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Abstract

Weakly supervised natural language video lo-
calization (WS-NLVL) aims to retrieve the mo-
ment corresponding to a language query in a
video with only video-language pairs utilized
during training. Despite great success, ex-
isting WS-NLVL methods seldomly consider
the complex temporal relations enclosing the
language query (e.g., between the language
query and sub-queries decomposed from it or
its synonymous query), yielding illogical pre-
dictions. In this paper, we propose a novel
plug-and-play method, Intrinsic Multilateral
Logical Rules, namely IMLR, to exploit in-
trinsic temporal relations and logical rules for
WS-NLVL. Specifically, we formalize queries
derived from the original language query as the
nodes of a directed graph, i.e., intrinsic tem-
poral relation graph (ITRG), and the temporal
relations between them as the edges. Instead
of directly prompting a pre-trained language
model, a relation-guided prompting method is
introduced to generate ITRG in a hierarchical
manner. We customize four types of multilat-
eral temporal logical rules (i.e., identity, inclu-
sion, synchronization, and succession) from
ITRG and utilize them to train our model. Ex-
periments demonstrate the effectiveness and su-
periority of our method on the Charades-STA
and ActivityNet Captions datasets.

1 Introduction

Natural language video localization (NLVL) (Gao
et al., 2017; Chen and Jiang, 2019; Xu et al., 2023b;
Wang et al., 2023; Zhang et al., 2023) aims to locate
the temporal interval that semantically corresponds
to a language query in an untrimmed video (Zhang
et al., 2023; Xu et al., 2023a; Lan et al., 2023). Due
to its promising applications in various fields such
as video editing and intelligent surveillance, NLVL
has attracted increasing research interest in the last
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Figure 1: Examples of illogical predictions of start-
of-the-art WS-NLVL methods, i.e., CPL (Zheng et al.,
2022b) and CNM (Zheng et al., 2022a). Ground-truths
and predictions are represented by filled rectangles and
grid lines, respectively. Best viewed in color.

few years. Traditional NLVL models are trained un-
der full supervision (Gao et al., 2017), i.e., the accu-
rate start and end timestamps are utilized for train-
ing. Despite remarkable success, it is extremely
time-consuming and expensive to obtain the bound-
ary annotations. To this end, weakly supervised
natural language video localization (WS-NLVL)
(Mithun et al., 2019) is introduced to reduce the an-
notation cost by utilizing only the video-language
pairs for training.

Early methods of WS-NLVL are based on mul-
tiple instance learning (MIL) (Mithun et al., 2019;
Chen et al., 2022), where each segment of the input
video is treated as an instance and the input video
as a bag of instances. The predictions of instances
are aggregated to form the bag-level prediction. Re-
cently, reconstruction-based methods (Zheng et al.,
2022a,b; Huang et al., 2023; Cao et al., 2023; Lv
et al., 2023; Yoon et al., 2023) are proposed to solve
the task through joint learning with the reconstruc-
tion loss, assuming that the proposal corresponding
to the language query should best reconstruct it.
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Despite great success, existing WS-NLVL meth-
ods directly fuse the video features with word or
sentence-level language features, which seldomly
consider the complex temporal relations enclosing
the language query and thus yield illogical predic-
tions. As the first example shown in Fig.1, given an
untrimmed video and a language query “Person sits
in a chair”, the localization result is supposed to be
identical to that of its synonymous query “Person
sits down on a chair” and be included by that of
its sub-query “Person”. However, as represented
by grad lines in Fig.1, a start-of-the-art WS-NLVL
method CPL (Zheng et al., 2022b) yields predic-
tions far from logical. Fig.1 also presents another
example of a language query “A long curly haired
woman inspecting the blow dryer then drying her
hair looking irritated and bored”. The temporal in-
tervals of its sub-queries, i.e., “A long curly haired
woman inspecting the blow dryer” and “A long
curly haired woman drying her hair looking irri-
tated and bored”, should be temporally successive
and integrated to that of the original language query.
Unfortunately, the existing methods fail to capture
such complex temporal relations.

To tackle the issue above, we propose a novel
framework, dubbed IMLR, to exploit intrinsic tem-
poral relations and logical rules for WS-NLVL.
Concretely, we first propose to understand the com-
plex language query by generating its intrinsic tem-
poral relation graph (ITRG). In this graph, the orig-
inal language query and queries derived from it are
formulated as the nodes while the temporal rela-
tions between them are represented as the edges.
We systematically consider all possible temporal
relations for WS-NLVL and customize four types
of relations with corresponding multilateral tempo-
ral logical rules (MTLRs), i.e., identity, inclusion,
synchronization, and succession. Since it is chal-
lenging to generate ITRG by manually designing
rules or directly prompting (Brown et al., 2020) a
pre-trained language model (LM), we then intro-
duce a relation-guided prompting method to gener-
ate ITRG in a hierarchical manner. Finally, MTLRs
from the graph are utilized to train our model of
boundary-aware transformer. We conduct experi-
ments to integrate our method with two recent WS-
NLVL approaches, i.e., CNM (Zheng et al., 2022a)
and CPL (Zheng et al., 2022b), verifying the ef-
fectiveness and superiority of our method on the
Charades-STA and ActivityNet Captions datasets.

Our contributions can be summarized as follows:

• We propose to exploit intrinsic temporal rela-
tions and customize multilateral logical rules
for WS-NLVL.

• We present a novel framework by first gener-
ating an ITRG via relation-guided prompting
and then leveraging MTLRs from ITRG to
supervise the training of our model.

• We verify the effectiveness and superiority of
our method on the Charades-STA and Activi-
tyNet Captions datasets.

2 Related Works

2.1 Fully Supervised Natural Language Video
Localization

Fully supervised natural language video localiza-
tion (FS-NLVL) methods utilize accurate temporal
boundary annotations for training, which can be
divided into two categories: (1) proposal-based
methods (Gao et al., 2017; Chen and Jiang, 2019)
and (2) proposal-free methods (Yuan et al., 2019;
Chen et al., 2020a; Mun et al., 2020; Chen et al.,
2020b; Xu et al., 2022; Jang et al., 2023; Li et al.,
2023; Zhang et al., 2020a; Wang et al., 2023). To
be specific, proposal-based methods first generate
a set of candidate proposals for a given video and
then select the most relevant one. Since proposal-
based methods need to compare all the proposals
with the language query, their computational costs
are extremely expensive. Therefore, proposal-free
methods are proposed to treat NLVL as a regression
problem and directly predict the time interval.

Despite remarkable success, it is time-
consuming and expensive to obtain the temporal
boundary annotations for FS-NLVL.

2.2 Weakly Supervised Natural Language
Video Localization

Weakly supervised natural language video localiza-
tion (WS-NLVL) (Mithun et al., 2019; Ma et al.,
2020; Huang et al., 2021; Lin et al., 2020; Wu et al.,
2020) is proposed to reduce the expensive cost of
annotating temporal boundary for FS-NLVL. TGA
(Mithun et al., 2019) presents text-guided attention
to highlight video segments relevant to a language
query and obtain a single text-dependent video fea-
ture. The network is trained by minimizing the
distance between the text-dependent video feature
and the language feature. VLANet (Ma et al., 2020)
proposes a video-language alignment network to
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Figure 2: Overall framework of our method. Given an untrimmed video and a language query, we first generate an
intrinsic temporal relation graph (ITRG) by relation-guided prompting. Then, two encoders and a boundary-aware
transformer are employed to predict the keypoint and boundary offsets of the moment. The model parameters are
jointly optimized using temporal relation loss LTR with multilateral temporal logical rules (MTLRs), contrastive
loss LCON , and reconstruction loss LRE .

prune out irrelevant proposals and consider vari-
ous attention flows to learn multi-modal alignment.
CPL (Zheng et al., 2022b) proposes contrastive pro-
posal learning to use multiple Gaussian functions
to generate both positive and negative proposals
from the same video. Huang et al. (Huang et al.,
2023) propose the first self-training-based method
for WS-NLVL, which includes a pair of mutually
learned teacher and student networks with weak
and strong augmentation.

Although great progress has been made, existing
WS-NLVL methods seldomly consider the complex
temporal relations enclosing the language query
and thus yield illogical predictions. In this paper,
we propose a novel plug-and-play method to tackle
the issue.

2.3 Temporal Relation Modeling in Video
There are several works leveraging the temporal re-
lations for video understanding. TRN (Zhou et al.,
2018) proposes to learn and reason about tempo-
ral dependencies between video frames at multiple
time scales for action recognition. TRM (Zheng
et al., 2023) uses phrase-level predictions to refine
the sentence-level prediction for FS-NLVL, where
accurate boundary annotations are utilized to mine
the temporal relations between the phrase and sen-
tence. CRM (Huang et al., 2021) explores the tem-
poral order of different sentences in a paragraph for
WS-NLVL, which is the most relevant work to our
method. However, it requires additional temporal
order annotations for training and is only suitable
for sentences with multiple neighbor sentences in
a paragraph. In contrast, we focus on the intrin-
sic temporal relations within a single sentence and
systematically consider four types of multilateral

temporal relations.

2.4 Prompt-Based Learning

Prompt-based learning (Liu et al., 2023; Brown
et al., 2020; Wei et al., 2022; Li and Liang, 2021;
Yao et al., 2023) is a new paradigm originated
in natural language processing, which aims to
perform prediction tasks by directly prompting a
pre-trained model instead of finetuning a separate
model checkpoint. Brown et al. (Brown et al.,
2020) demonstrate that scaling up LMs greatly im-
proves task-agnostic few-shot performance with-
out any gradient updates or fine-tuning. Chain-of-
thought prompting (Wei et al., 2022) improves the
ability of LMs to perform complex reasoning with
series of intermediate reasoning steps. In this paper,
we introduce relation-guided prompting to generate
ITRG for WS-NLVL, which models the complex
intrinsic temporal relations of a language query.

3 Methodology

Given an untrimmed video V and a natural lan-
guage query Q, NLVL aims to learn a model f
that can predict the time interval I = (ts, te) in
the video corresponding to the language query, i.e.,
f : (V,Q) → I , where ts and te represent the
start and end time, respectively. Different from
FS-NLVL that utilizes accurate temporal bound-
aries {V m, Qm, Im}Mm=1 for training, only video-
language pairs {V m, Qm}Mm=1 are available for
WS-NLVL. Here M denotes the number of sam-
ples in the training set.

Fig.2 shows the overall framework of our
method for WS-NLVL, which consists of relation-
guided prompting, video encoder, language en-
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Figure 3: Two examples of ITRG. Qi represents the index of node in its BFS ordering enumeration and Q0 is the
given language query.

coder, boundary-aware transformer, and mask-
conditioned transformer. Given a language query,
we first propose relation-guided prompting to gen-
erate its intrinsic temporal relation graph (ITRG).
Then the video encoder, language encoder, and
boundary-aware transformer are utilized to predict
the keypoint and boundary offsets of the target
moment. We formalize the multilateral temporal
logical rules (MTLRs) for the temporal relation
loss LTR, which is utilized together with the con-
trastive loss LCON and reconstruction loss LRE to
train our model. In the following, we elaborate the
main components of our method: (1) Definition of
MTLRs, (2) Relation-guided prompting for ITRG
generation, (3) WS-NLVL with MTLRs, and (4)
Training and Inference.

3.1 Definition of MTLRs

Formally, given a complex language query, its
ITRG is a directed graph G. Each node Qi ∈ G rep-
resents a query that is either the original query or a
query derived from it (e.g., its synonymous query
or a sub-query decomposed from it) and the edge
between queries denotes the temporal relation.

Fig.3 shows two examples of ITRG, where we
enumerate the nodes of G with breadth-first-search
(BFS) ordering and Q0 is the given language query.
For a language query Q0 “A group of young people
play field hockey on a field while a man watches
from a fence bordering the playing field”, we
can obtain its synonymous query Q1 “A bunch of
teenagers engage in a game of field hockey on a
grassy area while a man observes from a fence that
runs alongside the playing field”. Moreover, Q0

can be decomposed into two sub-queries that tem-
porally overlap with each other, i.e., Q2 “A group
of young people play field hockey on a field” and
Q3 “A man watches from a fence bordering the

playing field”. In addition, Q4 “A group of young
people” Q5 “A field” and Q6 “A man” Q7 “A fence
bordering the playing field” can be extracted from
Q2 and Q3, respectively. In the second example of
a given language query Q0 “A girl wipes her face
down with a towel and then puts lotion all over her
face”, we can similarly generate its ITRG except
that its sub-queries Q2 “A girl wipes her face down
with a towel” and Q3 “A girl puts lotion all over
her face” temporally occur in succession.

We systematically consider all possible intrinsic
temporal relations for WS-NLVL and customize
four types of relations with multilateral temporal
logical rules (MTLRs) among different language
queries, i.e., Identity, Inclusion, Synchronization,
and Succession.

Definition 1. (Identity) Given an untrimmed
video V , a language query Q, and its synonymous
query Qid, the localization results of Q and Qid are
supposed to be identical with each other:

f(V,Q) = f(V,Qid), (1)

where f denotes the localization model.
Definition 2. (Inclusion) Given an untrimmed

video V , a language query Q, and a noun phrase
query Qnp extracted from Q, the localization result
of Q should be included by that of Qnp:

f(V,Q) ⊆ f(V,Qnp). (2)

Definition 3. (Synchronization) Given an
untrimmed video V , a language query Q, and
sub-queries Qsy1 , · · · , QsyN that are decomposed
from Q and describe events temporally over-
lap with each other, the localization results of
Q,Qsy1 , · · · , QsyN should subject to:

f(V,Q) =
N⋂

n=1

f(V,Qsyn). (3)
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Figure 4: Illustration of relation-guided prompting for generating ITRG. We introdude three types of prompt
templates, i.e., decomposition prompt, identity prompt, and inclusion prompt, to hierarchically generate ITRG.

Definition 4. (Succession) Given an untrimmed
video V , a language query Q, and sub-queries
Qsu1 , · · · , QsuN that are decomposed from Q and
describe events successively happen, the localiza-
tion results of Q,Qsu1 , · · · , QsuN should satisfy:

f(V,Q) =
N⋃

n=1

f(V,Qsun),

f(V,Qsun) ≤ f(V,Qsun+1).

(4)

3.2 Relation-Guided Prompting for ITRG
Generation

Due to the complex nature of the language query in
NLVL, it is challenging to generate ITRG by manu-
ally designing rules. A naive solution is leveraging
the powerful language understanding ability of a
pre-trained LM of by prompting. However, directly
prompting LM with few input-output pairs can not
accurately capture the complex temporal relations
enclosing a query.

To this end, we propose a relation-guided
prompting method to generate ITRG in a hierar-
chical manner. Fig.4 shows the pipeline of our
method. Specifically, we introduce three types of
prompt templates, i.e., decomposition prompt, iden-
tity prompt, and inclusion prompt. The decompo-
sition prompt is utilized to determine whether the
given language query can be decomposed into dif-
ferent sub-queries and list the sub-queries with their
relations if applicable. The identity prompt outputs
the synonymous query of the given language query.
The inclusion prompt extracts the noun phrases
of a query. The results of different prompts are
integrated to generate ITRG.

3.3 WS-NLVL with MTLRs
Encoders. Given an untrimmed video, a language
query, and its ITRG G, we first extract video and
query features using pre-trained models. Specifi-
cally, the video feature V = {v1, v2, · · · , vLV

} ∈
RLV ×DV is encoded with pre-trained 3D convo-
lutional network (Carreira and Zisserman, 2017;
Tran et al., 2015), where LV denotes the num-
ber of segments per video and DV is the dimen-
sion of video segment feature. The query features
{Qi = {wi,1, wi,2, · · · , wi,LQ

} ∈ RLQ×DQ}G−1
i=0

are obtained using pre-trained Glove (Pennington
et al., 2014) model, where LQ, DQ, and G repre-
sent the number of words per sentence, the dimen-
sion of query feature, and the number of nodes in
G, respectively.

Then, the video and query features are embedded
into a common latent space:

V ←WVV, Qi ←WQQi, (5)

where WV ∈ RDH×DV and WQ ∈ RDH×DQ are
the learnable matrices and DH is the dimension of
the latent space.

Boundary-Aware Transformer. We introduce
a boundary-aware transformer to perform multi-
modal interaction and predict the keypoint and
boundary offsets of the moment. To be spe-
cific, a learnable [CLASS] token vcls is added
at the end of the video feature, i.e., V̂ =
{v1, v2, · · · , vLV

, vcls} ∈ R(LV +1)×DH . We fuse
the query features {Qi ∈ RLQ×DH}G−1

i=0 and
V̂ by a dual transformer to obtain the hidden
features {Hi = {h1,i, h2,i, · · · , hLV ,i, hcls,i} ∈
R(LV +1)×DH}G−1

i=0 :

Hi = D(V̂ ,E(Qi)), (6)
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where E and D represent the transformer encoder
and decoder, respectively.

Different from existing methods that directly pre-
dict the center and width of the moment, we pro-
pose to predict the keypoint and boundary offsets
using a prediction head P:

ki, s̃i, ẽi = P(hcls,i), (7)

where ki, s̃i, and ẽi represent the normalized key-
point coordinate, start offset, and end offset, re-
spectively. This models the intrinsic temporal re-
lations of the moment from an architecture per-
spective. The start and end timestamps thus are
si = ki − s̃i and ei = ki + ẽi. The center and
width of the target moment can be re-formulated as
ci = ki + (ẽi − s̃i)/2 and wi = s̃i + ẽi.

After obtaining the predictions of different lan-
guage queries, we apply the MTLRs in Sec.3.1 to
guide the model training. Formally, the identity
loss LID enforces the predicted temporal intervals
of the given language query Q0 to be identical to
that of its synonymous query Qid:

LID = ∥s0 − sid∥2F + ∥e0 − eid∥2F , (8)

where s0, e0 and sid, eid represent the predictions
of Q0 and Qid, respectively. ∥ · ∥F denotes the
Frobenius norm.

The inclusion loss LIN encourages the predic-
tions of Qi to be included by that of a noun phrase
Qnp extracted from it, which can be formulated as:

LIN = E
∀(Qi,Qnp)∈G

[max(snp − si + γ, 0)

+ max(ei − enp + γ, 0)],
(9)

where γ is a hyperparameter.
The synchronization loss LSY is employed to

enforce the predictions of Q0 to be consistent with
the intersection of Qsy1 , · · · , QsyN that are decom-
posed from Q0 and temporally overlap:

LSY = E
∀(Q0,Qsy1,··· ,N )∈G

[∥s0 −max(ssy1,··· ,N )∥2F

+ ∥e0 −min(esy1,··· ,N )∥2F ].
(10)

Moreover, the succession loss LSU is utilized
to model the temporal relations among Q0 and
Qsu1 , · · · , QsuN that are decomposed from Q0 and
successively happen:

LSU = E
∀(Q0,Qsu1,··· ,N )∈G

[∥s0 −min(ssu1,··· ,N )∥2F

+ ∥e0 −max(esu1,··· ,N )∥2F + ∥esun − ssun+1∥2F ].
(11)

Method IoU@0.3 IoU@0.5 IoU@0.7 mIoU

TGA 32.14 19.94 8.84 -
SCN 42.96 23.58 9.97 -
CTF 39.8 27.3 12.9 27.3
BAR 44.97 27.04 12.23 -
LoGAN 51.67 34.68 14.54 -
VLANet 45.24 31.83 14.17 -
CRM* 53.66 34.76 16.37 -
VCA 58.58 38.13 19.57 38.49
LCNet 59.60 39.19 18.87 38.94
RTBPN 60.04 32.26 13.24 -
Huang et.al. 69.16 52.18 23.94 45.20
SCANet* 68.04 50.85 24.04 -
CCR 68.59 50.79 23.75 44.66

CNM (ori.) 60.04 35.15 14.95 38.11
CNM (rep.) 59.31 35.37 14.91 38.01

CNM+Ours
63.06 36.53 16.45 39.94

(+3.75) (+1.16) (+1.54) (+1.93)

CPL (ori.) 66.40 49.24 22.39 43.48
CPL (rep.) 66.58 49.55 22.88 43.65

CPL+Ours
70.42 51.87 24.67 45.64

(+3.84) (+2.32) (+1.79) (+1.99)

Table 1: Performance comparison with state-of-the-
art methods on Charades-STA. * indicates additional
paragraph-level annotations are utilized.

The overall temporal relation loss LTR is sum-
marized as:

LTR = λ1LID+λ2LIN+λ3LSY +λ4LSU , (12)

where λ1, λ2, λ3, and λ4 are weighting coefficients.

3.4 Training and Inference
We build our method upon two recent WS-NLVL
models, i.e., CNM (Zheng et al., 2022a) and CPL
(Zheng et al., 2022b), that are publicly accessible.
In addition to the temporal relation loss LTR, a
contrastive loss LCON and a reconstruction loss
LRE are also employed for training. To be spe-
cific, LCON is utilized to contrast between positive
and negative proposals while LRE measures the
differences between reconstructed query using pos-
itive proposal and original query. For inference, we
follow the same pipeline as the base methods.

4 Experiments

4.1 Datasets
Following the common practice of previous works
(Mithun et al., 2019; Ma et al., 2020; Zheng et al.,
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Method IoU@0.1 IoU@0.3 IoU@0.5 mIoU

WS-DEC 62.71 41.98 23.34 -
SCN 71.48 47.23 29.22 -
CTF 74.2 44.3 23.6 32.2
CCL - 50.12 31.07 -
BAR - 49.03 30.73 -
CRM* 81.61 55.26 32.19
VCA 67.96 50.45 31.00 33.15
LCNet 78.58 48.49 26.33 34.29
RTBPN 73.73 49.77 29.63 -
Huang et.al. 82.10 58.07 36.91 41.02
SCANet* 83.62 56.07 31.53 -
CCR 80.32 53.21 30.39 -

CNM (ori.) 79.74 54.61 30.26 36.59
CNM (rep.) 80.53 54.77 29.18 36.43

CNM+Ours
83.91 55.97 31.90 38.14

(+3.38) (+1.20) (+2.72) (+1.71)

CPL (ori.) 79.86 53.67 31.24 -
CPL (rep.) 79.46 52.27 29.93 35.93

CPL+Ours
82.67 54.01 30.57 37.68

(+3.21) (+1.74) (+0.64) (+1.75)

Table 2: Performance comparison with state-of-the-art
methods on ActivityNet Captions. * indicates additional
paragraph-level annotations are utilized.

2022a,b), we evaluate the proposed method on
two public datasets: ActivityNet Captions (Krishna
et al., 2017) and Charades-STA (Gao et al., 2017).

ActivityNet Captions. The ActivityNet Cap-
tions dataset contains 37,417, 17,505, and 17,031
video-language pairs for training, validation, and
testing, respectively. The average length of lan-
guage queries and the average duration of videos
are 13.48 words and 117.6 seconds, respectively.
We use the validation set for evaluation since the
testing set is not publicly available.

Charades-STA. The Charades-STA dataset is
built on Charades dataset for NLVL. It contains
12,408 and 3,720 video-language pairs for training
and testing, respectively. The average length of
language queries and the average duration of videos
are 8.6 words and 29.8 seconds respectively.

4.2 Evaluation Metrics

We follow previous works (Zheng et al., 2022a;
Huang et al., 2023) to utilize IoU@n and mIoU to
measure the performance of WS-NLVL:

IoU@n is referred to as the percentage of test
samples whose top-1 Intersection over Union (IoU)

with ground-truth (GT) is higher than n. We report
n = {0.1, 0.3, 0.5} for the ActivityNet Captions
dataset and n = {0.3, 0.5, 0.7} for the Charades-
STA dataset in our experiments.

mIoU denotes the mean IoU of all test samples.

4.3 Implementation Details

For data pre-processing, we follow previous works
(Zheng et al., 2022b; Huang et al., 2023; Yoon
et al., 2023) to use pre-trained C3D (Tran et al.,
2015) and I3D (Carreira and Zisserman, 2017)
models to extract video features for the ActivityNet
Captions and Charades-STA datasets, respectively.
Glove (Pennington et al., 2014) is employed to
extract word features of the language query. We
set the maximum description length to 20 and the
maximum number of segments per video to 200.
The vocabulary sizes for the ActivityNet Captions
and Charades-STA datasets are 8,000 and 1,111,
respectively. Moreover, we prompt Phi-2 1, a pub-
licly available LM, to generate the ITRG.

Our approach is implemented with Py-
Torch (Paszke et al., 2019) and optimized by
ADAM (Kingma and Ba, 2014) optimizer with a
learning rate of 0.0004. γ in Eq.9, λ1, λ2, λ3 and
λ4 in Eq.12 are determined by the grid search and
set to 0.15, 20, 20, 10, and 10, respectively. For
the base models, we use the hyperparameters from
their official implementation 23.

4.4 Comparisons with the State-of-the-Art

We compare our method with the following state-
of-the-art ones: TGA (Mithun et al., 2019), WS-
DEC (Duan et al., 2018), SCN (Lin et al., 2020),
CTF (Chen et al., 2020c), BAR (Wu et al., 2020),
VLANet (Ma et al., 2020), RTBPN (Zhang et al.,
2020b), LoGAN (Tan et al., 2021), CRM (Huang
et al., 2021), VCA (Wang et al., 2021), LCNet
(Yang et al., 2021), CNM (Zheng et al., 2022a),
CPL (Zheng et al., 2022b), Huang et al. (Huang
et al., 2023), SCANet (Yoon et al., 2023), and CCR
(Lv et al., 2023). Notably, it is unfair to directly
compare CRM and SCANet with other methods
since they requires additional paragraph-level an-
notations for training.

Tab.1 and Tab.2 present the results on the
Charases-STA and ActivityNet Captions datasets,
respectively. We integrate our method with two
most recent WS-NLVL models that release their

1https://huggingface.co/microsoft/phi-2
2https://github.com/minghangz/cpl
3https://github.com/minghangz/cnm
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Method IoU@0.3 IoU@0.5 IoU@0.7 mIoU

Base Model 66.58 49.55 22.88 43.65
+BAT 68.14 50.63 24.38 44.79
+ITR 69.02 51.03 24.54 45.04
+BAT+ITR 70.42 51.87 24.67 45.64

Table 3: Effectiveness of each component of our method.
BAT and ITR represent the boundary-aware transformer
and intrinsic temporal relation, respectively.

Method IoU@0.3 IoU@0.5 IoU@0.7 mIoU

Base Model 68.14 50.63 24.38 44.79
+LID 69.11 51.05 24.18 45.12
+LIN 69.52 51.68 24.64 45.36
+LSY 70.72 51.08 24.50 45.33
+LSU 70.33 50.89 24.53 45.13

Table 4: Gain of each type of temporal logical rule.

source codes, i.e., CNM and CPL. CNM (ori.) and
CPL (ori.) denote the results reported in their origi-
nal papers, while CNM (rep.) and CPL (rep.) rep-
resent our reproduced ones. As shown in the tables,
our method can largely improve the performances
of the base models and even outperform those with
additional annotations used during training.

4.5 Ablation Study

Effectiveness of each component of our method.
We perform an ablation study to investigate the
effectiveness of each component of our method.
Four variants of our model are compared: (1) Base
Model, (2) +BAT, (3) +ITR, and (4) +BAT+ITR.
To be specific, Base Model directly predicts the
center and width of the target moment utiliz-
ing the contrastive loss LCON and reconstruc-
tion loss LRE . +BAT denotes the method with
a boundary-aware transformer, which predicts the
keypoint and boundary offsets. +ITR represents
the method trained with intrinsic temporal relation
modeling, i.e., additional temporal relation loss
LTR. +BAT+ITR is our full model with both the
boundary-aware transformer and intrinsic temporal
relation modeling.

Tab.3 shows the results of different models on
the Charades-STA dataset. Adding both the BAT
and ITR can improve the base model by a large mar-
gin, e.g., 1.56% and 2.44% in terms of IoU@0.3.
The best performance is obtained when they are
simultaneously utilized, verifying the effectiveness
of the components of our method.

Method IoU@0.3 IoU@0.5 IoU@0.7 mIoU

VLSNet 70.46 54.19 35.22 50.02
+LTR 72.40 56.54 36.51 51.93

Table 5: Generality of our method.
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(a) Traditional Prompting

(b) Relation-Guided Prompting (Ours)

Figure 5: Comparison between our relation-guided
prompting and traditional few-shot prompting.

Gain of each type of temporal logical rule. We
customize four types of multilateral temporal logi-
cal rules (i.e., identity, inclusion, synchronization,
and succession) and utilize them to train our model.
In this experiment, we investigate the influence of
them and present the results on the Charades-STA
dataset in Tab.4. Each type of relation can signifi-
cantly improve the performance of the base model,
verifying their effectiveness.

Effectiveness of the relation-guided prompt-
ing. We propose relation-guided prompting to gen-
erate ITRG in a hierarchical manner. To verify
its effectiveness, in this experiment, we compare
our method with traditional few-shot prompting
(Brown et al., 2020) that directly prompts LM us-
ing a few input-output pairs (20 prompts in our ex-
periment). We present an example in Fig.5. Given
a language query “A girl wraps the rope around her
saddle while others practice on placed saddles.”,
traditional prompting fails to decompose it into syn-
chronous sub-queries while our method can suc-
cessfully capture the complex intrinsic temporal
relations.

Generality of the method. We focus on the WS-
NLVL task since it requires only video-language
pairs for training and thus is more suitable for
real-world scenarios. To investigate the gener-
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Figure 6: Qualitative results on the Charades-STA (top)
and ActivityNet Captions (bottom) datasets.

ality of our method, we integrate our method
with a fully-supervised method, VSLNet (Zhang
et al., 2020a). Tab.5 shows the results on the
Charades-STA dataset, verifying the generality of
our method.

4.6 Qualitative Results

We present some qualitative results in Fig.6. Our
method can improve the performance of both
the CPL and CNM models. In addition, our
method yields more logical predictions than both
the base models, demonstrating the effectiveness of
boundary-aware transformer and intrinsic temporal
relation modeling.

5 Conclusion and Discussion

In this paper, we propose to exploit intrinsic tempo-
ral relations and multilateral logical rules for WS-
NLVL. Language queries derived from the given
one are formalized as the nodes of a directed graph
and the temporal relations between them as the
edges. We introduce relation-guided prompting
to hierarchically generate the graph by leveraging
a pre-trained LM. Four types of multilateral tem-
poral logical rules (i.e., identity, synchronization,
succession, and inclusion) are customized to guide
the training of our models. Extensive experiments
on the Charades-STA and ActivityNet Captions
datasets demonstrate the effectiveness and superi-
ority of our method.

Limitations. Since only the video-language
pairs are available during training, the performance

of our method is still lag from several state-of-the-
art fully supervised approaches trained with accu-
rate annotations.
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