7.1 34.6
w/o FGO 6.7B 58.4 23.3 8.6 35.5

Table 1: Results of pass@1 on our proposed APPS+. We compare popular and widely used state-of-the-art baselines
with our method. To ensure a fair comparison, we apply these RL-based approaches using the same base model (i.e.,
DeepSeek-Coder-Instruct-6.7B (Guo et al., 2024)) as a backbone on the APPS+ dataset. In addition, We fine-tune
DeepSeek-Coder-Instruct-6.7B on our APPS+ dataset to further validate the effectiveness of our approach.

the models only on the APPS+ dataset and evaluate
the code generation performance on MBPP and Hu-
manEval. The detailed description of benchmarks
can be found in the Appendix B.1.

Baselines. To verify the effectiveness of Step-
Coder and evaluate the performance of LLMs on
our APPS+ dataset, we consider a wide range of
baselines, including StarCoder (Li et al., 2023a),
WizardCoder (Luo et al., 2023b), DeepSeek-Coder
(Guo et al., 2024), and three versions of CodeL-
lama (Base, Python, Instruct) (Roziere et al., 2023).
Moreover, we also consider vanilla PPO and two
state-of-the-art RL-based approaches, including
PPOCoder (Shojaee et al., 2023) and RLTF (Liu
et al., 2023). We carried out experiments apply-
ing these methods utilizing the same backbone (i.e.,
DeepSeek-Coder-Instruct (Guo et al., 2024)) on the
APPS+ dataset to ensure a fair comparison. In ad-
dition to demonstrating the necessity and effective-
ness of our method, we also supervised fine-tuning
DeepSeek-Coder-Instruct (Guo et al., 2024) on the
APPS+ dataset to exclude the effect of training
data. The detailed description of these baselines is
discussed in Appendix B.2.

Implementation Details. During the SFT phase,
we adopt a learning rate set at 2>, conduct train-
ing for three epochs, and employ a warm-up period
of 0.3 epochs, with a linear decay to zero. The fine-

tuning process was conducted on a device with
eight NVIDIA A100 80G GPUs, with the global
batch size set to 64. In the PPO training phase,
we employ a learning rate of 5e~7 for the policy
model and 1.5¢~% for the critic model. For each ex-
ample, we collect a 16 roll-out code using nucleus
sampling. The sampling temperature is set to 0.8,
top-p is set to 0.9, and the maximum output token
length is set to 1024. The token-level KL penalty
coefficient 3 is set to 0.05, with a clip value of 0.8.
In the decoding phase, the temperature and top-p
are set to 0.2 and 0.95, respectively.

Evaluation & Metric. Our experiments and
reward collection for reinforcement learning (RL)
methods are conducted using Python3.x. Following
prior studies (Roziere et al., 2023; Luo et al., 2023b;
Le et al., 2022), we use Pass@k (Chen et al., 2021)
metric to evaluate all the models. Pass@k quan-
tifies the proportion of instances in which at least
one of the k-generated code solutions per human
requirement successfully passes all unit tests. Code
generation prompts are detailed in Appendix D.

4.3 Experimental Results on APPS+

To assess the performance of widely used LLMs
and our StepCoder on code generation, we con-
duct experiments on the APPS+ dataset that we
constructed. APPS+ was categorized into three
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difficulty levels: Introductory, Interview, and Com-
petition. The experimental results are illustrated in
Table 1. The results indicate that RL-based models
outperform both base models and SFT models. It
is reasonable to infer that reinforcement learning
can further enhance the quality of code generation
by more effectively navigating the model’s output
space, guided by compiler feedback.

Furthermore, our StepCoder surpasses all base-
line models including other RL-based approaches,
achieving the highest score. Specifically, our ap-
proach obtains 59.7%, 23.5%, and 8.6% in the
‘Introductory’, ‘Interview’, and ‘Competition’, re-
spectively. Our approach excels in exploring the
output space compared to other RL-based methods,
achieved by simplifying complex code generation
tasks to code completion sub-tasks. We also found
that the performance of StepCoder is better than
LLM which supervised fine-tuning on the APPS+
dataset based on the same backbone. The latter did
little to improve the pass rate of the generated code
compared with the backbone. This also directly
demonstrates that the method of using compiler
feedback to optimize the model improves the qual-
ity of the generated code better than next-token
prediction in code generation.

Models (6.7B) HumanEval MBPP
DeepSeek-Coder-Instruct 78.0 64.2
SFT on APPS+ 55.5 54.8
Vanilla PPO 78.0 65.0
PPOCoder 76.8 63.8
RLTF 76.8 65.2
StepCoder (Ours) 78.7 67.0

Table 2: Results of pass@1 on MBPP and HumanEval.
We evaluate the LLMs’ performance on code generation
in a zero-shot learning setting. In this setting, the models
are fine-tuned on our proposed APPS+ dataset and tested
for their ability on MBPP and HumanEval.

4.4 Ablation Studies

To investigate the impact of individual components
in StepCoder, we conducted ablation experiments
with two variations of our approach, including Step-
Coder only with CCCS and only with FGO, as
shown in Table 1. Experimental results demon-
strate that both components of our approach im-
prove the quality of the generated code compared
to vanilla PPO. CCCS can enhance its performance
in addressing Competition-level problems. This im-
provement is logical, considering that CCCS effec-
tively simplifies the exploration of more complex

human requirements. Simultaneously, FGO boosts
the pass rate of unit tests by integrating compiler
feedback with the relevant executed code snippet.

800
I with MBPP

700 [ with HumanEval

600 -

Number of tasks
w B w
o o o
o o o
: ’ ’

200 A

100 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of lines duplicated

Figure 3: Analysis of duplicated lines between APPS+
and the two benchmarks. The overlap of data between
APPS+ and them is very small. Only 0.2% and 7.1%
had more than half of their lines matched somewhere in
MBPP and HumanEval, respectively.

4.5 Results on MBPP and HumanEval

To further demonstrate the effectiveness of our
method, we conducted comparative analyses
of StepCoder against various approaches using
the well-recognized benchmarks MBPP and Hu-
manEval. These models are trained on APPS+ and
then evaluated on MBPP and HumanEval. The ex-
perimental results are illustrated in Table 2 which
shows that StepCoder is superior over all other
models on both benchmarks.

However, there are concerns regarding potential
overlaps in the training data between APPS+ and
the two benchmarks, which might contribute to an
improvement in performance. To address these con-
cerns, we analyze the difference between APPS+
and the benchmarks by calculating the code line
overlap ratio of two corresponding canonical solu-
tions following previous work (Austin et al., 2021;
Le et al., 2022). The findings are presented in Fig-
ure 3. This evidence underscores our approach’s
effectiveness in enhancing the quality of generated
code and its capability across a broad spectrum of
code generation tasks, primarily by improving the
exploration problem in reinforcement learning.

Meanwhile, our findings revealed a significant
degradation in the performance of the SFT model
on both MBPP and HumanEval benchmarks. Fur-
ther analysis of the error cases showed that a minor-
ity were related to function name errors, while the
majority were associated with program correctness
errors. This also indicated that SFT on a single

4577



dataset may impair the ability to follow instruc-
tions and the ability to generalize, thus affecting
the performance of code generation on other tasks.
In contrast, RL-based methods can improve the
performance for unseen tasks of code generation.

Compile Error Runtime Error & Failure

0.6 Deepseek-instruct 70
—~05 Vanilla PPO 60
X StepCoder (Ours)
© 0.4 50
o

40
203
] 30
9]
502 20
a
0.1 10

0
Intro Inter Comp All Intro Inter Comp All

Figure 4: Analysis by unit test results on APPS+. The
results are categorized into CompileError (Reward = -1)
and Runtimeerror & Failure (Reward = -0.6 or -0.3).

4.6 Analysis by Unit Test Results

We further analyzed the results of cases that did not
pass all unit tests, as shown in Figure 4. The results
show that our method can effectively reduce the
likelihood of compilation errors, which is particu-
larly evident in Interview-level and Competition-
level programming problems. However, it was also
observed that all LLMs are more prone to runtime
errors and failures as compared to compilation er-
rors, albeit StepCoder shows a comparatively lower
rate of runtime errors and failures. These results
demonstrate that StepCoder is less prone to com-
pilation errors, but still suffers from runtime errors
and failure. These findings suggest that future re-
search should further focus on minimizing runtime
errors to improve code quality and pass rates.

5 Related Work

Large Language Models for Code Generation.
Recently, pre-trained language models have shown
remarkable ability in understanding natural lan-
guage and code generation by training on large
text corpora containing code data (Christopoulou
etal., 2022; Li et al., 2023b). In addition, SFT mod-
els achieve more competitive performance such as
StarCoder (Li et al., 2023a), WizardCoder (Luo
et al., 2023b), Code Llama Instruct (Roziere et al.,
2023), and DeepSeek-Coder (Guo et al., 2024).
Reinforcement Learning is a method of learn-
ing the optimal policy by exploring the environ-
ment and obtaining rewards (Williams, 1992; Sut-
ton et al., 1998). Recently, some researchers have
introduced RL to LLMs and improved the qual-
ity of the generated code by utilizing the unit test
feedback to explore the output space of the pol-

icy model. For instance, CodeRL (Le et al., 2022)
leverages unit test signals for rewards and employs
actor-critic methods (Konda and Tsitsiklis, 1999;
Sutton et al., 1999) to enhance models on code gen-
eration. PPOCoder (Shojaee et al., 2023) refines
CodeRL by employing the PPO algorithm (Schul-
man et al., 2017) and RLTF (Liu et al., 2023) pro-
vides fine-grained rewards through the error loca-
tions, but the reward space is still sparse. However,
the exploration of complex tasks in an environment
characterized by a sparse reward is challenging,
limiting the effectiveness of RL in boosting code
generation model performance

Exploration in Reinforcement Learning. Ex-
ploration is crucial in addressing long sequences
and sparse reward problems (Hao et al., 2023; La-
dosz et al., 2022). In the sequence generation task,
researchers improved exploration by initializing the
policy model using the SFT model (Ouyang et al.,
2022; Shen et al., 2023). Our proposed approach
incorporates similar methods, but additional meth-
ods are necessary to ensure effective exploration,
especially when tackling complex human-driven re-
quirements, where the limited quality of generated
code makes exploration still challenging.

Other notable methods introduce the Process-
Supervised Reward Model to provide step-by-step
rewards for complex sequence generation tasks
such as mathematical reasoning and code gener-
ation (Uesato et al., 2022; Lightman et al., 2023;
Luo et al., 2023a; Ma et al., 2023). However, these
methods require labelling a large preference dataset
to train the reward model. Similar to our approach,
some methods construct a learning curriculum by
initiating each episode from a sequence of pro-
gressively more challenging starting states (Sali-
mans and Chen, 2018; Florensa et al., 2017). In
contrast to our approach, these methods are de-
signed to address the problem of exploration in
other fields, such as gaming and robotic manipula-
tion. Meanwhile, our approach combines software
engineering features to dynamically determine the
starting states through conditional statements and
introduces FGO to enhance fine-grained optimiza-
tion with the coverage information.

6 Conclusion

In this paper, we introduce StepCoder, a novel train-
ing framework via Reinforcement Learning (RL).
StepCoder breaks down complicated exploration
problems to reduce the difficulty of exploring en-
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vironments with sparse rewards while providing
fine-grained optimization. In addition, we also con-
struct a high-quality dataset APPS+, specifically
for code generation. Experiments indicate that our
method can effectively improve the quality of gen-
erated code via RL compared to other approaches.

7 Limitations

In this section, we discuss the potential limitations
of the APPS+ dataset and our proposed method
StepCoder. Firstly, while the APPS+ dataset we
developed stands as a vital resource for code gener-
ation tasks, we only provided three manually veri-
fied unit tests for each instance (i.e., the same unit
test number with MBPP) due to time and man-
power constraints. We plan to increase the number
of unit tests in the future, aiming for an average of
over 10 unit tests per instance. Secondly, despite
our method’s outstanding performance by breaking
down complicated goals into sub-objectives cur-
riculum and fine-grained optimization, it requires
more training time compared to the traditional PPO
algorithm. We expect a more time-efficient method
while generating the higher-quality code. We leave
these problems to future work.
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A Instance of the APPS+ Dataset

We present an example from our APPS+ dataset,
as shown in Figure 5.

B Experiments Setup in Detail

In this section, we elaborate in detail on the base-
lines we compare and the implementation details
of our method.

B.1 Benchmarks

APPS+. We construct the new benchmark
APPS+ by refining the popular benchmark APPS
(Hendrycks et al., 2021). The APPS dataset con-
sists of problems collected from different open-
access coding websites such as Codeforces, Kattis,
and more. Codeforces, Kattis, and more APPS+
was categorized into three difficulty levels: Intro-
ductory (2,850), Interview (4,020), and Competi-
tion (586). The mean length of each problem is
255.3 words, and that of the code is 21.9 lines. On
average, each instance is accompanied by three
unit tests and includes a ‘conditional statement’ at-
tribute representing the start and end position of the
statement in the canonical solution. We randomly
selected about 25% instances (700 Introductory,
1,000 Interview, and 140 Competition) for the val-
idation dataset and another 25% instances for the
test dataset.

MBPP. MBPP (Austin et al., 2021) is a smaller
but common Python code generation benchmark. It
contains 974 instances created by crowd-sourcing
to an internal pool of crowd workers with basic
Python knowledge. The difficulty level of the prob-
lems in this dataset is introductory. Most problems
are often conveyed in a single sentence of natural
language, and each problem consists of a task de-
scription, code solution, and three automated test
cases. We evaluate LLMs in a zero-shot learning
setting which is the same as previous studies (Le
etal., 2022; Shojaee et al., 2023). In this setting, we
fine-tune models only based on the APPS+ dataset
and evaluate them on MBPP.

HumanEval. HumanEval (Chen et al., 2021) is
another extensively used benchmark for evaluating
the ability of code generation. It comprises 164
hand-written Python problems that test language
comprehension, algorithmic thinking, and basic
mathematics. The complexity of these problems
is akin to that of simple software interview ques-
tions. We also evaluate models on the HumanEval
benchmark in a zero-shot learning setting.

B.2 Baselines

StarCoder. StarCoder (Li et al., 2023a) is a 15.5B
parameter model trained on 80+ programming lan-
guages sourced from GitHub, encompassing one
trillion tokens. It undergoes fine-tuning specifically
for 35 billion Python tokens, enabling its profi-
ciency across a diverse set of coding tasks. With an
extended context length of 8K, StarCoder excels
particularly in infilling capabilities.

CodeLlama. CodeLlama (Roziere et al., 2023)
is a collection of pre-trained and fine-tuned genera-
tive text models ranging in scale from 7B to 34B
parameters. CodeLlama comes in three variants:
CodeLlama: base models designed for general
code synthesis and understanding; CodeLlama-
Python: designed specifically to handle the Python
programming language; CodeLlama-Instruct: for
instruction following and safer deployment.

WizardCoder. WizardCoder (Luo et al., 2023b)
is fine-tuned by using a complicated dataset which
is constructed by adapting the Evol-Instruct (Xu
et al., 2023) on code-related tasks, which is a fur-
ther improvement of self-instruct method (Wang
et al., 2022b). It has proven to be highly effective
in code generation by fine-tuning more complex
instruction data.

DeepSeek-Coder. DeepSeek-Coder (Guo et al.,
2024) demonstrates state-of-the-art performance
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Programming Problem Description

def numDistinct(self, s: str, t: str) -> int:\n

----- Examplel-----

Input: S = "rabbbit", T = "rabbit"
Output: 3

Explanation:

----- Example2-----
Input: S = "babgbag", T = "bag"
Output: 5

"""Given a string S and a string T, count the number of distinct subsequences of S which equals T. A subsequence of a string is
a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the
relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not). """

As shown below, there are 3 ways you can generate "rabbit" from S.

Canonical Solution

Unit Test & Meta Data

def numDistinct(self; s, t):

setOft=set(t)
news=""
forchins:

if ch in setOft:

newst=ch

dp=[[1 for i in range(len(news)+1)] for j in range(len(t)+1)]
for j in range(1,len(t)+1):

dp[j1[0]-0

for i in range(len(t)):
for j in range(len(news)):
if t[i]==news[j]:
dp[i+1][j+1]=dp[i][j}+dp[i+1][j]
else:
dp[i+1][j+1]=dp[i+1][j]
return dp[len(t)][len(news)]

"inputs": [
[
"\"rabbbit\"",
"\"rabbit\""
]
1
"outputs": [
3
1
"fn_name": "numDistinct",
"starter_code": "\nclass Solution:\n def numDistinct(self, s: str,
t: str) -> int:\n"

Figure 5: An instance from our APPS+ dataset includes a human requirement (top), corresponding canonical code
(bottom left), metadata, and example cases for unit testing to evaluate the generated code (bottom right). We clean
the APPS dataset (Hendrycks et al., 2021) to provide a more rigorous evaluation and a foundation for training by

RL in code generation.

among open-source code models across various
programming languages. It encompasses a col-
lection of code language models from 1B to 33B
trained from scratch. The training corpus for these
models comprises an impressive 2 trillion tokens
which is the combination of code and natural lan-
guages. Each model is trained to utilize a window
size of 16K, and a fill-in-the-blank task is incorpo-
rated into the training process, which enhances the
models’ capacity to facilitate code completion and
infilling tasks.

PPOCoder. PPOCoder (Shojaee et al., 2023)
initially employs the Proximal Policy Optimiza-
tion algorithm (Schulman et al., 2017) for code
generations. In addition, it integrates discrete com-
piler feedback with syntax and semantics matching
scores between generated code and executable ob-
jectives which reduces the sparsity of the reward
function, thereby providing better guidance for gen-
erating code that aligns more closely with the cor-
rect objectives.

RLTF. RLTF (Liu et al., 2023) features real-time
data generation during the training process and
multi-granularity unit test feedback. Except for the
discrete compiler feedback, it penalizes specific
sections in the code where errors occur through the
error locations from the feedback of unit tests.

C The algorithm of CCCS and FGO

The full algorithm of StepCoder is detailed in Al-
gorithm 1.

D The prompts used for code generation

For DeepSeek-Coder-Instruct (Guo et al., 2024),
we use the same prompt as the previous paper.
Moreover, DeepSeek-Coder-Instruct serves as the
backbone model for PPOCoder (Shojaee et al.,
2023), RLTF (Liu et al., 2023), and our proposed
StepCoder. Consequently, we align the prompts
for these RL-based approaches with the prompt of
DeepSeek-Coder-Instruct to maintain consistency.
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Algorithm 1 StepCoder: Improve Code Generation with Reinforcement Learning from Compiler Feed-
back
Require: the train dataset D = {(x;,y;, ui,e;),1 < i < n}, the threshold value p; for curriculum
training.
Require: the policy model 7y
1: Initialize the stride of curriculum s = |

E;
[VE:]

| for each sample

2: Initialize the current curriculum ¢ = [v/E;] — 1 for each training sample
3: Initialize the pass rate p = 0 for each training sample
4: while TRUE do
5: Initialize mini-batch Dy = {}
6: Get latest policy model my
7: Sample a mini-batch of size M from D
8: foriin0,---,M — 1do > Begin to sample the trajectories
o: Calculate the start position pos = s; * ¢; > CCCS
10 Reorganize the given context :c; = x; + yi [ pos]
11: Sample trajectory 9j; < mg(.|z;)
12: Compute reward r; using Equation 3 '
13: Calculate unexecuted snippets’ mask matrix m;; = [1 if §/ is executed else 0] > FGO
14: Add {x}, s, ui, 74, 8i, ¢i, m; } to mini-batch D
15: end for
16: 0« A(6,Dy) > Update the policy model by PPO algorithm
17: for:in0,---, M — 1do
18: if r; = 1 then > Update pass rate using moving average
19: pi=a+(l—a)*p;
20: else
21: pi=(1—a)xp;
22: end if
23: if p; > p; then > Meet the update conditions, proceed to the next stage
24: pi =10
25: ¢i = min(c; — 1,0)
26: end if
27: end for

28: end while
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The prompt used for other models such as CodeL-
lama, WizardCoder and StarCoder is the same as
in previous studies (Contributors, 2023; Luo et al.,
2023b; Li et al., 2023a; Roziere et al., 2023).

The prompt used for DeepSeek-Coder-Instruct
and LLMs based on it is as follows:
You are an Al programming assistant, utilizing the
Deepseek Coder model, developed by Deepseek
Company, and you only answer questions related
to computer science.
For politically sensitive questions, security and pri-
vacy issues, and other non-computer science ques-
tions, you will refuse to answer.
### Instruction:
write an algorithm in python:
{Task description}
### Response:

E Instances

Here we showcase an instance from the test
dataset to demonstrate the effectiveness of our pro-
posed method. Initially, the original model (i.e.,
DeepSeek-Coder-Instruct-6.7B (Guo et al., 2024))
failed to generate the code that satisfies the human
requirement. On the contrary, after applying the
StepCoder optimization, the model successfully
generates the code according to the human require-
ment. The instance from the test dataset is shown
as Figure 6:

In this instance, the human requirement is that,
given an integer sequence of length n and an in-
teger d, find the length of the shortest non-empty
contiguous subsequence with a sum of elements at
least d. If there is no such subsequence, return —1.
The solution given by the original model has the
following issues:

* Although the second loop attempts to find
whether there is a subsequence that satisfies
the condition, the logic is flawed. For the first
unit test case, despite the existence of a quali-
fying subsequence, the model erroneously re-
turns —1 instead of the correct output, which
is 2.

* The final nested “for” loop aims to identify all
possible subsequence lengths, but this method
does not ensure finding the shortest subse-
quence. This arises because the inner loop
does not check the length of the subsequence
and exits as soon as a satisfying subsequence
is found. As a result, in the second unit test

case, the model fails to output the correct an-
swer (i.e., the output is 5 but the correct an-
swer is 1).

In contrast, the model optimized by Stepcoder
gives the correct output:

* It correctly handles edge cases, reliably out-
putting —1 when no subsequence satisfies the
condition. The underlying logic is clearer and
more concise.

* It checks the subsequence’s length to ensure
finding the shortest one and uses binary search
to achieve a quick search.
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The human requirement.

We simplified the problem to save space. You are given a sequence of n integers al, a2, ..., an and an integer d.
Find the length of the shortest non-empty contiguous subsequence with sum of elements at least d. Formally, you
should find the smallest positive integer k with the following property: there is an integer s (1 < s < N-k+1)

such that as + as+1 + ...

# Unit test case #1
Input:

155

1231-5

Output:

# Unit test case #2
Input: 1

51

1231-5

Output:

1

+ as+k-1 2 d. If there is no such subsequence, return -1.

Generated by DeepSeek-Coder-Instruct-6.7

Generated by PPO model

def vbZre():
T = int(input().strip())
for _ in range(T):
n, d = map(int, input().split())
a = list(map(int, input().split()))

prefix_sum = [@] * (n + 1)
min_len = float('inf’)
min_sum = @

for i in range(1, n + 1):
prefix_sum[i] = prefix_sum[i - 1] + a[i - 1]

for i in range(n, 0, -1):
if prefix_sum[i] >= d:
min_len = min(min_len, i)

if prefix_sum[i - 1] >= d:
min_sum = prefix_sum[i - 1]
break

if min_len == float('inf'):
print(-1)
else:
for i in range(min_len - 1, -1, -1):
if prefix_sum[i] <= min_sum:
min_sum = prefix_sum[i]
else:
break

for k in range(min_len, o0, -1):
for s in range(1, n - k + 2):
if prefix_sum[s + k - 1] - (prefix_sum[s
- 1] if s > @ else @) >= d:
print(k)
return

def vbZre():

T = int(input())
for _ in range(T):
n, d = map(int, input().split())
a = list(map(int, input().split()))

prefix_sum = [@] * (n + 1)
for i in range(n):

prefix_sum[i + 1] = prefix_sum[i] + a[i]

min_length = float('inf’)

for i in range(n):
l1=1i+1
r=n

while 1 <= r:
mid = (L +r) // 2
if prefix_sum[mid] - prefix_sum[i] >= d:
min_length = min(min_length, mid - i)
r=mid - 1
else:
1l =mid + 1

if min_length == float('inf'):
print(-1)

else:
print(min_length)

Figure 6: An instance from the test dataset to demonstrate the effectiveness of our proposed method.
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