
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 4477–4494
August 11-16, 2024 ©2024 Association for Computational Linguistics

Graph Language Models

Moritz Plenz
Computational Linguistics

Heidelberg University
plenz@cl.uni-heidelberg.de

Anette Frank
Computational Linguistics

Heidelberg University
frank@cl.uni-heidelberg.de

Abstract

While Language Models (LMs) are the
workhorses of NLP, their interplay with struc-
tured knowledge graphs (KGs) is still actively
researched. Current methods for encoding such
graphs typically either (i) linearize them for em-
bedding with LMs – which underutilize struc-
tural information, or (ii) use Graph Neural Net-
works (GNNs) to preserve the graph structure –
but GNNs cannot represent text features as well
as pretrained LMs. In our work we introduce
a novel LM type, the Graph Language Model
(GLM), that integrates the strengths of both ap-
proaches and mitigates their weaknesses. The
GLM parameters are initialized from a pre-
trained LM to enhance understanding of in-
dividual graph concepts and triplets. Simul-
taneously, we design the GLM’s architecture
to incorporate graph biases, thereby promot-
ing effective knowledge distribution within the
graph. This enables GLMs to process graphs,
texts, and interleaved inputs of both. Empirical
evaluations on relation classification tasks show
that GLM embeddings surpass both LM- and
GNN-based baselines in supervised and zero-
shot setting, demonstrating their versatility.1

1 Introduction

Knowledge Graphs (KGs) are essential for or-
ganizing vast data, to facilitate information re-
trieval, or revealing hidden insights for decision-
making (Plenz et al., 2024). KGs excel in explicitly
representing manifold relationships, so with an ex-
panding wealth of information they become crucial
tools in the digital age.

Many KGs consist of knowledge triplets, where
nodes are entities and edges represent relationships
holding between them. Each triplet represents a
fact in pseudo-natural language, e.g., (Thailand;
Capital; Bangkok) in DBpedia (Auer et al., 2007).
Despite the (usual) simplicity of each individual

1https://github.com/Heidelberg-NLP/
GraphLanguageModels

Figure 1: The GLM inherits its architecture from a
Graph Transformer, and its parameters from a LM. This
enables it to jointly reason over graphs and language.

triplet, complex structures emerge in KGs. We
refer to such KGs as Graphs of Triplets (GoTs).

To use GoTs effectively, we need meaningful
encodings of their components. A natural choice
is leveraging LMs, as they can capture the seman-
tics of textually encoded entities, relations or entire
triplets. But LMs are not prepared to capture graph-
structured information and cannot model complex
interactions in a GoT. To alleviate this problem,
one can leverage graph NNs (GNNs). But GNNs
are not well suited to capture meanings associated
with text, and hence often LMs are used to convert
nodes (and possibly edges) to language-based se-
mantic embeddings. But in such settings, semantic
encoding leveraged from LMs and structural rea-
soning performed by GNNs are separated and are
driven by distinct underlying principles. We expect
this to limit model performance if both textual and
structural information are important for a task.

In this work we introduce a Graph Language
Model (GLM) that resolves this tension through
early fusion of textual and structural information.
Most LMs today are transformers. Since transform-
ers operate on sets, Positional Encoding (PE) is
used to inform them about the inherent sequential
ordering of linguistic inputs. In our GLM formu-
lation, we modify PE and self-attention to convert
LMs (i.e., sequence transformers) to graph trans-
formers that natively operate on graphs, while pre-
serving their LM capabilities. Usually, a new archi-
tecture requires pretraining from scratch, which is

4477

https://github.com/Heidelberg-NLP/GraphLanguageModels
https://github.com/Heidelberg-NLP/GraphLanguageModels

extremely costly. By adopting some non-invasive
changes in the LM’s self-attention module, we
transform the LM to a Graph Transformer (GT) –
while maintaining compatibility with its pretrained
LM parameters. When encoding a graph, LM-like
attention patterns process linearly organized textual
information of individual triplets, while GT-like at-
tention patterns aggregate information along the
graph structure. Hence, the GLM inherits text un-
derstanding of triplets from the LM, while its GT
architecture allows it to directly perform structural
reasoning, without additional GNN layers.

Importantly, for text sequences – which can be
seen as a special type of graph – the GLM is iden-
tical to the original LM. This allows the GLM to
process interleaved inputs of text and GoT jointly,
handling both modalities in a single framework.

Our main contributions are: (i) We propose
Graph Language Models (GLMs) and a theoret-
ical framework to construct them. GLMs are
graph transformers, which enables graph reason-
ing. Simultaneously, they inherit and exploit LM
weights, enabling them to represent and contextu-
alize triplets in a GoT. Further, by encoding texts
and graph components alike, it can naturally take
graph and text data as interleaved inputs. (ii) Ex-
periments on relation classification in ConceptNet
subgraphs show that GLMs outperform LM- and
GNN-based methods for encoding GoTs – even
when the inherited LM parameters are not updated
during GLM training. (iii) KG population experi-
ments on Wikidata subgraphs and corresponding
Wikipedia abstracts show that GLMs can reason
over interleaved inputs of GoTs and text – again,
outperforming strong LM-based methods.

2 Related Work

LMs One way to augment LMs with knowledge
from KGs (Pan et al., 2024) is to formulate pretrain-
ing objectives that operate on a KG. E.g., LMs can
be trained to generate parts of a KG, encouraging
the LM to store KG content in its parameters. Typi-
cally, single triplets are used for pretraining (Bosse-
lut et al., 2019; Wang et al., 2021; Hwang et al.,
2021; West et al., 2023). In such cases, the graph
structure is not a target of pretraining. Some works
generate larger substructures, such as paths or lin-
earized subgraphs (Wang et al., 2020a; Schmitt
et al., 2020; Huguet Cabot and Navigli, 2021). In
either case, the LM needs to memorize the KG, as
it will not be part of the input during inference.

Another approach is to provide the linearized
KG as part of the input during inference. This
is common for KG-to-text generation (Schmitt
et al., 2020; Ribeiro et al., 2021; Li et al., 2021),
where models learn to take the linearized (typi-
cally small-sized) graphs as input. A recent trend
is retrieval augmented generation, where relevant
parts of a knowledge base, or KG, are retrieved,
linearized and provided as part of a prompt (Gao
et al., 2024).2

In both options the graph must be linearized to fit
the input or output of a sequence-to-sequence LM.
Hence, no graph priors can be enforced – instead,
the LM has to learn the graph structure implicitly.
By contrast, GLMs model a graph as a true graph
and have inductive graph priors instilled in their
architecture. This prepares a GLM for more profi-
cient graph reasoning, compared to a LM approach.

GNNs LMs excel at representing single triplets,
but struggle with structural reasoning. To alleviate
this problem, LMs can be combined with GNNs.
Many approaches get node and edge features from
LMs and aggregate this information in the graph
with GNNs (Lin et al., 2019; Malaviya et al., 2020;
Zhao et al., 2023). Zhang et al. (2022); Yasunaga
et al. (2022) train models consisting of a LM and a
GNN that encode interleaved text and graph inputs
jointly. They also use a LM to obtain node features.

While some approaches jointly train for textual
understanding and graph reasoning, none offer a
unified method. By contrast, our GLM formulation
seamlessly integrates both in a holistic framework
for embedding language and KGs.

Graph Transformers GTs, a special type of
GNN (Bronstein et al., 2021), gain popularity in
NLP and beyond (Min et al., 2022; Müller et al.,
2023). E.g., Koncel-Kedziorski et al. (2019) and
Wang et al. (2020b) train GTs to generate text from
KGs and AMRs, respectively. Most relevant to our
work is Schmitt et al. (2021), who use GTs for KG-
to-text generation. Similar to us, they employ PE
matrices, but train their model from scratch, which
limits its applicability: while their model trained on
WebNLG (Gardent et al., 2017) has a vocabulary
size of 2,100, initializing a GLM from T5, equips
it with T5’s full vocabulary of 32,128 tokens.

Concurrently, and independently from our work,
Li et al. (2024) also convert a LM to a graph trans-
former. They focus on data-to-text generation,

2Cf. www.llamaindex.ai and www.langchain.com

4478

www.llamaindex.ai
www.langchain.com

where they unify table, key-value and KG struc-
tures in a unified graph format, and apply structure-
enhanced pre-training to support data-to-text gen-
eration with their structure-enhanced transformer
model. They apply attention maps similar to ours to
better capture the graph-structured input, which the
pre-trained model rewrites into natural language.
Contrary to their work, we do not resort to structure-
enhanced pre-training – which is restricted in re-
sources – but instead assess the GLMs’ innate ca-
pabilities. We showcase the versatility of the inher-
ited LM parameters in conjunction with our graph
transformer architecture, by applying them to chal-
lenging reasoning tasks, where the model needs to
reason over complementary inputs from text and
graphs, and where it needs to infer information not
present in the input, unlike data-to-text generation.
Moreover, we demonstrate that our architectural
changes are highly compatible with the original
LM weights, via linear probing experiments, where
the GLM outperforms conventional LM and Graph
Transformer models.

3 Preliminary: Graph Transformers (GT)

This section briefly introduces graph transformers,
focusing on architectural choices relevant for our
work. We also discuss some general properties of
GNNs that motivate our design choices in §4.

The attention in self-attention can be written as

softmax
(
QKT

√
d

+BP +M

)
V, (1)

where Q, K and V are the query, key and value ma-
trices, and d is the query and key dimension. The
BP and M matrices can be used for positional en-
coding and masking. Setting BP = M = 0 yields
the standard formulation (Vaswani et al., 2017).

Positional Encoding The self-attention mecha-
nism of transformer models is permutation invari-
ant, i.e., it doesn’t have any notion of the order of
its input elements. Thus, positional Encoding (PE)
is used to inform LMs of the ordering of tokens in a
text (Dufter et al., 2022). Most approaches employ
either absolute PE, where absolute token positions
are encoded (Vaswani et al., 2017; Gehring et al.,
2017) or relative PE, which encodes the relative
position between pairs of tokens (Shaw et al., 2018;
Raffel et al., 2020; Su et al., 2021; Press et al.,
2022). Absolute PE is typically combined with the
input sequence and hence, the PE does not need to
be encoded in self-attention (BP = 0). For relative

PE, BP encodes a bias depending on the relative
distances between pairs of tokens – for example,
by learning one scalar for each possible distance:

BP = f(P), (2)

where P is a matrix of relative distances and f(·)
an elementwise function.

Similarly, GTs use PEs to encode the structure of
the input, and hence, their PE has to encode a graph
structure, as opposed to a sequence. This can again
be done with absolute or relative PEs. However,
defining an “absolute position” of a node or edge in
a graph is not straightforward. While many meth-
ods exist, they are not directly compatible with the
usual (absolute) “counting position” known from
sequence encoding in LMs. In this work we thus
focus on relative PE. Given a directed acyclic path
in a graph, we can define the (signed) distance be-
tween any pair of nodes along a path simply as the
number of hops between the nodes. The sign can
be set by the direction of the path. Thus, by find-
ing a consistent set of such paths in §4, we obtain
relative distances and hence the graph’s PE.

Masked Attention In a vanilla transformer, self-
attention is computed for all possible pairs of to-
kens in the input. By contrast, nodes typically only
attend to adjacent nodes in GNNs. Therefore, infor-
mation between more distant nodes has to be prop-
agated across multiple GNN layers. For graphs,
such sparse message passing approaches are some-
times preferred, as in most graphs the neighbor-
hood size increases exponentially with increasing
radius, which can cause loss of information due
to over-smoothing (Chen et al., 2020). Thus, in
GTs it can be beneficial to introduce graph priors,
for example by restricting self-attention to local
neighborhoods. This can be realized by setting ele-
ments of M to 0 for pairs of tokens that should be
connected, and to −∞ otherwise.

On the other hand, it has been shown that a
global view of the graph can enable efficient, long-
ranged information flow (Alon and Yahav, 2021;
Ribeiro et al., 2020). We will therefore present two
model variants in §4 – a local and a global GLM.

4 Graph Language Model

GLM vs. GT We aim to design an architecture
that can efficiently and jointly reason over text and
graph-structured data. GTs can offer desired graph
priors, but they lack language understanding.

4479

black
poodle

dog

animal

cat

IsA

IsA

IsA

(a) Original GoT.

black poodle is a dog is a

animal

cat is a

-1

-2

-3

-4

+1

+2
+3

0

G2G G2G G2G

(b) Extended Levi graph of GoT (with relative distances P for dog).

Figure 2: Example of graph preprocessing in our GLM. Fig 2b shows relative distances for dog, i.e., when dog is
attending to other tokens. The red Graph-to-Graph (G2G) connections only exist for the gGLM, not for the ℓGLM.

One intuitive approach to bridge this gap is to
pretrain a GT from scratch (Schmitt et al., 2021).
But pretraining is costly and the necessary data
bound to be scarce. We thus take a different av-
enue. We hypothesize that for reasoning over GoTs
a model needs language understanding capabilities
similar to those used for reasoning over text. Intu-
itively this should be the case, since (i) GoTs are
designed to be understandable by humans and (ii)
literate people can “read” and understand GoTs.

By initializing a GT with parameters from a com-
patible LM, we obtain our Graph Language Model
(GLM). The GT architecture introduces graph pri-
ors, while parameter initialization from the LM
gives it language understanding capabilities. In the
following we explain the necessary modifications
to the input graph and to the model, to make this
work. The general idea is that (verbalized) triplets
should resemble natural language as much as pos-
sible to enable LM weights to capture them, while
graph reasoning should work via message passing.

Graph preprocessing A LM tokenizer converts
text into a sequence of tokens from the LM vo-
cabulary. Similarly, we process GoTs, such that
the GLM can process the graphs “as a LM would
do” (cf. Fig. 2). To achieve this, we first convert
the GoT to its so-called Levi graph (Schmitt et al.,
2021), i.e., we replace each edge with a node that
contains the relation name as text feature, and con-
nect the new node to the head and tail of the original
edge via unlabeled edges, preserving the direction
of the original edge. Next, we tokenize each node
and split each node into multiple nodes, such that
every new node corresponds to a single token. New
edges connect adjacent nodes, again preserving the

Figure 3: Relative position matrix P for tokens in
Fig. 2b. Entries with G2G have no relative position
(ℓGLM) or are initialized from +∞ (gGLM). Cf. §A.

original direction. This yields the extended Levi
graph (see Fig. 2b). In this representation, each
triplet is represented as a sequence of tokens – just
as it would be for a standard LM.3

Positional Encodings As discussed in §3, we
prefer PEs that encode the relative position between
pairs of tokens, determined by their signed distance.
We can directly adopt this method to encode the
relative position between pairs of tokens occurring
within the same triplet – by simply considering the
triplet as a piece of text, and counting the token dis-
tance in this text. Note that a single token can occur

3Note that the token sequence of the converted GoT is
not necessarily perfectly identical to the token sequence that
corresponds to the input triplets. We tokenize each node in the
Levi graph individually, to ensure consistent tokenization of
concepts shared by multiple triplets. This removes whitespace
between concepts and edges, which impacts tokenization. We
leave investigation of the impact of this effect to future work.

4480

in multiple triplets, leading to, e.g., multiple “left-
hand side neighbors” (cf. animal in Fig. 2b and 3).
While this does not occur in ordinary sequential
text, it does not impose a problem for relative PE.

Yet, the approach above breaks when tokens do
not belong to the same triplet. To determine the
distance between such pairs of tokens, previous
work considered, e.g., the length of the shortest
path between them (Schmitt et al., 2021). However,
this results in PEs that do not come natural to a LM,
since a triplet would appear in reversed order, if it
is traversed in “the wrong direction” in the shortest
path.4 We therefore omit structure-informed PE
between tokens that do not belong to the same
triplet and instead propose two GLM variants: a
local (ℓGLM) and a global (gGLM) one.

Local and global GLM Fig. 3 shows the relative
token position matrix P for the graph in Fig. 2b.
In the ℓGLM the self-attention mechanism is re-
stricted to tokens from the same triplet. This means
that attention to any token located beyond the local
triplet is set to 0 – and hence does not require PE.
Still, in such configurations, messages can propa-
gate through the graph across multiple layers, since
tokens belonging to a concept can be shared by mul-
tiple triplets. This is analogous to standard message
passing in GNNs, where non-adjacent nodes have
no direct connection, but can still share information
via message passing. For example, the representa-
tion of dog is contextualized by the triplets black
poodle is a dog and dog is a animal after the first
ℓGLM layer. Hence in the second layer, when an-
imal attends to dog, the animal embedding gets
impacted by black poodle, even though there is no
direct connection from animal to black poodle.

However, it has been shown that a global view
can have benefits (Ribeiro et al., 2020). Hence, we
also formalize the gGLM, as an alternative where
self-attention can connect any node to every other
node. For this setting we need to assign a PE to
any pair of tokens, including those that do not oc-
cur within the same triplet. For these pairs we
introduce a new graph-to-graph (G2G) relative po-
sition. LMs don’t have learned parameters for G2G
connections, so we initialize the parameters with
the corresponding parameters of a relative posi-
tion of +∞. In a LM a relative position of +∞
means that the respective tokens occur somewhere
“far” away in a remote text passage. LMs learn a

4For example, cat would see the graph as the following
sequence: cat is a animal a is dog a is poodle black.

proximity bias during pretraining, i.e., they tend to
have higher attention scores between tokens that
are close to each other in the text. This means that
tokens with a high relative distance tend to have low
attention scores. For our gGLM this corresponds to
a graph bias where distant nodes are less important,
but are still accessible.5 Note that unlike in the
ℓGLM, this bias is not part of the architecture. It
originates from the pretrained parameters, meaning
that the gGLM can learn to attend to distant tokens.

Along with P and M , the GLM takes a sequence
of all tokens in the extended Levi graph as input.
For this, we technically need to “linearize” the
graph. However, the order of tokens in the result-
ing sequence does not matter: relative positions in
P are determined by distances in the graph, not in
the sequence. Permuting the input sequence simply
means that rows and columns of P and M need
to be permuted accordingly, but the resulting to-
ken embeddings remain unchanged. See example
matrices for P and M for ℓGLM and gGLM in §A.

Being transformers, GLMs have the same com-
putational complexity as their respective LM. For
sparse graphs the ℓGLM could make use of sparse
matrix multiplication, making it more efficient than
a corresponding LM or gGLM. However, for our
experiments this was not necessary.

Joint graph and text encoding If we use normal
matrices for P and M , the GLM is identical to its
underlying LM. Hence, GLMs can be applied to
texts and – more interestingly – interleaved inputs
of text and graph. In this joint setting, P and M
each consists of four sub-matrices that correspond
to self-attention between tokens from (i) graph-to-
graph, (ii) text-to-text, (iii) text-to-graph and (iv)
graph-to-text. Graph-to-graph sub-matrices are for-
matted as described above for ℓGLM and gGLM,
respectively. Text-to-text sub-matrices are standard
matrices from conventional sequence transformers.
We introduce new T2G and G2T relative positions
for text-to-graph, and graph-to-text connections,
respectively. With this, the model can learn interac-
tion strength between the two modalities. Similar
to G2G in gGLM, we initialize T2G and G2T pa-
rameters from +∞. See example matrices in §A.

Uni- and Bidirectional LMs If a LM’s self-atten-
tion is unidirectional, information can only prop-
agate along the direction of arrows in Fig. 2b for

5Preliminary experiments showed that initializing G2G pa-
rameters from +∞ outperforms random initialization, which
outperforms initialization from 0.

4481

the ℓGLM. This means that, e.g., the representation
of the node black poodle is independent of the rest
of the graph. We could augment the graph with in-
verse relations to enable bidirectional information
flow with unidirectional LMs, but in this work, we
restrict our analysis to bidirectional models.

T5 We use T5 (Raffel et al., 2020) – a bidirec-
tional encoder with unidirectional decoder – as base
LM to instantiate GLMs. In T5, relative distances
in P group into so-called buckets, and each bucket
maps to one learned positional bias in BP for each
head. Positional biases are shared across layers.
The decoder is not needed to encode graphs, but
can be used to generate sequences, such as text or
linearized graphs in future work.

5 Experiments

We assess the GLMs’ capabilities for embedding
GoTs in two experiments on relation (label) classi-
fication, i.e., classifying which relation belongs to
a given head and tail entity. One experiment uses
ConceptNet (CN; Speer et al., 2017) subgraphs
that we construct to enable analysis of the impact
of structural graph properties. In a second experi-
ment on Wikidata (Vrandečić and Krötzsch, 2014)
subgraphs and associated Wikipedia abstracts we
test GLMs on interleaved inputs of text and graph.

5.1 Representing and reasoning over Graphs

We construct a balanced dataset of English CN
subgraphs consisting of 13,600 train, 1,700 dev
and 1,700 test instances with 17 distinct relations
as labels. We replace the relation to be predicted
with <extra_id_0>, T5’s first mask token.

To investigate the impact of varying graph com-
plexities, we experiment with different graph sizes
denoted by their radius r. We ensure that small
graphs are strict subgraphs of larger graphs, such
that potential performance gains in larger graphs
must stem from additional long-ranged context.

To evaluate model effectiveness when long-
ranged connections are crucial, we mask complete
subgraphs around the relation to be predicted. The
size of a masked subgraph is m, where m = 0
means no mask, m = 1 masks neighboring con-
cepts, m = 2 masks neighboring concepts and the
next relations, etc. We replace each masked con-
cept and relation with a different mask token. Con-
struction details and statistics are shown in §B.1.1.

5.1.1 Experimental setup
The input to our model is a CN subgraph. The rela-
tion to be predicted is replaced with <extra_id_0>.
The GLM encodes the graphs as in §4, producing
an embedding for each token. A linear classifica-
tion head gives the final prediction from the mask’s
embedding. We verbalize unmasked relations using
static templates (Plenz et al., 2023), shown in §B,
Table 4.

In a finetuning setting we train the GLM and
the classification head jointly. However, since the
GLM is initialized from a LM, we hypothesize that
it should produce meaningful embeddings, even
without any training. To test this hypothesis, we
train only the classification head, i.e., we only train
a linear probe. In this setting, the GLM was never
trained on any graph data, similar to a zero-shot set-
ting. The linear probe only extracts linear features
and hence, can only achieve high performance if
the GLM embeddings show expressive features.

We report mean accuracy across 5 different runs.
See §B.1.2 for hyperparameters. Unless stated oth-
erwise, we use T5-small to allow many baselines.

5.1.2 Baselines
We compare to several baselines inspired by related
work. For all baselines we utilize the T5 encoder
as underlying LM. This allows us to focus on the
architectural design of different model types.

LM For LM-based approaches we linearize the
input graphs to a sequence, by concatenating the
verbalized triplets. There are structured ways to
linearize graphs, but such graph traversals gener-
ally require the graph to be directed and acyclic –
which makes them inapplicable to linearizing GoTs.
Instead, we order the triplets either randomly (T5
set) or alphabetically (T5 list). For T5 set, triplets
are shuffled randomly in every training epoch such
that the model can learn to generalize to unseen or-
derings. The concatenated triplets are passed to the
T5 encoder, and the embedding of <extra_id_0>
is presented to the classification head.

GNN For GNN baselines we encode each node of
the original graph (cf. Fig. 2a) with the T5 encoder,
and train a GNN using these static embeddings.
After the final layer, the GNN returns 17 logits
for each node. As final logits, we take the mean
logit of the two nodes adjacent to the relation to be
predicted. We experiment with different variants as
GNN layers: GCN (Kipf and Welling, 2017) and
GAT (Veličković et al., 2018). Since GNNs do not

4482

Model
r 1 2 3 4 5 4 4 4 4 4
m 0 0 0 0 0 1 2 3 4 5

L
in

.P
ro

b. ℓGLM 55.4±0.3 57.1±0.3 56.8±0.6 56.9±0.4 57.0±0.4 30.4±0.4 17.8±0.2 14.0±0.3 11.4±0.5 11.9±0.3
gGLM 55.4±0.3 58.6±0.7 58.8±0.6 59.3±0.7 59.5±0.4 41.8±0.8 25.6±0.9 22.0±0.6 19.4±0.5 17.0±0.2

T5 (list) 53.7±0.3 56.8±1.1 56.5±1.2 55.8±0.6 55.3±0.5 20.3±0.6 19.9±0.4 15.3±0.6 14.0±1.1 10.2±1.2
T5 (set) 53.1±0.6 52.8±1.2 54.6±0.6 53.9±0.5 53.1±0.8 18.2±0.6 16.7±0.5 13.1±0.7 12.3±0.6 9.7±0.9

Fi
ne

tu
ni

ng

ℓGLM 64.0±1.3 64.0±1.0 64.4±0.7 64.1±0.9 64.2±1.1 47.9±0.4 26.8±0.8 23.8±0.9 19.8±1.1 18.1±0.7
gGLM 63.2±0.9 64.4±1.1 64.6±1.2 64.1±1.3 65.3±0.7 48.0±0.6 27.2±0.7 24.2±0.7 20.2±1.4 19.2±0.7

T5 (list) 64.9±1.0 64.9±1.2 64.9±1.3 63.9±0.9 64.0±0.6 40.4±0.8 21.8±0.8 17.8±1.0 15.4±0.3 12.8±0.5
T5 (set) 63.9±0.7 65.8±0.8 64.0±0.3 64.1±1.2 64.3±1.1 40.3±1.2 21.8±0.7 18.0±0.6 15.5±0.6 13.1±0.7

GCN 44.3±0.9 37.1±1.0 34.4±1.2 36.5±0.6 36.8±1.4 22.2±1.2 21.9±0.8 12.1±3.5 9.0±4.3 5.9±0.0
GAT 44.5±0.9 40.6±1.3 36.3±1.3 37.0±0.8 37.0±0.8 20.0±0.7 20.8±0.2 14.0±0.6 13.8±0.8 11.0±0.6
ℓGT 24.2±3.4 35.0±1.2 34.7±1.3 32.7±2.9 34.5±2.8 30.1±2.6 12.8±2.4 15.5±0.3 9.5±1.3 10.0±1.6
gGT 27.6±1.9 29.0±0.8 23.4±1.2 19.2±1.2 15.6±1.5 18.6±0.7 13.2±1.1 14.5±0.6 12.4±1.3 12.1±1.7

Table 1: Relation label classification accuracy on CN in %. Results are shown for Linear Probing and Finetuning.

come with pretrained weights, we only apply them
in finetuning, when training all parameters.

Graph transformer Finally we compare GLMs
to models with the same architecture, but random
weight initialization (normal graph transformers).
This allows us to assess the impact of weight initial-
ization from a LM with two further baselines: ℓGT
and gGT. We only consider GTs with finetuning.

5.1.3 Results
Linear probing Tab. 1 shows the relation label
prediction accuracy for linear probing, i.e., when
training only the classification head. Our first ob-
servation is that gGLM is consistently the best,
outperforming ℓGLM and the LM baselines. For a
radius of r = 1 we have exactly one triplet, which
has almost the same representation in the GLM and
LM approaches. The only difference is that the LM
baselines have an end-of-sentence token, which the
GLM does not have. Surprisingly, not having the
end-of-sentence token seems to be an advantage
with linear probing, but we will see later that this
changes when updating model weights.

For r ≥ 3, LM baselines show decreasing per-
formance with increasing radii. By contrast, both
ℓGLM and gGLM show increasing performances
with increasing radii. This indicates that GLMs can
utilize the additional context. But LM baselines
don’t have any inbuilt methods to grasp distances
in the graph, which could cause them to fail at dis-
tinguishing relevant from less relevant information.

The performance gap between gGLM and LM
models tends to increase for larger m, i.e., when
larger sub-structures are masked. However, the
ℓGLM underperforms for large m, highlighting the
advantage of the global view in gGLM when long-
ranged connections are necessary.

The overall high performance of GLMs confirms
our assumption that GLMs are compatible with LM
weights, even without any training. Increasing per-
formance with increasing radii further shows that
GLMs have good inductive graph biases. When
long-range connections are relevant, the represen-
tations learned by gGLM outperform the locally
constrained ℓGLM – which showcases the strength
of the global view that the gGLM is able to take.

Finetuning Tab. 1 shows results when training
all parameters. In this setting, models can adjust
to the task and learn to reason over graphs through
parameter updates. In addition, GLMs can tune pa-
rameters to better match the novel input structure.

The GLM and LM variants are consistently bet-
ter than GNN and GT methods, which indicates
that linguistic understanding is potentially more
important than graph reasoning for this task. Mod-
els outperform their linear probing scores, which
shows that finetuning is, as expected, beneficial.

Overall, the GLMs perform best, while GTs per-
form the worst. The only difference between the
two model groups is weight initialization – the
GLMs are initialized from T5, while the GTs are
randomly initialized. Further, we observe that for
r ≥ 1 and m = 0 the local GT (ℓGT) significantly
outperforms its global counterpart gGT. For the
GLM the global version is on par, or even better
than the local one. This shows the effectiveness of
T5’s attention mechanism: thanks to its weight ini-
tialization, gGLM attends to relevant tokens even
in large context windows, while gGT suffers from
potentially distracting long-ranged information.

For m = 0 the differences between GLM and
LM approaches are small, with a slight trend for
GLMs to outperform LMs on large graphs, and vice
versa for small graphs. However, when graph rea-

4483

(a) Relation label classification.

(b) Source classification.

Figure 4: KG population test results during training.
gGLM outperforms T5 set by up to 6 points in 4a.

soning is more important due to masking (m ≥ 1),
then GLMs consistently and significantly outper-
form all other baselines. This indicates that LMs
can learn to do simple graph reasoning through
parameter updates, but underperform in more com-
plex graph reasoning tasks where either graphs are
larger, or long-ranged connections are required.

For m ≥ 1, the gGLM outperforms ℓGLM due
to its global connections. In contrast to the lin-
ear probing setting, the ℓGLM outperforms other
baselines for all non-zero levels of masking. This
indicates that ℓGLM can learn to use long-ranged
information during training, if the task requires it.

Impact of model size To investigate the effect of
model size, we train the most promising approaches
(GLM and LM) in 3 different sizes. Tab. 6 in §B.1.3
shows that overall larger models perform better.
Surprisingly, the base models sometimes outper-
form the larger models for settings that require
more graph reasoning, i.e., larger m. However,
these differences are small and non-significant. In
most cases, gGLM large or base are the best model.

5.2 Jointly representing Graph and Text
We now investigate GLM capabilities to process
interleaved inputs of text and graph in a KG popu-
lation setup, i.e., extending a KG with new relation
instances. Subtask 1 performs text-guided rela-
tion classification where some relations may be
inferrable from the text, while others may exploit
graph knowledge to make predictions. In Subtask
2, models classify the source of a predicted rela-
tion, i.e., whether it can be inferred from the text, or
whether it requires (additional) graph knowledge.

We construct our data from Huguet Cabot and
Navigli (2021), who offer a corpus of Wikipedia ab-
stracts that are linked to Wikidata via entity linking.
Their focus is relation extraction, so they filter the
graphs using NLI, such that all triplets are entailed
by the text. We augment the entailed triplets with
further triplets from Wikidata that are not entailed
by the text. For a given text, subgraph, head and
tail entity, models will jointly predict the relation
and the source. We adopt the 220 most common re-
lations in our train graphs and a “no-relation” label.
For source labels we have 3 classes: entailed by the
text, not entailed and no-relation. No-relation is
the correct label iff the relation is also no-relation.
§B.2.1 shows statistics and construction details.

5.2.1 Experimental setup and baselines
Unlike §5.1.1, models now receive text and graph
data as input. We train two distinct classification
heads on the mask’s embedding for relation and
source classification. While the mask is part of the
graph, its embedding depends on both modalities.
The final loss is the sum of the relation classifica-
tion and the source prediction loss, weighted by 0.9
and 0.1. We use T5-large, but otherwise baselines
are as in §5.1.2. §B.2.2 shows the training details.

5.2.2 Results
Fig. 4 and Tab. 8 show test set performance for a)
relation and b) source classification, at different
training stages. gGLM performs the best overall,
followed by ℓGLM. LM baselines are competitive,
but lag behind at early stages and for source predic-
tion. Again, GT baselines perform poorly, showcas-
ing the advantage of weight initialization in GLM –
even with large-scale training data. For all models,
training plateaus beyond ∼ 500k seen instances (cf.
Fig. 8 in §B.2.3), so we stop training at this cut-off.

Tab. 2 gives results for ablating different input
modalities to GLMs. Since source prediction al-
ways requires text input, we test relation classifi-

4484

Ablation
Relation classification Source classification
ℓGLM gGLM ℓGLM gGLM

w/ text & graph 82.63 82.25 83.39 83.21
w/o text -6.22 -5.84 – –
w/o graph -6.05 -5.10 -4.67 -4.49
w/o text & graph -19.62 -19.24 – –

Table 2: Ablations for KG population in macro F1.

cation w/o source prediction. Ablating the text or
graph lowers performance by similar amounts, indi-
cating that GLMs utilize both modalities. Training
curves in Fig. 10 reveal that first, the model almost
exclusively utilizes text data, but quickly learns
to make use of the graph. For textually entailed
triplets, text is more impactful than the graph, and
vice versa for other triplets (cf. Tab. 9). Ablating
graphs lowers source prediction by ∼4.5 points,
which shows that GLMs benefit from graph infor-
mation even for predominantly text oriented tasks.

The results show that GLMs can efficiently rea-
son over interleaved inputs of graph and text, espe-
cially with limited training data. This makes GLMs
a promising new model type for knowledge-intense
NLP tasks, such as KG population or Q&A.

6 Conclusion

We present the Graph Language Model (GLM) – a
graph transformer initialized with weights from a
LM. It excels at graph reasoning, while simultane-
ously encoding textual triplets in the graph as LMs
do, thereby bridging the gap between LMs and
GNNs. GLMs can natively reason over joint inputs
from texts and graphs, leveraging and enhancing
each modality. Experiments show the GLM’s ad-
vantage over LM and GNN based baselines, even
in a linear probing setting. In particular, GLMs
greatly outperform graph transformers. This high-
lights the need for pretrained LM weights, even for
graph reasoning. We therefore advocate GLMs as a
valuable tool for advancing research in embedding
and leveraging knowledge graphs for NLP tasks.

Limitations

While GLMs are designed as general purpose tools
for knowledge-intense NLP tasks, our evaluation is
limited to English knowledge graphs. However, we
explore various types of knowledge graphs (com-
monsense and factual) and tasks (relation classifica-
tion, text-guided relation classification, and source
prediction), broadening our empirical assessment.
Confirming GLMs improved text and graph rea-

soning skills for different languages, domains and
tasks is left for future work.

Our GLM framework supports instantiation from
any LM with relative positional encoding, includ-
ing rotary positional encoding. Comprehensive
comparisons to determine the most suitable models
for the GLM framework remain for future investiga-
tion. Nonetheless, bidirectional LMs are expected
to perform best in the novel framework, because
unidirectional LMs necessitate additional inverse
relations, as discussed in §4.

Ethical considerations

We do not foresee immediate ethical concerns
for our research, as we rely on well-established
datasets. However, even established datasets can
contain undesirable biases which our method could
potentially spread and amplify.

Looking ahead, our focus lies in enriching
knowledge graph integration within language mod-
els, with the aim of enhancing factuality and miti-
gating hallucination. This advancement is expected
to bolster the reliability and controllability of LMs,
leading to positive societal impacts. Furthermore,
LMs relying on knowledge graphs may facilitate
easier maintenance, potentially reducing the need
for frequent retraining of deployed models, thereby
promoting sustainability in NLP practices.

Acknowledgements

We want to thank Letit,ia Pârcălăbescu for provid-
ing feedback on our manuscript.

This work was funded by DFG, the German Re-
search Foundation, within the project “ACCEPT:
Perspectivized Argument Knowledge Graphs for
Deliberation”, as part of the priority program
“RATIO: Robust Argumentation Machines” (SPP-
1999).

References
Uri Alon and Eran Yahav. 2021. On the bottleneck of

graph neural networks and its practical implications.
In International Conference on Learning Representa-
tions.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
Semantic Web, pages 722–735, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.

4485

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2

2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762–4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Michael M Bronstein, Joan Bruna, Taco Cohen, and
Petar Veličković. 2021. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv
preprint arXiv:2104.13478.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and
Xu Sun. 2020. Measuring and relieving the over-
smoothing problem for graph neural networks from
the topological view. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(04):3438–3445.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze.
2022. Position information in transformers: An
overview. Computational Linguistics, 48(3):733–
763.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gen-
eration for large language models: A survey.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Jonas Gehring, Michael Auli, David Grangier, and Yann
Dauphin. 2017. A convolutional encoder model for
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
123–135, Vancouver, Canada. Association for Com-
putational Linguistics.

Pere-Lluís Huguet Cabot and Roberto Navigli. 2021.
REBEL: Relation extraction by end-to-end language
generation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2021, pages 2370–
2381, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. Comet-atomic 2020: On sym-
bolic and neural commonsense knowledge graphs. In
AAAI.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
Generation from Knowledge Graphs with Graph

Transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2284–2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Zhicheng Wei,
Nicholas Jing Yuan, and Ji-Rong Wen. 2021. Few-
shot Knowledge Graph-to-Text Generation with Pre-
trained Language Models. In ACL Findings.

Shujie Li, Liang Li, Ruiying Geng, Min Yang, Binhua
Li, Guanghu Yuan, Wanwei He, Shao Yuan, Can Ma,
Fei Huang, and Yongbin Li. 2024. Unifying Struc-
tured Data as Graph for Data-to-Text Pre-Training.
Transactions of the Association for Computational
Linguistics, 12:210–228.

Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang
Ren. 2019. KagNet: Knowledge-aware graph net-
works for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2829–2839, Hong Kong,
China. Association for Computational Linguistics.

Chaitanya Malaviya, Chandra Bhagavatula, Antoine
Bosselut, and Yejin Choi. 2020. Commonsense
knowledge base completion with structural and se-
mantic context. Proceedings of the 34th AAAI Con-
ference on Artificial Intelligence.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu,
Kangfei Zhao, Wen bing Huang, Peilin Zhao, Jun-
zhou Huang, Sophia Ananiadou, and Yu Rong. 2022.
Transformer for graphs: An overview from architec-
ture perspective. ArXiv, abs/2202.08455.

Luis Müller, Christopher Morris, Mikhail Galkin, and
Ladislav Rampášek. 2023. Attending to Graph Trans-
formers. Arxiv preprint.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Ji-
apu Wang, and Xindong Wu. 2024. Unifying large
language models and knowledge graphs: A roadmap.
IEEE Transactions on Knowledge and Data Engi-
neering (TKDE).

Moritz Plenz, Philipp Heinisch, Anette Frank, and
Philipp Cimiano. 2024. Pakt: Perspectivized argu-
mentation knowledge graph and tool for deliberation
analysis.

Moritz Plenz, Juri Opitz, Philipp Heinisch, Philipp Cimi-
ano, and Anette Frank. 2023. Similarity-weighted
construction of contextualized commonsense knowl-
edge graphs for knowledge-intense argumentation
tasks. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6130–6158, Toronto,
Canada. Association for Computational Linguistics.

4486

https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1609/aaai.v34i04.5747
https://doi.org/10.1162/coli_a_00445
https://doi.org/10.1162/coli_a_00445
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/P17-1012
https://doi.org/10.18653/v1/P17-1012
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/2021.findings-emnlp.204
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.1162/tacl_a_00641
https://doi.org/10.1162/tacl_a_00641
https://doi.org/10.18653/v1/D19-1282
https://doi.org/10.18653/v1/D19-1282
https://api.semanticscholar.org/CorpusID:246904638
https://api.semanticscholar.org/CorpusID:246904638
https://doi.org/10.18653/v1/2023.acl-long.338
https://doi.org/10.18653/v1/2023.acl-long.338
https://doi.org/10.18653/v1/2023.acl-long.338
https://doi.org/10.18653/v1/2023.acl-long.338

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2021. Investigating
pretrained language models for graph-to-text genera-
tion. In Proceedings of the 3rd Workshop on Natural
Language Processing for Conversational AI, pages
211–227, Online. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Yue Zhang, Claire Gardent, and
Iryna Gurevych. 2020. Modeling global and local
node contexts for text generation from knowledge
graphs. Transactions of the Association for Compu-
tational Linguistics, 8:589–604.

Martin Schmitt, Leonardo F. R. Ribeiro, Philipp Dufter,
Iryna Gurevych, and Hinrich Schütze. 2021. Mod-
eling graph structure via relative position for text
generation from knowledge graphs. In Proceedings
of the Fifteenth Workshop on Graph-Based Methods
for Natural Language Processing (TextGraphs-15),
pages 10–21, Mexico City, Mexico. Association for
Computational Linguistics.

Martin Schmitt, Sahand Sharifzadeh, Volker Tresp, and
Hinrich Schütze. 2020. An unsupervised joint sys-
tem for text generation from knowledge graphs and
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7117–7130, Online. As-
sociation for Computational Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, AAAI’17,
page 4444–4451. AAAI Press.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. CoRR, abs/2104.09864.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. International Con-
ference on Learning Representations.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Peifeng Wang, Nanyun Peng, Filip Ilievski, Pedro
Szekely, and Xiang Ren. 2020a. Connecting the dots:
A knowledgeable path generator for commonsense
question answering. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4129–4140, Online. Association for Computational
Linguistics.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin
Jiang, and Ming Zhou. 2021. K-Adapter: Infusing
Knowledge into Pre-Trained Models with Adapters.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 1405–1418,
Online. Association for Computational Linguistics.

Tianming Wang, Xiaojun Wan, and Hanqi Jin. 2020b.
AMR-to-text generation with graph transformer.
Transactions of the Association for Computational
Linguistics, 8:19–33.

Peter West, Ronan Bras, Taylor Sorensen, Bill Lin, Li-
wei Jiang, Ximing Lu, Khyathi Chandu, Jack Hessel,
Ashutosh Baheti, Chandra Bhagavatula, and Yejin
Choi. 2023. NovaCOMET: Open commonsense
foundation models with symbolic knowledge distil-
lation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 1127–1149,
Singapore. Association for Computational Linguis-
tics.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren,
Xikun Zhang, Christopher D Manning, Percy Liang,
and Jure Leskovec. 2022. Deep bidirectional
language-knowledge graph pretraining. In Advances
in Neural Information Processing Systems.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D Manning,
and Jure Leskovec. 2022. GreaseLM: Graph REA-
Soning enhanced language models. In International
Conference on Learning Representations.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian
Liu, Rui Li, Xing Xie, and Jian Tang. 2023. Learning
on large-scale text-attributed graphs via variational
inference. In The Eleventh International Conference
on Learning Representations.

A Model

Fig. 5 shows the matrices P and M for ℓGLM and
gGLM. Fig. 6 shows the same matrices for joint
encoding of text and graph data.

4487

https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.18653/v1/2021.nlp4convai-1.20
https://doi.org/10.1162/tacl_a_00332
https://doi.org/10.1162/tacl_a_00332
https://doi.org/10.1162/tacl_a_00332
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/2021.textgraphs-1.2
https://doi.org/10.18653/v1/2020.emnlp-main.577
https://doi.org/10.18653/v1/2020.emnlp-main.577
https://doi.org/10.18653/v1/2020.emnlp-main.577
https://doi.org/10.18653/v1/N18-2074
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/2020.findings-emnlp.369
https://doi.org/10.18653/v1/2020.findings-emnlp.369
https://doi.org/10.18653/v1/2020.findings-emnlp.369
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.1162/tacl_a_00297
https://aclanthology.org/2023.findings-emnlp.80
https://aclanthology.org/2023.findings-emnlp.80
https://aclanthology.org/2023.findings-emnlp.80
https://openreview.net/forum?id=4NpoSrT8uU-
https://openreview.net/forum?id=4NpoSrT8uU-
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=q0nmYciuuZN
https://openreview.net/forum?id=q0nmYciuuZN
https://openreview.net/forum?id=q0nmYciuuZN

black poodle is a dog is a

animal

cat is a

-1

-2

-3

-4

+1

+2
+3

0

(a) Relative positions P for dog in ℓGLM.

(b) Relative position matrix P for ℓGLM (c) Mask matrix M for ℓGLM.

black poodle is a dog is a

animal

cat is a

-1

-2

-3

-4

+1

+2
+3

0

G2G G2G G2G

(d) Relative position P for dog in gGLM.

(e) Relative position matrix P for gGLM (f) Mask matrix M for gGLM.

Figure 5: Relative positions P and masking M for ℓGLM and gGLM.

4488

(a) Relative position matrix P for ℓGLM. (b) Mask matrix M for ℓGLM.

(c) Relative position matrix P for gGLM. (d) Mask matrix M for gGLM.

Figure 6: Relative positions P and masking M for ℓGLM and gGLM when encoding text and graph jointly. The
example sentence is “The dog chased the cat.”

4489

B Experiments

B.1 ConceptNet

B.1.1 Dataset

We experiment on randomly selected subgraphs
from the largest connected component of the En-
glish part of CN version 5.7 (Speer et al., 2017),
which consists of 125,661 concepts and 1,025,802
triplets. We select 17 distinct relation label classes
(cf. Tab. 4), ensuring sufficient frequency and se-
mantic dissimilarity. For each class, we randomly
sample 1,000 triplets, allowing only cases where ex-
actly one triplet connects the head and tail entities,
to reduce label ambiguity. These 1,000 instances
are split into train (800), dev (100), and test (100).
This creates a balanced dataset of 13,600 train,
1,700 dev, and 1,700 test instances. To predict re-
lation labels, we replace them with <extra_id_0>,
T5’s first mask token. For our experiments, we
replace CN (unmasked) relations with more natural
verbalizations. Tab. 4 shows the static verbalization
for each relation.

During graph construction we control the graph
size, parameterized by the radius r. We start with
a radius of r = 1, when we consider only the two
concepts (head and tail) in the target triplet. To
create a larger graph context, we randomly select 4
adjacent triplets – 2 for the head, and 2 for the tail
entity of the original triplet. A graph with radius
r = 2 is formed by the subgraph spanned by all
entities used in these 5 triplets. For r = 3 we again
randomly select 2 triplets for each of the outer (up
to) 4 entities, yielding (up to) 13 triplets. To avoid
accidentally adding more short-ranged information,
we restrict the new triplets to triplets that actually
extend the radius of the graph. This enables us
to control graph size and complexity, while still
enabling sufficient diversity in the graph structure.
Further, the graphs are created such that graphs for
smaller radii are strict subgraphs of graphs with
larger radii. This ensures that performance changes
with increasing radii are due to long-ranged con-
nections, and not due to potentially different short-
ranged information. Tab. 3 shows structural prop-
erties of CN subgraphs, depending on their radius.

When masking subgraphs, we mask complete
subgraphs of a certain size around the target to
be predicted. The size of the masked subgraph is
denoted by m, where m = 0 means no masking,
m = 1 masks neighboring concepts, m = 2 masks
neighboring concepts and the next relations, and so

on. Formally, m denotes the radius of the masked
graph in Levi representation, which should not be
confused with the extended Levi graph, nor the
normal graph representation. We replace each con-
cept and relation in the masked subgraph with a
different mask token. This in principle enables LM
baselines to internally reconstruct the graph.

B.1.2 Experimental setup and baselines
Tab. 5 shows our hyperparameters. For the GNNs,
we tested different numbers of layers (2, 3, 4, 5),
hidden channel dimensions (32, 64, 128), and non-
linearities (ReLU, leaky ReLU) in preliminary ex-
periments.

B.1.3 Results
Tab. 6 shows performance on CN for different mod-
elsizes.

B.2 Wikidata and Wikipedia

B.2.1 Dataset
Huguet Cabot and Navigli (2021) propose a large-
scale corpus of aligned Wikipedia abstracts and
Wikidata (Vrandečić and Krötzsch, 2014) triplets.
They first extract Wikidata entities from the ab-
stract, and then link these entities with triplets in
Wikidata. They are interested in triplets that are
entailed by the text, so they use a NLI model to
filter out all other triplets. They publicly released
the extracted entities and the filtered triplets.

For our purpose, we are interested in aligned
graphs and texts, but triplets in the graph do not nec-
essarily have to be entailed by the text. Hence, we
find all triplets between the extracted entities using
the Wikidata Query Service.6 From Huguet Cabot
and Navigli (2021) we know which triplets in our
graphs are entailed by the text.

Similar to Huguet Cabot and Navigli (2021) we
consider the 220 most common relations in the train
split as our relation labels. Additionally, we add a
“no-relation” label, yielding 221 relation classes.

For 10% of the graphs we randomly add a new
triplet between previously unconnected head and
tail entity, and the mask token as relation. For these
graphs “no-relation” is the correct relation label.
For the other 90% graphs we replace a random
existing relation with the mask token, while making
sure that (i) the existing relation is in our 220 labels
and that (ii) there is no other triplet connecting
the respective head and tail entities. We remove

6https://query.wikidata.org, accessed in Jan. 2024.

4490

https://query.wikidata.org

Metric r = 1 r = 2 r = 3 r = 4 r = 5

#nodes 2.00 ± 0.00 5.77 ± 0.46 12.28 ± 1.67 23.47 ± 4.33 42.90 ± 9.57
#edges 1.00 ± 0.00 8.25 ± 2.74 19.19 ± 5.33 36.41 ± 9.09 66.06 ± 16.77

mean degree 1.00 ± 0.00 2.87 ± 0.96 3.14 ± 0.82 3.11 ± 0.59 3.08 ± 0.42

Table 3: Structural statistics of ConceptNet (§5.1) train graphs.

Relation Verbalization

U
se

d
as

re
la

tio
n

la
be

l

Antonym is an antonym of
AtLocation is in
CapableOf is capable of

Causes causes
CausesDesire causes desire
DistinctFrom is distinct from

FormOf is a form of
HasContext has context

HasPrerequisite has prerequisite
HasProperty is
HasSubevent has subevent

IsA is a
MannerOf is a manner of

MotivatedByGoal is motivated by
PartOf is a part of

Synonym is a synonym of
UsedFor is used for

N
ot

us
ed

as
re

la
tio

n
la

be
l

CreatedBy is created by
DefinedAs is defined as

Desires desires
Entails entails
HasA has

HasFirstSubevent starts with
HasLastSubevent ends with

InstanceOf is an instance of
LocatedNear is near

MadeOf is made of
NotCapableOf is not capable of

NotDesires does not desire
NotHasProperty is not
ReceivesAction receives action

RelatedTo is related to
SymbolOf is a symbol of

Table 4: Verbalization templates for relations in Con-
ceptNet. The upper part of the relations are the 17
classes in the classification task.

Parameter Value
G

L
M

,L
M

&
G

T

Loss cross entropy loss
Optimizer AdamW
Learning rate 1e−4 (FT) & 5e−3 (LP)
Batchsize 32
Max. # epochs 50
Early stopping criterion dev loss
Early stopping # epochs 5
parameters in small 35B (FT) & 8k (LP)
parameters in base 110B (FT) & 13k (LP)
parameters in large 335B (FT) & 17k (LP)
encoder layers in small 6
encoder layers in base 12
encoder layers in large 24

G
N

N

Loss cross entropy loss
Optimizer AdamW
Learning rate 5e−3
Batchsize 32
Max. # epochs 50
Early stopping criterion dev loss
Early stopping # epochs 5
layers 3
hidden channel dimension 64
non-linearity ReLU

Table 5: Hyperparameters for §5.1. FT stands for fine-
tuning and LP stand for linear probing. “# parameters”
is the number of trainable parameters.

4491

Model
r 1 2 3 4 5 4 4 4 4 4
m 0 0 0 0 0 1 2 3 4 5

ℓGLM
small 64.0±1.3 64.0±1.0 64.4±0.7 64.1±0.9 64.2±1.1 47.9±0.4 26.8±0.8 23.8±0.9 19.8±1.1 18.1±0.7
base 67.6±0.8 69.6±0.9 69.8±0.5 69.8±1.3 69.6±0.7 49.2±0.8 29.3±0.8 24.4±0.3 20.8±0.9 19.6±0.8
large 72.0±1.0 71.4±1.5 72.2±1.0 72.7±0.8 71.5±1.8 48.4±1.1 29.7±1.6 24.8±1.6 20.0±0.9 20.3±0.5

gGLM
small 63.2±0.9 64.4±1.1 64.6±1.2 64.1±1.3 65.3±0.7 48.0±0.6 27.2±0.7 24.2±0.7 20.2±1.4 19.2±0.7
base 67.8±0.7 71.3±1.0 70.5±1.2 71.5±1.1 71.1±0.4 49.7±1.2 30.2±0.8 25.5±0.8 21.4±1.2 20.1±0.2
large 72.1±1.1 73.9±0.7 74.2±0.6 74.8±0.8 73.9±0.7 50.1±0.5 31.9±1.2 24.4±1.5 21.2±0.6 19.6±0.8

T5 list
small 64.9±1.0 64.9±1.2 64.9±1.3 63.9±0.9 64.0±0.6 40.4±0.8 21.8±0.8 17.8±1.0 15.4±0.3 12.8±0.5
base 71.2±0.9 69.5±0.7 69.5±1.0 70.4±1.6 70.4±0.7 40.7±0.9 25.5±1.2 17.8±0.2 16.4±1.3 13.9±0.7
large 74.5±0.4 73.7±0.4 73.5±0.6 73.6±0.8 73.3±1.0 41.2±1.5 27.9±1.0 18.3±0.9 17.0±0.5 13.0±0.9

T5 set
small 63.9±0.7 65.8±0.8 64.0±0.3 64.1±1.2 64.3±1.1 40.3±1.2 21.8±0.7 18.0±0.6 15.5±0.6 13.1±0.7
base 71.2±0.6 69.8±0.6 69.5±0.6 70.1±0.7 69.8±1.4 40.4±0.9 23.9±1.1 18.5±1.1 16.3±0.3 14.3±0.7
large 74.9±0.3 73.0±0.5 73.1±0.8 72.5±1.1 73.5±0.4 41.2±1.3 25.1±1.3 17.4±0.9 15.9±0.5 13.2±0.8

Table 6: Relation label classification accuracy on ConceptNet (§5.1) when training all parameters. Best score per
model family is boldfaced, and best score overall is highlighted in yellow.

Metric train test

#nodes 5.59 ± 3.77 5.60 ± 3.78
#edges 8.71 ± 11.99 8.71 ± 12.01

mean degree 2.66 ± 1.58 2.66 ± 1.58

Table 7: Structural statistics of Wikidata (§5.2) sub-
graphs.

instances where no suitable triplet is available. This
yields a dataset with 2,449,582 train, 135,828 val
and 135,923 test instances.

Fig. 7 shows the label distributions for relation
and source for train and test. Out of the 221 rela-
tions, only 195 and 194 relations occur in the train
and test set, respectively. All relations in the test
set also occur in the train set.

Tab. 7 shows graph statistics. Compared to CN
subgraphs (c.f. Tab. 3) the graphs are relatively
small, matching the size of r = 2. On CN we found
that LMs can perform well on such small graphs,
so we expect that the performance gap between
GLMs and LM baselines on Wikidata would be
larger if Wikidata subgraphs were larger.

B.2.2 Experimental setup and baselines

For these experiments we omit GNNs as a baseline,
since they can’t natively process texts.

The other models all compute an embedding of
the mask token, and then two separate classifica-
tion heads produce predictions for the relations
(221 classes) and the source (3 classes). For each
prediction, we compute the Cross Entropy Loss.
The final loss is the weighted sum of these losses,
weighted by 0.9 and 0.1 respectively. The rela-
tion classification has a higher weight since it has

many more classes and hence, is potentially more
difficult. This means that model parameters are op-
timized for both objectives jointly, while only the
linear classification heads can specialize on their
respective task.

The dataset is unbalanced (c.f. Fig 7), so report
macro F1 scores instead of accuracy. This means
that models only achieve high scores if they per-
form well on all classes, including minority classes.

We assume that classifying one out of 221 rela-
tions requires fine grained text understanding, so
we initialize models from T5-large instead of T5-
small. To reduce computational load, we only train
one model per setting. Further, we enable efficient
batching by restricting inputs to a maximum of 512
tokens. This truncates 2.8% of train instances for
GLMs and 5.1% for LM baselines due to their less
efficient graph encoding.

Hyperparameters are identical to Tab. 5, except
that (i) we reduce batch size to 8, (ii) train for at
most 1 epoch and (iii) don’t use early stopping.

B.2.3 Results
Fig. 8 shows the training curve when training for
an entire epoch, i.e., 2,499,582. We observe that
performances plateau beyond ∼ 0.2 epochs, so we
stop training after 524,288 instances in our other
experiments.

Tab. 8 shows concrete numbers for the models
in Figures 4 and 8.

Fig. 9 shows confusion matrices for source pre-
diction.

Fig. 10 shows the test performance in relation
classification of ablated models during different
training steps. Table 9 shows relation classification
scores for (i) triplets entailed by text and for (ii)

4492

(a) Relation label. (b) Source label.

Figure 7: Label distributions for Wikidata (§5.2) train and test sets.

Model
524,288 train instances 2,449,582 train instances
Relation Source Relation Source

ℓGLM 82.35 83.39 85.06 86.20
gGLM 81.98 83.21 85.28 86.17
T5 list 81.45 82.17 85.36 85.83
T5 set 81.29 82.00 85.04 85.53
ℓGT 3.19 39.81 1.50 37.83
gGT 3.47 39.58 3.40 39.37

Table 8: Macro F1 scores on Wikidata test set for rela-
tion classification and source classification. Scores are
shown for models after training on different numbers of
train instances.

Ablation
Entailed Not entailed

ℓGLM gGLM ℓGLM gGLM

w/ text & graph 85.46 84.85 78.47 78.46
w/o text -8.40 -6.75 -4.57 -4.28
w/o graph -4.56 -3.94 -7.56 -7.55
w/o text & graph -20.52 -19.90 -20.08 -20.07

Table 9: Ablations for KG population (§5.2). Scores are
macro F1 for relation label classification on (i) triplets
that are entailed by the text and (ii) all other triplets.
Models are trained w/o source prediction.

other triplets.

C Usage of AI assistants

We use GitHub Copilot (https://github.com/
features/copilot) for speeding up program-
ming, and ChatGPT 3.5 (https://chat.openai.
com) to aid with reformulations. The content of this
work is our own, and not inspired by AI assistants.

4493

https://github.com/features/copilot
https://github.com/features/copilot
https://chat.openai.com
https://chat.openai.com

(a) Evaluation on train set. (b) Evaluation on test set.

Figure 8: Training curves (§5.2) when training for a whole epoch, i.e., 2,449,582 train instances. Performances are
for relation classification. On the train set we did not compute macro F1, so we report accuracy instead.

(a) ℓGLM. (b) gGLM.

Figure 9: Confusion matrices source prediction on Wikidata (§5.2).

(a) ℓGLM. (b) gGLM.

Figure 10: Ablation of different input modalities to GLMs. All runs are done without source prediction (besides
ℓGLM and gGLM). Scores are for relation classification on Wikidata (§5.2).

4494

