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Abstract

Recent strides in large language models
(LLMs) have yielded remarkable performance,
leveraging reinforcement learning from
human feedback (RLHF) to significantly
enhance generation and alignment capabilities.
However, RLHF encounters numerous
challenges, including the objective mismatch
issue, leading to suboptimal performance
in Natural Language Understanding (NLU)
tasks. To address this limitation, we propose
a novel Reinforcement Learning framework
enhanced with Label-sensitive Reward (RLLR)
to amplify the performance of LLMs in NLU
tasks. By incorporating label-sensitive pairs
into reinforcement learning, our method aims
to adeptly capture nuanced label-sensitive se-
mantic features during RL, thereby enhancing
natural language understanding. Experiments
conducted on five diverse foundation models
across eight tasks showcase promising results.
In comparison to Supervised Fine-tuning
models (SFT), RLLR demonstrates an average
performance improvement of 1.54%. Com-
pared with RLHF models, the improvement
averages at 0.69%. These results reveal
the effectiveness of our method for LLMs
in NLU tasks. Code and data available at:
https://github.com/MagiaSN/ACL2024_RLLR

1 Introduction

Large language models (LLMs) (Achiam et al.,
2023; Chowdhery et al., 2023; Touvron et al.,
2023a) have undergone impressive advancements
that transform NLP tasks into a unified text-to-
text paradigm, achieving robust alignment and gen-
eration capabilities through reinforcement learn-
ing from human feedback (RLHF) (Ouyang et al.,
2022; Bai et al., 2022a). Particularly, models are
required to predict the correct labels in natural lan-
guage understanding (NLU) tasks, distinct from
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Incorrect answer:

The phrase "this 

melancholic film 

noir" conveys a 

sense of deep-

seated 

dissatisfaction... 

The answer is: 

negative

🙅Correct answer:

Referring to the 

film as "special" 

sets a tone of 

admiration, implying 

the movie stands out 

from others...

The answer is: 

positive

🙆

Instruction:

a special kind of movie , this melancholic film noir reminded me a 

lot of memento... What sentiment does the writer express for the 

movie?

🤔

Correct answer:

Describing it as

“a special kind of

movie” and drawing a

comparison to

“Memento”, expresses

a positive...

The answer is:

positive

🙆

Rationale-sensitive Label-sensitive

Figure 1: The example of rationale-sensitive and label-
sensitive pairs from sentiment classification. Highlight
rationales in green and labels in yellow.

natural language generation (NLG) tasks. Numer-
ous studies have employed “rationales” to assist
LLMs with Chain-of-Thought (CoT) prompting
during supervised fine-tuning (SFT) stage (Kim
et al., 2023; Hsieh et al., 2023). Rationale refers to
the relevant parts or information that provide expla-
nations or support for the predictions or decisions
made by a model.

However, Lambert and Calandra (2023) detail a
fundamental challenge in RLHF learning schemes:
the objective mismatch issue. This arises when the
reward model is influenced by human preference
data, introducing biases that conflict with down-
stream evaluation metrics, especially when applied
to NLU tasks. In RLHF, comparison data is ini-
tially sampled from the SFT model and ranked by a
labeler. Then the policy model is optimized against
the reward model that is trained with these pairs
to align with human preference. For NLU tasks,
the pairs can be categorized into rationale-sensitive
and label-sensitive. As illustrated in Figure 1, we
provide an example where three answers sampled
from the SFT model for the same instruction. If
two answers have the same label and different ra-
tionales, they form a rationale-sensitive pair, with
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Figure 2: The distribution of rationale-sensitive and
label-sensitive pairs sampled from SFT model across a
range of tasks.

the more reasonable rationale considered superior.
In contrast, if two answers have different labels,
they form a label-sensitive pair, with the correct
label deemed superior. However, we observed that
the pairs sampled from the SFT model mainly fall
into the category of rationale-sensitive. Figure 2
shows the specific distribution ratios of pairs across
several NLU tasks. The percentage of rationale-
sensitive pairs exceeds 75%, and in datasets like
SST-2, MR, and AGNews, surpasses 90%. The se-
vere imbalance in the distribution of pairs leads the
model to prioritize the quality of rationales over the
correctness of labels during RLHF training, which
conflicts with the evaluation metric (mostly label
accuracy) of NLU tasks. A detailed analysis is
presented in Section 4.2.

To address this challenge, our paper proposes a
Reinforcement Learning framework enhanced with
Label-sensitive Reward (RLLR) for NLU tasks.
Firstly, we leverage GPT-4 to generate rationales
corresponding to the gold labels of the training
data. The SFT model is trained with rationales,
incorporating CoT prompting to enhance compre-
hension abilities. Secondly, we generate rationales
for the incorrect labels (relative to the gold labels).
Unlike RLHF, which uses human intervention to
rank sentences, RLLR automatically constructs
label-sensitive pairs for training the reward model
based on the correctness of the label. The com-
parison data is initially sampled from the trained
SFT model. Finally, we train the policy model
against the label-sensitive reward model with Prox-
imal Policy Optimization (PPO) to prioritize the
correctness of labels. Furthermore, optimizing

with mixed rewards from the label-sensitive and
rationale-sensitive reward models, RLLRMIXED en-
sures both the accuracy of labels and the quality of
rationales. Extensive experiments on eight NLU
tasks demonstrate that our method consistently out-
performs the SFT baseline by an average of 1.54%
and the RLHF baseline by an average of 0.69%,
while also exhibiting higher quality in rationales
generation.

Our contributions are summarized as:
(1) We propose a Reinforcement Learning

framework enhanced with Label-sensitive Reward
(RLLR) for NLU tasks to tackle the objective mis-
match issue.

(2) Optimizing with mixed rewards, RLLRMIXED

can achieve promising performance on both the
accuracy of labels and the quality of rationales.

(3) Through empirical experiments, we demon-
strate the effectiveness of our method. We have
conducted a thorough investigation into various as-
pects, including the utilization of rationales, the
performance of reward models, the quality of gen-
erated rationales and a detailed case study.

2 Related Work

Reinforcement Learning from Human Feed-
back. LLMs have demonstrated commendable
performance, leveraging RLHF to achieve notable
alignment and generation capabilities (Ouyang
et al., 2022; Achiam et al., 2023; Bai et al., 2022a;
Ziegler et al., 2019). RLHF aims to optimize the
policy language model to generate content that
is desired by humans. Recently, some research
endeavors have uncovered inherent challenges in
RLHF (Casper et al., 2023; Lambert et al., 2023),
including feedback type limitations, evaluation dif-
ficulties, oversight challenges, etc. Several meth-
ods have been proposed to mitigate these chal-
lenges. Bai et al. (2022b) introduce RL from AI
Feedback (RLAIF), training an AI assistant through
self-improvement while adhering to constitutional
principles that constrain model-generated content.
Wu et al. (2023) introduce a fine-grained RLHF
framework that uses fine-grained human feedback,
such as identifying false sentences or irrelevant sub-
sentences, as an explicit training signal. Rafailov
et al. (2024) introduced a new parameterization of
the reward model in RLHF that enables extraction
of the corresponding optimal policy in closed form.
This allows us to solve the standard RLHF problem
with only a simple classification loss. Song et al.
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Original example

Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street’s dwindling band
of ultra-cynics, are seeing green again.
Correct label: Business; Incorrect labels: World Politics, Sports, Science and Technology

Prompt for generating rationales for correct label

What label best describes this news article?
Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street’s dwindling band
of ultra-cynics, are seeing green again.
Please give a rationale for the answer “Business” in a confident tone (regardless of the true answer):

Prompt for generating rationales for incorrect label

What label best describes this news article?
Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street’s dwindling band
of ultra-cynics, are seeing green again.
Please give a rationale for the answer “World Politics” in a confident tone (regardless of the true answer):

Table 1: Demonstration of label-sensitive pair generation process on AGNews. First, we generate a rationale for the
correct label “Business”. Then we randomly select an incorrect label “World Politics”, and generate a rationale for
it. The table shows the prompts for requesting GPT-4 to generate corresponding rationales. While we use GPT-4 for
rationale generation, this approach is adaptable to manual annotation or alternative methods.

(2024) proposed Preference Ranking Optimization
(PRO) as an alternative to PPO for directly align-
ing LLMs with the Bradley-Terry comparison to
accommodate preference rankings of any length.
However, these approaches encounter a fundamen-
tal challenge in RLHF learning schemes: the objec-
tive mismatch issue (Lambert and Calandra, 2023).
In this paper, we tackle this problem by training
the reward model with the label-sensitive pairs.

Chain-of-Thought. CoT can significantly im-
prove the complex reasoning ability of LLMs by
generating natural language rationales that lead to
the final answer (Wei et al., 2022; Kim et al., 2023).
Hsieh et al. (2023) introduce a distilling mecha-
nism step-by-step, extracting LLM rationales as
additional supervision for training small models
within a multi-task framework. Fu et al. (2023)
propose a method to specialize the model’s ability
(smaller than 10B) towards a target task with CoT
prompting. In this paper, we enhance the perfor-
mance of LLMs on NLU tasks with CoT prompting
utilizing rationales generated for the labels.

3 Proposed Method

In this section, we introduce the training pipeline
of our method as illustrated in Figure 3, includ-
ing supervised fine-tuning, reward model training,
and reinforcement learning enhanced with mixed
rewards.

3.1 Supervised Fine-Tuning

In NLU tasks, the supervised dataset is denoted as
S = {x, y}, where x denotes the sentence and y
denotes the class label. The unsupervised dataset
is denoted as U , and the foundation model is de-
noted as π. According to Wei et al. (2022), gen-
erating rationales that lead to the final answer can
significantly improve the reasoning ability of LLMs
through CoT. Therefore, we first generate a ratio-
nale from the sentence x and the label y with a
specific prompt template using either human an-
notators or LLMs such as GPT-4. Then we re-
form the original dataset S to the training dataset
T = {q, a}. The question q is constructed by x
with a template and the answer a with t tokens is
obtained by combining rationale and label, denoted
as a = a1,··· ,t. The details of prompts can be found
in Appendix A and B. The foundation model π is
then trained on T to obtain the model πSFT. For-
mally, the loss for supervised fine-tuning is defined
as:

LSFT = −E(q,a)∼T [logPπ (at | q, a1,··· ,t−1)] .
(1)

3.2 Reward Model Training

In the second phase, comparison data are sampled
from the answers generated by the SFT model
πSFT given a question. As illustrated in Figure
2, more than 75% of the pairs generated by the
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Figure 3: The training pipeline of RLLR with supervised fine-tuning, reward model training, and mixed reinforce-
ment learning. Blue arrows indicate data used for model training.

SFT model are rationale-sensitive pairs (i.e., both
answers have the same label). The sentences in
the rationale-sensitive pair are then labeled with
a preference order. In RL, the reward model de-
noted as rϕ assigns higher scores to preferable an-
swers compared with unfavorable ones, employing
the Bradley-Terry paired comparison (Bradley and
Terry, 1952). In this scenario, the model prioritizes
the quality of the generated rationales over the ac-
curacy of the labels. This focus shift results in
less than optimal performance, stemming from the
previously mentioned issue of objective mismatch.

To address this issue, we generate rationales
based on the incorrect label for an input sentence
and combine them to form a new answer. We lever-
age GPT-4 to generate rationales for the correct
label and incorrect label. we generate rationales
for incorrect labels ŷ to create a new answer â,
which is a rationale-augmented incorrect answer.
Along with the correct answer a, we can obtain the
preferences a ≻ â | q for label-sensitive pairs with-
out extra annotation. The process of the rationale-
sensitive pair generation is illustrated in Table 1,
and additional details can be found in Appendix
D. The label-sensitive and rationale-sensitive pairs
are used to train two reward models, respectively.
Specifically, we have a1 ≻ a2 | q to represent the
preference in the pair. To predict these preferences,
we employ the Bradley-Terry (BT) model, which

defines the preference probability as follows:

PBT =
exp

(
rϕ

(
q, a1

))

exp (rϕ (q, a1)) + exp (rϕ (q, a2))
. (2)

This objective is framed as a binary classification
problem to train the reward model rϕ(q, a) with
the loss defined as:

LR = −E(q,a1,a2)∼C
[
log σ

(
rϕ

(
q, a1

)
− rϕ

(
q, a2

))]
,

(3)
where σ is the logistic function and C is the dataset
of comparisons. In this way, we can obtain two
separate reward models rϕ1 and rϕ2 with the label-
sensitive and rationale-sensitive pairs, respectively.
The reward model rϕ(q, a) is often initialized from
the SFT model πSFT(a|q) with the addition of a
linear layer on top of the final transformer layer that
produces a single scalar prediction for the reward
value.

3.3 Reinforcement Learning
During the RL phase, we use the reward model to
train the SFT model πSFT using Proximal Policy
Optimization (PPO) on the unsupervised dataset U .
Given a question constructed by the sentence from
U , the mixed reward function from rϕ1(q, a) and
rϕ2(q, a) is calculated as :

rM(q, a) =

{
rϕ1(q, a) + rϕ2(q, a), if rϕ1(q, a) < λ

λ+ rϕ2(q, a), if rϕ1(q, a) ≥ λ

(4)

4209



where λ is a hyper-parameter as the threshold for
rϕ1 (the label-sensitive reward model). According
to experimental observations, the reward score of
rϕ1 converges to around 5.0, while the score of rϕ2
is within 1.0, resulting in an imbalance between the
two. To prevent reinforcement learning from being
completely dominated by rϕ1, we set a threshold
value λ. When the score of rϕ1 is less than λ, the
combined reward score is the sum of rϕ1 and rϕ2;
when the score of rϕ1 is greater than or equal to
λ, the combined reward score is equal to λ plus
rϕ2. We first optimize the policy based on rϕ1,
focusing on the correctness of the labels. As the
RL training progresses, the score of rϕ1 gradually
exceeds λ. Once the score of rϕ1 surpasses λ, we
truncate it. At this point, the model will pay more
attention to rϕ2, which is the quality of the rationale.
In this way, both rϕ1 and rϕ2 can play a role in
reinforcement learning, allowing the final policy
model to predict the correct labels while generating
high-quality rationales.

To guide the RL training, the loss function is
constructed by combining the rewards generated
by the reward model with a KL divergence con-
straint, which ensures that the policy does not de-
viate significantly from its initial behavior, defined
as:

max
πRL

E(q,a)∼DπRL

[
rM(q, a)− β log

(
πRL(a|q)
πSFT(a|q)

)]
,

(5)
where πRL is the learned RL policy, πSFT is the
SFT model, and β is the KL reward efficient con-
trolling the strength of the KL penalty. RLLRMIXED

is obtained from this objective with two reward
models while RLLR is trained only with the label-
sensitive rationale reward model.

4 Experiments

4.1 Experiment Setup

Datasets. We evaluate the performance of our
proposed method across eight NLU tasks, encom-
passing five from the GLUE benchmark (Wang
et al., 2018). The tasks include Movie Reviews
(MR) (Pang and Lee, 2005), AppReviews (AR)
(Grano et al., 2017) and SST-2 for sentiment clas-
sification, AGNews (Zhang et al., 2015) for topic
classification, MRPC and QQP for paraphrase de-
tection, MNLI for textual entailment, and STS-B
for semantic similarity. We employ the Pearson
correlation coefficient as our evaluation metric for
STS-B, and accuracy for others. To ensure a fair

comparison with baseline methods, we convert all
tasks into a text-to-text format following (Sanh
et al., 2021). For methods that require rationales,
we utilize GPT-4 to generate rationales conditioned
on given labels.

To ensure our model is free from cognitive bi-
ases, we refine our process with GPT-4 through
meticulous manual reviews and prompt template
adjustments. We manually evaluate the annotation
through sampling and designed specific strategies
to filter out data that did not meet our standards.
Several specific challenges have been encountered,
such as GPT-4’s reluctance to justify certain la-
bels, particularly incorrect ones, and discrepancies
between its generated rationales and the assigned
labels. We address these issues by iteratively refin-
ing the prompt template and developing a classifier
to filter out corrupt data. The details regarding the
prompt templates and rationale annotation process
are provided in Appendix A and B.

Baselines. We conduct our experiments using
several state-of-the-art foundation models, includ-
ing LLaMA2 (Touvron et al., 2023b), Baichuan2
(Yang et al., 2023), ChatGLM3 (Du et al., 2021),
Mistral (Jiang et al., 2023), and Bloom (Workshop
et al., 2022). We compare our method with two
prevalent training methods: (1) SFT, which refines
LLMs through optimization against a conditional
language modeling objective on supervised data;
(2) RLHF, which involves training a reward model
on preference data and subsequently employing
this model to guide RL-based fine-tuning. For
RLHF, we utilize GPT-4 for the preference annota-
tion within our experiments. Detailed procedural
information can be found in Appendix C.

Training. To streamline the experimental com-
plexity, we fine-tune the models on a multi-task
dataset, rather than on datasets for individual tasks.
To address the task imbalance issue, we construct
the training set at a maximum of 5,000 samples
per task. The surplus examples are used as unsu-
pervised data for PPO in RLHF and RLLR. This
approach mirrors real-world scenarios where un-
supervised data is abundant, but supervised data
is scarce. We also construct a multi-task test set
comprising up to 1,000 examples from each task
to enhance experimental efficiency without com-
promising validity. The details of the examples are
listed in Table 2. In all experiments, we employ
Low-Rank Adaptation (LoRA) (Hu et al., 2021)
fine-tuning, as opposed to full-parameter tuning,
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Splits / Tasks Unit MR AGNews AR MRPC QQP MNLI SST-2 STS-B ALL

SFT Train Prompts 2,000 5,000 5,000 1,000 5,000 5,000 5,000 5,000 38,000
RLHF-RM Train Pairs 16,740 15,993 12,620 9,683 16,956 15,757 16,475 15,751 119,975
RLHF-PPO Train Prompts 5,000 5,000 4,426 2,668 5,000 5,000 5,000 1,323 33,417
RLLR-RM Train Pairs 12,339 12,349 12,339 8,877 12,318 12,323 12,338 12,317 95,200
RLLR-PPO Train Prompts 5,000 5,000 4,426 2,668 5,000 5,000 5,000 1,323 33,417
Test Prompts 1,000 1,000 1,000 408 1,000 2,000 872 1,000 8,280

Table 2: The number of examples used in experiments.

achieving up to an 80% reduction in GPU memory
requirements. Within the RL-based approaches,
the policy, reward, and value models are equipped
with their own set of LoRA parameters.

We employ 4 V100 GPUs, each with 32 GB of
memory, to train our 7B models. To maintain a con-
sistent batch size across various experiments, we
utilize the gradient accumulation. The Adam opti-
mizer, coupled with a cosine schedule, is used in
all experiments, with a fixed LoRA rank of 16. We
perform a hyperparameter search within a limited
range and observe that the performance exhibits
minimal sensitivity to changes in these hyperpa-
rameters. The ranges for the primary hyperparame-
ters, such as learning rate, batch size, and training
epochs, are detailed in Table 3.

Stage Learning Rate Batch Size Epochs

SFT 1e-5~2e-5 128 20
SFT w. rat. 1e-4~1e-3 128 10
RLHF Reward 2e-4 64~128 10
RLHF PPO 2e-6~1e-5 16~32 1
RLLR Reward 1e-4~1e-3 64~128 1
RLLR PPO 2e-6~1e-5 16~32 1

Table 3: Range of hyperparameters.

4.2 Main Results

Our main experiment results are shown in Table
4. Additional results for models of various sizes
are available in Appendix E. SFT w. rat. and
SFT denote models fine-tuned on supervised data
with and without rationales, respectively. RLHF
denotes models fine-tuned with the standard RLHF
procedure, which predominantly utilizes rationale-
sensitive pairs. RLLR denotes models fine-tuned
using our proposed method, with a reward model
trained on label-sensitive pairs. RLLRMIXED fur-
ther integrates reward models trained on both label-
sensitive and rationale-sensitive pairs. The policy
model is initialized from the SFT w. rat. model in
both RLHF, RLLR, and RLLRMIXED settings.

Comprehensive evaluations across five founda-
tional models and eight NLU tasks reveal that our
RLLR method consistently surpasses the SFT base-
line by an average margin of 1.54%, and the RLHF
baseline by an average of 0.69%. The maximum
average improvement over RLHF was achieved
on Mistral 7B, reaching 1.02%. The enhancement
observed in ChatGLM3 6B, while modest, is still
quantifiable at an increase of 0.38%. RLLR and
RLLRMIXED also achieve the best results on most
individual tasks, except Baichuan2 on AGNews.
However, integrating RLLR with other models con-
sistently yields a performance enhancement on AG-
News, most notably, exceeding the SFT baseline
by 2.9% with Bloom-7B. This substantial improve-
ment robustly validates the efficacy of the proposed
method.

The integration of rationales brings improve-
ment over the vanilla SFT by an average margin
of 0.79%, demonstrating the benefit of rationales.
Despite this improvement, the performance of SFT
w. rat. still lags behind that of RLLR, suggesting
that simply integrating the SFT method with ratio-
nales is insufficient. Moreover, the RLHF baseline
mirrors the performance of SFT w. rat., with no
additional gains, which corroborates the presence
of an objective mismatch issue.

In Section 4.3, we further analyze the influence
of various mechanisms, including the utilization
of rationales, reward modeling objectives, and in-
corporation of multiple rewards in RL fine-tuning.
The RLLRMIXED method achieves on-par perfor-
mance with RLLR, surpassing SFT by an aver-
age of 1.45%, and RLHF by an average margin of
0.60%. However, we further examine its impact
on the quality of rationales, extending our analysis
beyond label accuracy.

4.3 Analysis

Utilization of rationales. Incorporating ratio-
nales into the SFT stage achieves improvement
across 78% of our task-model pairings (35 out of
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Methods / Dataset MR AGNews AR MRPC QQP MNLI(m/mm) SST-2 STS-B AVG.

LLaMA2 7B

SFT 91.00 92.20 69.40 82.11 85.50 83.50/85.10 96.22 89.24 86.03
SFT w. rat. 91.90 92.50 68.70 83.58 87.90 83.50/85.00 96.56 91.83 86.74
RLHF 91.90 93.00 68.50 83.82 87.60 83.60/85.00 96.44 92.02 86.79

RLLR 92.40 93.40 70.10 83.82 88.20 85.10/85.90 96.79 92.31 87.47
RLLRMIXED 92.60 93.50 69.60 84.07 88.00 85.10/85.90 96.79 92.07 87.40

ChatGLM3 6B

SFT 89.00 93.00 68.80 81.37 85.00 81.80/83.90 95.30 89.79 85.33
SFT w. rat. 91.30 93.10 68.20 81.86 84.90 82.80/84.20 95.87 90.10 85.51
RLHF 91.10 93.10 68.90 82.35 85.00 82.80/84.30 95.87 90.14 85.64

RLLR 91.40 93.40 69.10 82.35 85.50 83.60/84.60 95.87 91.12 86.02
RLLRMIXED 91.40 93.40 69.10 82.36 85.70 83.50/84.60 95.87 90.91 85.69

Mistral 7B

SFT 92.10 92.50 70.40 83.58 85.90 84.70/87.50 95.18 91.17 87.00
SFT w. rat. 92.00 92.70 69.40 86.52 86.10 85.40/87.60 96.33 92.06 87.29
RLHF 92.10 92.20 68.70 85.29 88.30 85.40/87.80 96.22 91.83 87.26

RLLR 93.30 93.10 70.60 87.01 88.30 86.60/88.90 96.90 92.32 88.27
RLLRMIXED 92.40 92.70 70.30 86.76 88.70 86.80/88.80 96.67 92.23 88.10

Baichuan2 7B

SFT 90.80 93.40 69.90 81.86 84.90 82.90/84.10 95.64 89.09 85.84
SFT w. rat. 90.70 92.50 69.10 82.35 87.00 84.80/85.00 95.99 91.58 86.19
RLHF 91.20 92.90 68.30 83.09 86.50 84.50/85.30 96.22 91.50 86.25

RLLR 91.30 93.00 70.40 82.84 87.40 85.70/85.80 96.33 91.94 86.82
RLLRMIXED 91.20 93.00 70.50 83.58 87.50 85.50/85.70 96.44 91.81 86.88

Bloom 7B

SFT 89.20 89.80 69.30 76.96 83.40 75.80/78.50 94.38 87.88 82.80
SFT w. rat. 89.50 91.80 69.80 82.60 83.60 76.50/80.70 94.61 88.58 83.92
RLHF 89.70 92.70 69.40 82.11 84.00 77.00/80.00 94.61 88.96 84.01

RLLR 90.10 92.70 70.90 84.07 84.30 77.90/81.30 95.53 89.04 84.83
RLLRMIXED 89.50 92.50 70.40 84.31 84.30 77.80/80.70 94.61 88.95 84.52

Table 4: Experiment results for our methods and baselines, over a range of foundation models and NLU tasks. The
abbreviation “SFT w. rat.” stands for SFT with rationale.

45), aligning with the advancements reported by
(Hsieh et al., 2023; Kim et al., 2023; Fu et al., 2023).
Nonetheless, a comparative analysis between SFT
with RLLR indicates that the mere addition of ra-
tionales to SFT is insufficient. SFT, categorized
under Behavior Cloning within the Imitation Learn-
ing framework, is prone to suffering from com-
pounding errors (Ross et al., 2011). Theoretically,
the minimum expected error for a policy derived
through Behavior Cloning grows quadratically with
the length of the trajectories. Introducing rationales
under this method paradoxically extends trajectory
lengths, exacerbating the issue. In contrast, RLLR,
rooted in Inverse Reinforcement Learning, effec-
tively reduces compounding errors by optimizing
across entire trajectories rather than individual ac-
tions (Ho and Ermon, 2016; Swamy et al., 2023),
thereby enhancing the effectiveness of rationales.

Reward model performance. To elucidate the
superiority of RLLR over RLHF, we scrutinized
the efficacy of reward models trained in both meth-
ods. The models are evaluated on a hold-out label-

sensitive dataset, comprising pairs of correct and
incorrect answers with respect to the gold label.
This evaluation framework is designed to assess
the models’ proficiency in differentiating between
rationales that lead to either the correct or incor-
rect labels. As indicated in Table 5, reward models
developed under RLLR demonstrate an average ac-
curacy of 90%, outperforming those from RLHF
by a margin of 10%, which stand at an average ac-
curacy of 80%. Detailed results on each individual
task are presented in Appendix F. These findings
align with the main results and underscore the detri-
mental impact of objective mismatch issue within
RLHF. Conversely, RLLR is immune to such dis-
crepancies, as its objectives are congruent with the
evaluative criteria used to discern between correct
and incorrect rationales, thereby yielding superior
outcomes across a spectrum of tasks and models.

Quality of generated rationales. Despite the
modest enhancement in accuracy, RLHF has signif-
icantly advanced the quality of text generation by
integrating human preferences during fine-tuning.
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Figure 4: Evaluation of rationale quality judged by GPT-4, compared to the SFT and RLHF methods.

Models / Training Set RLHF reward RLLR reward

LLaMA2 7B 80.92 91.66
ChatGLM3 6B 75.00 90.20
Mistral 7B 80.78 91.39
Baichuan2 7B 81.46 90.18
Bloom 7B 77.75 88.73

Table 5: Performance of reward models on hold-out
label-sensitive pairs.

Beyond the accuracy on NLU tasks, the quality of
the generated text is also a key consideration. This
is particularly relevant in human-in-the-loop con-
texts, where the model’s output serves as a guide
for human operators, necessitating text that is both
high-quality and reflective of human values. To
assess this quality, we examined a subset of queries
from the validation set and appraised the response
quality produced by various models with GPT-4.
We employed the win rate against SFT w. rat. as
a metric for evaluation. The evaluation results are
shown in Figure 4 and the implementation details
are described in Appendix G. The RLHF method
outperforms SFT in generating high-quality ratio-

nales, evidenced by a 39% win rate, a 26% lose
rate, and a 36% tie rate on average. In contrast, the
RLLR method demonstrates comparable perfor-
mance to SFT, with a balanced win or lose ratio of
30% on average. This outcome aligns with expecta-
tions, as RLLR did not incorporate any human pref-
erence data. The hybrid RLLRMIXED method, which
integrates the reward models of both RLHF and
RLLR, achieves a 38% win rate, a 26% lose rate,
and a 37% tie rate on average against the SFT base-
line. When compared to RLHF, RLLRMIXED also
exhibits a comparable efficacy, with a win rate of
34% and a lose rate of 33%. Notably, RLLRMIXED

yields the most favorable outcomes, delivering ra-
tionale quality equivalent to RLHF and maintaining
label accuracy at the level of RLLR.

Case study. Table 6 showcases examples of
answers generated by the RLHF, RLLR, and
RLLRMIXED methods. For the sake of brevity, we
have omitted any superfluous content from the an-
swers, retaining only the essential context and com-
parative elements. To visually highlight the pri-
mary differences within the examples, we’ve used
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Question Movie review: ... mafia , rap stars and hood rats butt their ugly heads in a regurgitation of
cinematic violence that gives brutal birth to an unlikely , but likable , hero . What sentiment
dose the movie review express?

RLHF The movie review expresses a decidedly negative sentiment. The language used is laced with
derogatory terms and a tone of disdain, which clearly indicates the reviewer’s unfavorable
opinion of the film... Furthermore, the use of “likable, hero” in a seemingly sarcastic or
begrudging manner does not redeem the overall negative impression... The answer is:
negative

RLLR The movie review expresses a positive sentiment, as it highlights an “unlikely, but likable,
hero” that emerges from the chaotic and violent setting... The use of the word “likable” is a
clear indicator of the reviewer’s approval, suggesting that the character’s journey and the film’s
outcome are enjoyable and endearing... The answer is: positive

Question Analyze the semantic similarity between two sentences and predict a similarity score from
0 to 5. Sentence 1: Someone is greating a carrot., Sentence 2: A woman is grating an orange
food.

RLLR Firstly, the subjects of the sentences are different... Secondly, the actions described in the
sentences are not the same... Thirdly, the objects of the sentences are distinct... Lastly, the
contexts implied by the sentences are different... Given these points of divergence, a similarity
score of 1.000 accurately captures the minimal semantic overlap between the two sentences...
The answer is: 1.000

RLLRMIXED 1. **Subjects**: In the first sentence... 2. **Actions**: The actions described in both
sentences are related but not identical... 3. **Objects**: The objects of the actions are
different... 4. **Context**: The context of the actions is also different... 5. **Semantic
Field**: Both sentences fall within the semantic field of food-related activities, but... Given
these points, a score of 1.000 accurately captures the low level of semantic similarity between
the two sentences... The answer is: 1.000

Table 6: Examples generated by RLHF, RLLR, and RLLRMIXED methods.

blue and red color coding. In the first example,
which is sampled from the Movie Review dataset,
the reviewer first describes the negative aspects of
the movie, but at the end, a turning point is made
by proposing “give birth to an unlikely but likable
hero” to express positive sentiments. The RLHF
model fails to recognize a positive sentiment shift,
despite the reviewer’s concluding praise, leading
to an incorrect negative assessment. On the other
hand, the RLLR model accurately identifies the
shift in sentiment, leading to an accurate evalua-
tion. The second example from the STS-B dataset
demonstrates that while the RLLR and RLLRMIXED

methods yield similar similarity scores for identical
sentence pairs, the RLLRMIXED approach enhances
the rationale’s comprehensiveness by integrating
an extra“Semantic Field” component. Furthermore,
the RLLRMIXED output utilizes Markdown format-
ting to enhance readability. These findings suggest
that the RLLRMIXED method can significantly im-
prove the rationale’s quality compared to the stan-
dard RLLR approach, which proves our viewpoint.

5 Conclusion

In this paper, we introduce a Reinforcement Learn-
ing framework enhanced with Label-sensitive Re-
ward to amplify the performance of LLMs for NLU.
By training the reward model on label-sensitive
pairs, which are constructed by generating ratio-
nales for the incorrect labels, we mitigate the objec-
tive mismatch issue in RLHF, leading to improved
performance in NLU tasks. Extensive results on 5
foundation models and 8 NLU tasks demonstrate
that RLLR consistently surpasses the SFT base-
line by a margin of 1.54%, and the RLHF base-
line by 0.69%. By additionally incorporating the
label-sensitive and rationale-sensitive rewards, our
enhanced RLLRMIXED method not only maintains
the label accuracy comparable to RLLR but also
achieves rationale quality on par with RLHF. We
present an in-depth analysis of RLLR, examining
the utilization of rationales, reward modeling objec-
tives, and incorporation of multiple rewards during
the RL stage. The results and analysis substantiate
the effectiveness of our methods in the NLU tasks.
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6 Limitations

Due to cost considerations, there are some defi-
ciencies in our work, which we have listed here
for future reference. Firstly, integrating rationales
into model responses increases computing power
requirements and generation time as a trade-off
for enhanced accuracy and interpretability. Sec-
ondly, we utilize GPT-4 as a proxy of humans to
generate rationales, annotate preferences, and eval-
uate the quality of rationales. Despite the success
made by advanced AI models like GPT-4 in sup-
planting manual annotation, we believe that experi-
ments with authentic human annotation and evalua-
tion remain essential. Finally, the compatibility of
RLLR with RL-free methods such as DPO, PRO,
and RRHF remains unexplored. We leave these
limitations for future work.
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Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri,
Alane Suhr, Prithviraj Ammanabrolu, Noah A
Smith, Mari Ostendorf, and Hannaneh Hajishirzi.
2023. Fine-grained human feedback gives better
rewards for language model training. arXiv preprint
arXiv:2306.01693.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

4216

https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855


A Prompts for Tasks

For all of the tasks, we use the following template
for SFT w. rationale, RLHF and RLLR:
{{rationale}}\n\n The answer is:
{{label}}

The name in double curly brackets represents a
variable and should be replaced with its value. In-
put templates and possible labels for each task are
listed below.

A.1 Movie Reviews

Input template:
{{text}} What sentiment does the writer
express for the movie?

Possible labels:
negative, positive

A.2 AGNews

Input template:
What label best describes this news
article? \n {{text}}

Possible labels:
World politics, Sports, Business, Science
and technology

A.3 MNLI

Input template:
Given a premise and a hypothesis,
predict the relationship between
them. Choose one of the following
labels: entailment, contradiction,
or neutral. Premise:{{sentence1}},
Hypothesis:{{sentence2}}

Possible labels:
entailment, contradiction, neutral

A.4 QQP

Input template:
I received the questions “{{sentence1}}”
and “{{sentence2}}”. Are they duplicates?

Possible labels:
no, yes

A.5 SST-2

Input template:
Movie review: {{text}} What sentiment
dose the movie review express?

Possible labels:
negative, positive

A.6 STS-B
Input template:
Analyze the semantic similarity between
two sentences and predict a similarity
score from 0 to 5. Sentence 1:
{{sentence1}}, Sentence 2: {{sentence2}}
Possible labels:
Float number in range [0.0, 5.0].

A.7 MRPC
Input template:
Does the sentence \n {{sentence1}} \n
paraphrase (that is, mean the same thing
as) this sentence? \n {{sentence2}}
Possible labels:
no, yes

A.8 AppReviews
Input template:
On a scale of 1-5 (with 1 being least
favorable and 5 being most favorable), how
would you rate this review? “{{text}}”
Possible labels:
1, 2, 3, 4, 5

B Rationale Collection

We utilize the following prompt templates to re-
quest GPT-4 for rationales. Sometimes GPT-4 re-
fuses to give a rationale conditioned the provided
label, and we train a simple classifier to filter out
these responses. Examples of generated rationales
are shown in Table 7.
{{question}} \n\n Please give a rationale
for the answer “{{label}}” in a confident
tone (regardless of the true answer):

C Preference Collection

We sample 5 responses from the SFT model for
each example and ask GPT-4 to rank the responses.
The prompt template for requesting GPT-4 is as
follows:
Given the following question and answers,
please rank the answers according to
your preference, considering accuracy,
coherence, logicality, factuality,
relevance, and information completeness.
\n\n [Question] {question} \n\n [Answer
1] {answer 1} \n\n [Answer 2] {answer 2}
\n\n [Answer 3] {answer 3} \n\n [Answer
4] {answer 4} \n\n [Answer 5] {answer
5} \n\n Please give your rationale
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Question yet another weepy southern bore-athon . What sentiment does the writer express for the
movie?

Label negative

Rationale The sentiment expressed by the writer for the movie is decidedly negative. The term “weepy”
suggests that the movie is overly sentimental or melodramatic in a way that the writer finds
unappealing. Additionally, “bore-athon” is a pejorative play on the word “marathon” indicating
that the writer perceives the movie as boring and tedious, and possibly that it drags on for too
long. The use of the word “another” implies a sense of frustration or fatigue with what the
writer views as a recurrent theme or genre, in this case, a “southern” one, which the writer
apparently does not find engaging or innovative. The overall tone is dismissive and conveys a
strong negative opinion about the film.

Question What label best describes this news article? \n LABOUR AT BRIGHTON: SORRY I JUST
CAN #39;T SAY SORRY FOR IRAQ TONY Blair refused to say sorry for the Iraq war
yesterday, after a last-minute change of mind over a conference apology. In his Brighton
address, the Prime Minister

Label World Politics

Rationale The label “World politics” aptly describes the news article as it directly involves a statement
by Tony Blair, who was the Prime Minister of the United Kingdom, concerning a matter of
international significance—the Iraq war. The reference to Blair’s address at a conference in
Brighton and his stance on a major foreign policy issue that has had global repercussions places
the article firmly within the realm of international relations and governmental affairs. The
content is inherently political, dealing with decisions and actions that have shaped world events,
and it pertains to the political landscape beyond just a national level, thereby making “World
politics” the most fitting label for this news piece.

Question Does the sentence \n As they wound through police barricades to the funeral home , many
chanted “Celia, Celia” and sang snippets of her songs . \n paraphrase (that is, mean the same
thing as) this sentence? \n As they wound through police barricades to the funeral home ,
many chanted “Celia, Celia”

Label no

Rationale No, the two sentences do not convey the exact same meaning. While both sentences describe a
procession moving through police barricades to a funeral home with people chanting “Celia,
Celia” the first sentence includes an additional action that the second sentence omits. Specif-
ically, the first sentence mentions that many in the crowd also sang snippets of her songs.
This additional detail about singing introduces a separate action that captures more about the
atmosphere and the tribute being paid to Celia. It is not merely a repetition of her name but an
engagement with her musical legacy. Without this element, the second sentence fails to capture
the full extent of the homage being paid, thus it is not a complete paraphrase of the first.

Table 7: Examples of generated rationales.

first, and then give the ranking. Output
format: “{rationale} \n\n Ranking: {e.g.
{{ranking_example}}}”

The variable {{ranking_example}} is generated
by shuffling the list [1, 2, 3, 4, 5] and con-
catenating them with “>” or “=”, e.g. 5>3>2>4>1
or 2>1=5>3=4. We generate a different example for
every GPT-4 request to avoid bias.

D Construction of Label-Sensitive Pairs

In tasks involving categorical labels, an incorrect
label is randomly chosen from the full label set ex-
cluding the correct label, to create a label-sensitive
pair. For the AppReviews and STS-B tasks, which
use a rating scale from 0 to 5, incorrect labels are
generated by adding 3 to the correct label and then
incorporating a random value from the range [-1,
1]. For instance, given a correct STS-B label of
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2.8, a random increment of 0.3 is selected, result-
ing in an initial incorrect label of 2.8+3+0.3=6.1.
This exceeds the maximum rating, so we adjust by
subtracting 5, yielding a final incorrect label of 1.1.
In the case of the AppReviews task, this label is
subsequently rounded to an integer.

E Results of Varying Sized Models

To substantiate the scalability of our method across
models of varying sizes, we also conduct a series
of experiments using LLaMA2-13B and Bloom-3B
models. The results are presented in Table 8, in con-
junction with those of the 7B models to facilitate di-
rect comparison. For LLaMA, the 7B model’s per-
formance improved by 0.68% and the 13B model
improved by 0.35% over the RLHF baseline. For
BLOOM, the 3B model’s performance improved
by 0.76% and the 7B model improved by 0.82%. In-
terestingly, smaller models don’t always get greater
improvements. This consistency across disparate
model sizes strongly supports the scalability of our
proposed RLLR method.

F Reward Model Performance

Table 9 presents the performance of reward models
trained with RLHF and RLLR on eight individ-
ual NLU tasks. Reward models employing RLLR
methods demonstrated an overall accuracy of ap-
proximately 90%, surpassing those trained with
RLHF by a significant margin of 10 percentage
points, with the latter achieving an accuracy of 80%.
The gap between RLLR and RLHF on STS-B and
AppReviews tasks is most significant, exceeding
35% and 20% respectively. The gap on AGNews,
MRPC, and QQP tasks also exceeds 5%, indicating
that RLHF suffers from objective mismatch issue
on these tasks.

G Evaluation of Generation Quality

We utilize GPT-4 as a proxy for human evaluation.
First, we sample a set of questions and correspond-
ing answers generated by two methods. To miti-
gate positional bias, we then randomize the order
of the answers within each pair. The question along
with two answers is subsequently formatted accord-
ing to the predefined GPT4 input template: Given
the following question and two candidate
answers, please choose which one is
better, considering accuracy, coherence,
logicality, factuality, relevance, and
information completeness. \n \n

[Question] {question} \n \n [Answer 1]
{answer 1} \n \n [Answer 2] {answer 2}
\n \n Please response with “Answer 1 is
better” or “Answer 2 is better” or “Equal”
first, and then give your rationale.
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Methods / Dataset MR AGNews AR MRPC QQP MNLI(m/mm) SST-2 STS-B AVG.

LLaMA2

7B

SFT 91.00 92.20 69.40 82.11 85.50 83.50/85.10 96.22 89.24 86.03
SFT w. rat. 91.90 92.50 68.70 83.58 87.90 83.50/85.00 96.56 91.83 86.74
RLHF 91.90 93.00 68.50 83.82 87.60 83.60/85.00 96.44 92.02 86.79

RLLR 92.40 93.40 70.10 83.82 88.20 85.10/85.90 96.79 92.31 87.47
RLLRMIXED 92.60 93.50 69.60 84.07 88.00 85.10/85.90 96.79 92.07 87.40

13B

SFT 92.00 92.20 69.00 81.62 88.00 83.10/85.20 96.33 90.12 86.40
SFT w. rat. 92.20 92.40 68.90 83.82 88.40 85.40/87.10 96.79 91.78 87.42
RLHF 92.20 92.70 68.90 85.78 88.70 85.60/87.20 96.67 91.49 87.69

RLLR 92.60 93.00 69.50 85.54 88.80 86.10/87.80 96.79 92.23 88.04
RLLRMIXED 92.40 92.90 69.70 85.54 88.80 86.10/87.50 96.79 92.23 88.00

Bloom

3B

SFT 88.40 90.20 67.90 75.25 81.30 73.30/74.70 93.46 86.66 81.24
SFT w. rat. 88.70 92.00 68.50 80.15 81.90 73.40/75.10 93.23 86.58 82.17
RLHF 88.60 92.00 68.60 79.66 82.20 74.20/75.60 93.00 86.23 82.23

RLLR 89.80 92.30 69.20 80.64 82.60 74.60/76.70 93.46 87.58 82.99
RLLRMIXED 89.40 92.00 69.30 80.64 82.40 74.70/76.40 93.58 87.17 82.84

7B

SFT 89.20 89.80 69.30 76.96 83.40 75.80/78.50 94.38 87.88 82.80
SFT w. rat. 89.50 91.80 69.80 82.60 83.60 76.50/80.70 94.61 88.58 83.92
RLHF 89.70 92.70 69.40 82.11 84.00 77.00/80.00 94.61 88.96 84.01

RLLR 90.10 92.70 70.90 84.07 84.30 77.90/81.30 95.53 89.04 84.83
RLLRMIXED 89.50 92.50 70.40 84.31 84.30 77.80/80.70 94.61 88.95 84.52

Table 8: Results of varying sized models.

Tasks / Models
LLaMA2 7B ChatGLM3 6B Mistral 7B Baichuan2 7B Bloom 7B

RLHF RLLR RLHF RLLR RLHF RLLR RLHF RLLR RLHF RLLR

MR 90.13 92.07 80.26 90.94 90.94 90.78 89.32 91.59 91.10 88.51
AGNews 89.67 96.31 85.61 94.10 87.45 96.68 89.67 94.46 88.56 94.10
AR 69.91 92.76 74.91 91.26 68.91 92.51 67.79 90.26 65.29 90.89
MRPC 84.03 86.58 71.25 87.22 76.04 86.58 77.96 83.07 78.91 82.43
QQP 79.82 86.63 70.18 86.63 78.92 87.53 80.46 88.17 76.74 83.80
MNLI 86.65 90.75 83.00 89.04 87.40 91.13 88.59 89.56 84.41 87.47
SST-2 92.24 94.68 82.93 93.13 93.13 94.01 93.13 92.90 89.36 92.24
STS-B 58.68 97.07 46.80 93.05 62.34 94.52 64.90 92.50 50.46 93.97

Overall 80.92 91.66 75.00 90.20 80.78 91.39 81.46 90.18 77.75 88.73

Table 9: Performance of reward models on hold-out label-sensitive pairs. Results across five different foundation
models are presented.
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