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Abstract

Text watermarking technology aims to tag and
identify content produced by large language
models (LLMs) to prevent misuse. In this study,
we introduce the concept of “cross-lingual con-
sistency” in text watermarking, which assesses
the ability of text watermarks to maintain their
effectiveness after being translated into other
languages. Preliminary empirical results from
two LLMs and three watermarking methods
reveal that current text watermarking technolo-
gies lack consistency when texts are translated
into various languages. Based on this obser-
vation, we propose a Cross-lingual Watermark
Removal Attack (CWRA) to bypass watermark-
ing by first obtaining a response from an LLM
in a pivot language, which is then translated
into the target language. CWRA can effectively
remove watermarks, decreasing the AUCs to
a random-guessing level without performance
loss. Furthermore, we analyze two key factors
that contribute to the cross-lingual consistency
in text watermarking and propose X-SIR as a
defense method against CWRA.

1 Introduction

Large language models (LLMs) like GPT-4 (Ope-
nAI, 2023) have demonstrated remarkable content
generation capabilities, producing texts that are
hard to distinguish from human-written ones. This
progress has led to concerns regarding the misuse
of LLMs, such as the risks of generating mislead-
ing information, impersonating individuals, and
compromising academic integrity (Chen and Shu,
2023; Ai et al., 2024; Yuan et al., 2024; Xia et al.,
2024). As a countermeasure, text watermarking
technology for LLMs has been developed, aiming
at tagging and identifying the content produced
by LLMs (Kirchenbauer et al., 2023a; Liu et al.,
2023). Generally, a text watermarking algorithm
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Figure 1: Illustration of watermark dilution in a cross-
lingual environment. Best viewed in color.

embeds a message within LLM-generated content
that is imperceptible to human readers, but can be
detected algorithmically. By tracking and detecting
text watermarks, it becomes possible to mitigate
the abuse of LLMs by tracing the origin of texts
and ascertaining their authenticity.

The robustness of watermarking algorithms, i.e.,
the ability to detect watermarked text even after
it has been modified, is important. Recent works
have shown strong robustness under text rewriting
and copy-paste attacks (Liu et al., 2024b; Yang
et al., 2023b). However, these watermarking tech-
niques have been tested solely within monolingual
contexts. In practical scenarios, watermarked texts
might be translated (He et al., 2024a,b, 2022; Jiao
et al., 2023; Liang et al., 2023), raising questions
about the efficacy of text watermarks across lan-
guages (see Figure 1). For example, a malicious
user could use a watermarked LLM to produce fake
news in English and then translate it into Chinese.
Obviously, the deceptive impact persists regard-
less of the language, but it is uncertain whether the
watermark would still be detectable after such a
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translation. To explore this question, we introduce
the concept of cross-lingual consistency in text wa-
termarking, aiming to characterize the ability of
text watermarks to preserve their strength across
languages. Our preliminary results on 2 LLMs × 3
watermarks reveal that current text watermarking
technologies lack consistency across languages.

In light of this finding, we propose the Cross-
lingual Watermark Removal Attack (CWRA) to
highlight the practical implications arising from de-
ficient cross-lingual consistency. When performing
CWRA, the attacker begins by translating the orig-
inal language prompt into a pivot language, which
is fed to the LLM to generate a response in the
pivot language. Finally, the response is translated
back into the original language. In this way, the
attacker obtains the response in the original lan-
guage and bypasses the watermark with the second
translation step. CWRA outperforms re-writing at-
tacks, such as re-translation and paraphrasing (Liu
et al., 2023), as it decreases the AUCs to a random-
guessing level and achieves the highest text quality.

To resist CWRA, we propose a defense method
that improves the cross-lingual consistency of cur-
rent LLM watermarking. Our method is based on
two critical factors. The first is the cross-lingual
semantic clustering of the vocabulary. Instead
of treating each token in the vocabulary as the
smallest unit when ironing watermarks, as done
by KGW (Kirchenbauer et al., 2023a), our method
considers a cluster of tokens that share the same se-
mantics across different languages as the smallest
unit of processing. In this way, the post-translated
token will still carry the watermark as it would
fall in the same cluster as before translation. The
second is cross-lingual semantic robust vocabu-
lary partition. Inspired by Liu et al. (2024b), we
ensure that the partition of the vocabulary are sim-
ilar for semantically similar contexts in different
languages. Despite its limitations, our approach
(named X-SIR) substantially elevates the AUCs un-
der the CWRA, paving the way for future research.

Our contributions are summarized as follows:
• Evaluation (§ 3): We reveal the deficiency of

current text watermarking technologies in main-
taining cross-lingual consistency.

• Attack (§ 4): Based on this finding, we propose
CWRA that successfully bypasses watermarks
without degrading the text quality.

• Defense (§ 5): We identify two key factors for
improving cross-lingual consistency and propose
X-SIR as a defense method against CWRA.

2 Background

2.1 Language Model
A language model (LM) M has a defined set of
tokens known as its vocabulary V . Given a se-
quence of tokens x1:n = (x1, x2, . . . , xn), which
we refer to as the prompt, the model M computes
the conditional probability of the next token over
V as PM (xn+1|x1:n). Therefore, text generation
can be achieved through an autoregressive decod-
ing process, where M sequentially predicts one
token at a time, forming a response. Such an LM
can be parameterized by a neural network, such as
Transformer (Vaswani et al., 2017), which is called
neural LM. Typically, a neural LM computes a vec-
tor of logits zn+1 = M(x1:n) ∈ R|V| for the next
token based on the current sequence x1:n via a neu-
ral network. The probability of the next token is
then obtained by applying the softmax function to
these logits: PM (xn+1|x1:n) = softmax(zn+1).

2.2 Watermarking for LMs
In this work, we consider the following watermark-
ing methods. All of them embed the watermark by
modifying logits during text generation and detect
the presence of the watermark for any given text.

KGW (Kirchenbauer et al., 2023a) sets the
groundwork for LM watermarking. Ironing a wa-
termark is delineated as the following steps:
(1) compute a hash of x1:n: hn+1 = H(x1:n),
(2) seed a random number generator with hn+1

and randomly partitions V into two disjoint
lists: the green list Vg and the red list Vr,

(3) adjust the logits zn+1 by adding a constant
bias δ (δ > 0) for tokens in the green list:

∀i ∈ {1, 2, . . . , |V|},

z̃n+1
i =

{
zn+1
i + δ, if vi ∈ Vg,

zn+1
i , if vi ∈ Vr.

(1)

As a result, watermarked text will statistically
contain more green tokens, an attribute unlikely to
occur in human-written text. When detecting, one
can apply step (1) and (2), and calculate the z-score
as the watermark strength of x:

s = (|x|g − γ|x|)/
√

|x|γ(1− γ), (2)

where |x|g is the number of green tokens in x and
γ =

|Vg |
|V| . The presence of the watermark can be

determined by comparing s with a threshold.
Unbiased watermark (UW) views the process

of adjusting the logits as applying a ∆ function:
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z̃n+1 = zn+1 +∆, and designs a ∆ function that
satisfies:

E
[
P̃M

]
= PM , (3)

where P̃M is the probability distribution of the next
token after logits adjustment (Hu et al., 2023).

Semantic invariant robust watermark (SIR)
shows the robustness under re-translation and para-
phrasing attack (Liu et al., 2024b). Its core idea
is to assign similar ∆ for semantically similar pre-
fixes. Given prefix sequences x and y, SIR adopts
an embedding model E to characterize their se-
mantic similarity and trains a watermark model
that yields ∆ with the main objective:

L = |Sim(E(x), E(y))− Sim(∆(x),∆(y))|,
(4)

where Sim(·, ·) denotes similarity function. Fur-
thermore, ∀i ∈ {1, 2, . . . , |V|}, ∆i is trained to be
close to +1 or −1. Therefore, SIR can be seen as
an improvement based on KGW, where ∆i > 0
indicating that vi is a green token. The original
implementation of SIR uses C-BERT (Chanchani
and Huang, 2023) as the embedding model, which
is English-only. To adopt SIR in the cross-lingual
scenario, we use a multilingual S-BERT (Reimers
and Gurevych, 2019)1instead.

3 Cross-lingual Consistency of Text
Watermark

In this section, we define the concept of cross-
lingual consistency in text watermarking and an-
swer three research questions (RQ):
• RQ1: To what extent are current watermarking

algorithms consistent across different languages?

• RQ2: Do watermarks exhibit better consistency
between similar languages than between distant
languages?

• RQ3: Does semantic invariant watermark (SIR)
exhibit better cross-lingual consistency than oth-
ers (KGW and UW)?

3.1 Definition
We define cross-lingual consistency as the ability
of a watermark, embedded in a text produced by
an LLM, to retain its strength after the text is trans-
lated into another language. We represent the origi-
nal strength of the watermark as a random variable,
denoted by S (Appendix A), and its strength af-
ter translation as Ŝ. To quantitatively assess this
consistency, we employ the following two metrics.

1paraphrase-multilingual-mpnet-base-v2

Pearson Correlation Coefficient (PCC) We use
PCC to assess linear correlation between S and Ŝ:

PCC(S, Ŝ) =
cov(S, Ŝ)
σSσŜ

, (5)

where cov(S, Ŝ) is the covariance and σS and σŜ
are the standard deviations. A PCC value close to
1 suggests consistent trends in watermark strengths
across languages.

Relative Error (RE) Unlike PCC, which cap-
tures consistency in trends, RE is used to assess the
magnitude of deviation between S and Ŝ:

RE(S, Ŝ) = E

[
|Ŝ − S|
|S|

]
× 100%. (6)

A lower RE indicates that the watermark retains
strength close to its original value after translation,
signifying great cross-lingual consistency.

3.2 Experimental Setup
Setup We sampled a subset of 500 English
prompts from the mc4 dataset (Raffel et al., 2019)2,
and generated responses from the LLM using the
text watermarking methods described in § 2.2.
The default decoding method was multinomial
sampling, and both the prompts and the LLM-
generated responses were in English. To evaluate
the cross-lingual consistency, these watermarked
responses were translated into four languages using
gpt-3.5-turbo-06133: Chinese (Zh), Japanese
(Ja), French (Fr), and German (De). Notably, En-
glish shares greater similarities with French and
German, in contrast to its significant differences
from Chinese and Japanese.

Models For the LLMs, we adopt:

• BAICHUAN-7B (Baichuan., 2023): an LLM
trained on 1.2 trillion tokens. It offers bilin-
gual support for both Chinese and English of-
ficially. We also found that its vocabulary covers
Japanese tokens.

• LLAMA-2-7B (Touvron et al., 2023): trained on
2 trillion tokens and only provides support for
English officially. Its vocabulary also contains
tokens for European languages, such as German
and French.

2https://huggingface.co/datasets/mc4
3https://platform.openai.com/docs/models
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Method PCC ↑ RE (%) ↓
En→Zh En→Ja En→Fr En→De Avg. En→Zh En→Ja En→Fr En→De Avg.

BAICHUAN-7B
KGW 0.074 0.039 0.034 0.056 0.051 87.30 91.51 97.78 95.35 92.99
UW 0.178 0.139 0.135 0.099 0.138 96.92 96.62 98.32 98.60 97.62
SIR 0.371 0.294 0.244 0.226 0.284 75.11 95.36 91.83 99.29 90.40

LLAMA-2-7B
KGW 0.113 0.108 0.117 0.065 0.101 85.08 88.15 91.41 95.45 90.02
UW 0.206 0.206 0.210 0.139 0.190 102.08 94.35 94.38 97.83 97.16
SIR 0.267 0.259 0.186 0.137 0.212 91.51 73.56 91.39 78.79 83.81

Table 1: Comparison of cross-lingual consistency between different text watermarking methods (KGW, UW, and
SIR). Bold entries denote the best result among the three methods.
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Figure 2: Trends of watermark strengths with text length before and after translation. These are the average results
of BAICHUAN-7B and LLAMA-2-7B. Given the distinct calculations for watermark strengths of the three methods,
the y-axis scales vary accordingly.

3.3 Results
Table 1 presents the main results. We forced the
model to generate 200 tokens in response following
the setting of Kirchenbauer et al. (2023a). With re-
sponse length restriction lifted, Figure 2 illustrates
the trend of watermark strengths with text length.

Results for RQ1 We reveal a notable deficiency
in the cross-lingual consistency of current water-
marking methods. Among all the settings, the
PCCs are generally less than 0.3, and the REs are
predominantly above 80%. Furthermore, Figure 2
visually demonstrates that the watermark strengths
of the three methods exhibit a significant decrease
after translation. These results suggest that cur-
rent watermarking algorithms struggle to maintain
effectiveness across language translations.

Results for RQ2 None of the three watermarking
methods exhibits such a characteristic that its cross-
lingual consistency between similar languages is
significantly better than distant ones. This means
that even if two languages have similar structures or
shared words, it is still difficult for watermarks to
transfer between them, which poses a big challenge
to the cross-lingual consistency of watermarking.

Results for RQ3 Overall, SIR indeed exhibits su-
perior cross-lingual consistency compared to KGW
and UW. It achieves the best average results across
the two models and two metrics. When using
BAICHUAN-7B, SIR notably outperforms other
methods in terms of PCCs for all target languages.
This finding highlights the importance of semantic
invariance in preserving watermark strength across
languages, which we will explore more in § 5. De-
spite its superiority, SIR still presents a notable
reduction in watermark strength in cross-lingual
scenarios, as evidenced by Figure 2c.

4 Cross-lingual Watermark Removal
Attack

In the previous section, we focus on scenarios
where the response of LLM is translated into other
languages. However, an attacker typically expects
a response from the LLM in the same language
as the prompt while removing watermarks. To
bridge this gap, we introduce the Cross-lingual Wa-
termark Removal Attack (CWRA) in this section,
constituting a complete attack process and posing
a more significant challenge to text watermarking
than paraphrasing and re-translation attacks.
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Figure 3: An example pipeline of CWRA with English (En) as the original language and Chinese (Zh) as the pivot
language. When performing CWRA, the attacker not only wants to remove the watermark, but also gets a response
in the original language with high quality. Its core idea is to wrap the query to the LLM into the pivot language.

Figure 3 shows the process of CWRA. Instead
of feeding the original prompt into the LLM, the at-
tacker initiates the attack by translating the prompt
into a pivot language named the pivot prompt. The
LLM receives the pivot prompt and provides a wa-
termarked response in the pivot language. The
attacker then translates the pivot response back into
the original language. This approach allows the
attacker to obtain the response in the original lan-
guage. Due to the inherent challenges in main-
taining cross-lingual consistency, the watermark
would be effectively eliminated during the second
translation step.

4.1 Setup
To assess the practicality of attack methods, we
consider two downstream tasks: text summariza-
tion and question answering. We adopt Multi-
News (Fabbri et al., 2019) and ELI5 (Fan et al.,
2019) as test sets, respectively. Both datasets are
in English and require long text output with an av-
erage output length of 198 tokens. We selected
500 samples for each test set that do not exceed
the maximum context length of the model and per-
formed zero-shot prompting on BAICHUAN-7B.
For CWRA, we select Chinese as the pivot lan-
guage and compare the following two methods:
• Paraphrase: rephrasing the response into differ-

ent wording while retaining the same meaning.

• Re-translation: translating the response into the
pivot language and back to the original language.

The paraphraser and translator used in all attack
methods are gpt-3.5-turbo-0613 to ensure con-
sistency across the different attack methods.

4.2 Results
Figure 4 exhibits ROC curves of three watermark-
ing methods under different attack methods.

CWRA vs Other Attack Methods CWRA
demonstrates the most effective attack performance,
significantly diminishing the AUCs and the TPRs.
For one thing, existing watermarking techniques
are not designed for cross-lingual contexts, lead-
ing to weak cross-lingual consistency. For an-
other thing, strategies such as Re-translation and
Paraphrase are essentially semantic-preserving text
rewriting. Such strategies tend to preserve some
n-grams from the original response, which may
still be identifiable by the watermark detection al-
gorithm. In contrast, CWRA reduces such n-grams
due to language switching.

SIR vs Other Watermarking Methods Under
the CWRA, SIR exhibits superior robustness com-
pared to other watermarking methods. The AUCs
for KGW and UW under CWRA plummet to 0.61
and 0.54, respectively, approaching the level of
random guessing. In stark contrast, the AUC for
the SIR method stands significantly higher at 0.67,
aligning with our earlier observations regarding
cross-lingual consistency in the RQ3 of § 3.3.

Text Quality As shown in Table 2, these attack
methods not only preserve text quality, but also
bring slight improvements in most cases due to the
good translator and paraphraser. Among the com-
pared methods, CWRA stands out for its superior
performance. Considering that the same transla-
tor and paraphraser were used across all methods,
we speculate that this is because the BAICHUAN-
7B model used in our experiments performs even
better in the pivot language (Chinese) than in the
original language (English). This finding implies
that a potential attacker could strategically choose
a pivot language at which the LLM excels to per-
form CWRA, thereby achieving the best text qual-
ity while removing the watermark.
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Figure 4: ROC curves for KGW, UW, and SIR under various attack methods: Re-translation, Paraphrase and CWRA.
We also present TPR values at a fixed FPR of 0.1. This is the overall result of text summarization and question
answering. Figure 9a and Figure 9b display results for each task.

Attack
WM KGW UW SIR

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Text Summarization
No attack 14.24 2.68 12.99 13.65 1.68 12.38 13.34 1.79 12.43
Re-translation 14.11 2.43 12.89 13.89 1.77 12.63 13.63 1.98 12.61
Paraphrase 15.10 2.49 13.69 14.72 1.95 13.31 15.56 2.11 14.14
CWRA (Ours) 18.98 3.63 17.33 15.88 2.31 14.25 17.38 2.67 15.79

Question Answering
No attack 19.00 2.18 16.09 11.70 0.49 9.57 16.95 1.35 14.91
Re-translation 18.62 2.32 16.39 12.98 1.30 11.16 16.90 1.80 15.12
Paraphrase 18.45 2.24 16.47 14.38 1.37 13.07 17.17 1.79 15.54
CWRA (Ours) 18.23 2.56 16.27 15.20 1.88 13.45 17.47 2.22 15.53

Table 2: Comparative analysis of text quality impacted by different watermark removal attacks.

5 Improving Cross-lingual Consistency

Up to this point, we have observed the challenges
associated with text watermarking in cross-lingual
scenarios. In this section, we first analyze two
key factors essential for achieving cross-lingual
consistency. Based on our analysis, we propose a
defense method against CWRA.

5.1 Two Key Factors of Cross-lingual
Consistency

KGW-based watermarking methods fundamentally
depend on the partition of the vocabulary, i.e., the
red and green lists, as discussed in § 2.2. There-
fore, cross-lingual consistency aims to achieve the
following goal:

The green tokens in the watermarked text
will still be recognized as green tokens after
being translated into other languages.

With this goal in mind, we start our analysis with
a toy case in Figure 5:
1. We define two simple languages. Language 1

(Lang1) consists of hollow tokens: □, ⋆ and
♥. Language 2 (Lang2) consists of solid tokens:
□, ⋆ and ♥. Tokens with the same shape are
semantically equivalent.

2. Given □ as the prefix, a watermarked LM se-
lects ⋆ from [⋆, ⋆, ♥, ♥]4 as the next token.
Due to watermarking, ⋆ is a green token.

3. A machine translator (MT) then translates the
entire sentence “□ ⋆” into Lang2: “□ ⋆”.

The question of interest is: what conditions must
the vocabulary partition satisfy so that the token
⋆, the semantic equivalent of ⋆, is also included
in the green list?

Figure 5(a) illustrates a successful case, where
two key factors exists:
1. Cross-lingual semantic clustering of the vo-

cabulary: semantically equivalent tokens must
be in the same partition, either green or red lists.

2. Cross-lingual semantic robust vocabulary
partition: for semantically equivalent prefixes
in different languages: □ and □, the partitions

4We suppose that this LM is bilingual and omit the prefix
tokens □ and □ for simplicity.
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Figure 5: Three cases of attempts to maintain cross-
lingual consistency. Cross-lingual consistency can only
be achieved if ⋆ is in the green list when watermark
detection. Factor 1: semantically equivalent tokens
should be in the same list (either red or green). In these
cases, ⋆ = ⋆, and ♥ = ♥. Factor 2: the vocabulary
partitions for semantically equivalent prefixes (□ and
□) should be the same.

of the vocabulary must be the same.
Both Figure 5(b) and Figure 5(c) satisfy only one
of the two factors, thus failing to recognize ⋆ as a
green token and losing cross-lingual consistency.

5.2 Defense Method against CWRA

We now improve the SIR so that it satisfies the two
factors described above. In Figure 5, the tokens
of the two languages are equivalent in one-to-one
correspondence. In practice, we relax this semantic
equivalence into semantic similarity.

As discussed in § 2.2, SIR uses the ∆ function to
represent vocabulary partition (∆ ∈ R|V|), where
∆i > 0 indicating that vi is a green token. Based
on Eq. 4, SIR has already optimized for Factor 2
when using a multilingual embedding model. For
prefixes x and y, the similarity of their vocabulary
partitions for the next token should be close to their
semantic similarity:

Sim(∆(x),∆(y)) ≈ Sim(E(x), E(y)), (7)

where E is a multilingual embedding model.
Based on SIR, we focus on Factor 1, i.e., cross-

lingual semantic clustering of the vocabulary. For-
mally, we define semantic clustering as a partition
C of the vocabulary V: C = {C1, C2, . . . , C|C|} ,
where each cluster Ck consists of semantically sim-
ilar tokens. Instead of assigning biases for each
token in V , we adapt the ∆ function so that it yields
biases to each cluster in C, i.e., ∆ ∈ R|C|. Thus,

the process of adjusting the logits should be:

∀i ∈ {1, 2, . . . , |V|},
z̃n+1
i = zn+1

i +∆C(i),
(8)

where C(i) indicates the index of vi’s cluster
within C. By doing so, if token vi and vj are se-
mantically similar, they will receive the same bias
on logits:

C(i) = C(j) =⇒ ∆C(i) = ∆C(j). (9)

In other words, if vi and vj are translations of each
other, they will fall into the same list. Algorithm 1
shows the procedure of semantic clustering. To
obtain such a semantic clustering C, we treat each
token in V as a node, and add an edge (vi, vj) when-
ever (vi, vj) corresponds to an entry in a bilingual
dictionary D. Therefore, C is all the connected
components of this graph.

Algorithm 1 Constructing semantic clusters

Require: the vocabulary of the LM V , a bilingual
dictionary D

Ensure: Semantic clusters C
1: Initialize a graph G = (V,∅)
2: for each entry (vi, vj) in D do
3: if vi ∈ V and vj ∈ V then
4: Add an edge (vi, vj) to G

5: C = ∅
6: for each connected component Ck in G do
7: C = C ∪ {Ck}
8: return C

Setup We name this method as X-SIR, imple-
mented it with an unified external dictionary D
that covers English (En), Chinese (Zh), Japanese
(Ja), French (Fr), and German (De). Following
the settings of § 3.2 and § 4.1, we apply X-SIR
on BAICHUAN-7B, analyze it in the following and
detail its limitations in § 8. We also present more
results on other LLMs in Appendix C.

Cross-lingual consistency & ROC curves Fig-
ure 6 shows the cross-lingual consistency of SIR
and X-SIR when the original responses are trans-
lated into other languages. Considering both PCC
and RE, X-SIR notably improves the cross-lingual
consistency over SIR when the target language is
Zh or Ja. However, for De and Fr, X-SIR improves
only the PCC but not RE, which we regard as a
limitation and discuss in § 8. Further, Figure 7
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evaluates both methods’ watermark detection per-
formance under cross-lingual scenarios. Whether
directly translating the responses into other lan-
guages (Figure 7a) or using CWRA (Figure 7b),
X-SIR substantially enhances the watermark de-
tection performance, with an average increase in
TPR by 0.448 and AUC by 0.221. These findings
validate the two key factors of cross-lingual consis-
tency that we identified in § 5.1.

En→De

En→Fr

En→Zh

En→Ja -0.0
0.2
0.3
0.5

X-SIR SIR
En→De

En→Fr

En→Zh

En→Ja -0
13
27
40

(c) PCC (d) 100% - RE

Figure 6: Cross-lingual consistency in terms of PCC
and RE. We follow the same setting as § 3.2 and plot
100%-RE for visualization.
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Figure 7: Watermark detection performance under cross-
lingual scenarios. (a) Direct translation: the original
English responses are translated into Ja or Zh following
the setting in § 3.2. (b) CWRA: the full CWRA process
as we did in § 4, where English is the original language
and Chinese is the pivot language.

No attack & Paraphrase attack The next ques-
tion is whether the addition of semantic clustering

of the vocabulary to X-SIR will affect the origi-
nal detection performance of SIR. As shown in
Figure 8, when there is no attack, both methods
perform comparably. However, under the para-
phrase attack, X-SIR performs slightly better than
SIR. This is reasonable because paraphrasing can
be regarded as a special kind of “translation” within
the same language and X-SIR improves such intra-
lingual consistency.
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Figure 8: Watermark detection performance under no
attack and paraphrase attack.

Text quality As shown in Table 3, X-SIR
achieves better text quality than SIR in text summa-
rization, and comparable performance on question
answering, meaning the semantic clustering of vo-
cabulary will not negatively affect text quality.

Method ROUGE-1 ROUGE-2 ROUGE-L

Text Summarization
SIR 13.34 1.79 12.43

X-SIR 15.65 2.04 14.29

Question Answering
SIR 16.95 1.35 14.91

X-SIR 16.77 1.39 14.07

Table 3: Effects of X-SIR and SIR on text quality.

6 Related Work

6.1 LLM Watermarking

Text watermarking aims to embed a watermark into
a text and detect the watermark for any given text.
Currently, text watermark method can be classified
into two categories (Liu et al., 2023): watermarking
for existing text and watermarking for generated
text. In this work, we focus on the latter, which is
more challenging and has more practical applica-
tions.
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This type of watermark method usually can be
illustrated as the watermark ironing process (mod-
ifying the logits of the LLM during text genera-
tion) and watermark detection process (assess the
presence of watermark by a calculated watermark
strength score). Kirchenbauer et al. (2023a) in-
troduces KGW, the first watermarking method for
LLMs. Hu et al. (2023) proposes UW without
affecting the output probability distribution com-
pared to KGW. Liu et al. (2024b) introduces SIR,
a watermarking method taking into account the
semantic information of the text, which shows
robustness to text re-writing attacks. Liu et al.
(2024a) proposes the first unforgeable and pub-
licly verifiable watermarking algorithm for LLMs.
SemStamp (Hou et al., 2023) is another semantic-
related watermarking method and it generate wa-
termarked text at sentence granularity instead of
token granularity. Tu et al. (2023) introduces Wa-
terBench, the first comprehensive benchmark for
LLM watermarks.

6.2 Watermark Robustness

A good watermarking method should be robust
to various watermarking removal attacks. How-
ever, current works on watermarking robustness
mainly focus on single-language attacks, such as
paraphrase attacks. For example, Kirchenbauer
et al. (2023b) evaluates the robustness of KGW
against paraphrase attacks as well as copy-paste
attacks and proposes a detect trick to improve the
robustness to copy-paste attacks. Zhao et al. (2023)
employs a fixed green list to improve the robust-
ness of KGW against paraphrase attacks and edit-
ing attacks. Chen et al. (2023) proposes a new
paraphrase robust watermarking method “XMark”
based on “text redundancy” of text watermark. Lu
et al. (2024) proposes an entropy-based text wa-
termarking detection method that achieves better
detection performance in low-entropy scenarios.

7 Conclusion

This work aims to investigate the cross-lingual con-
sistency of watermarking methods for LLMs. We
first characterize and evaluate the cross-lingual con-
sistency of current watermarking techniques, re-
vealing that current watermarking methods strug-
gle to maintain their watermark strengths across
different languages. Based on this observation,
we propose the cross-lingual watermark removal
attack (CWRA), which significantly challenges wa-

termark robustness by efficiently eliminating water-
marks without compromising text quality. Through
the analysis of two primary factors that influence
cross-lingual consistency, we propose X-SIR as a
defense strategy against CWRA. Despite its limi-
tations, this approach greatly improves watermark
detection performance under cross-lingual scenario
and paves the way for future research. Overall,
this work completes a closed loop in the study of
cross-lingual consistency in watermarking, includ-
ing: evaluation, attacking, analysis, and defensing.

Since our first release, the X-SIR algorithm has
been integrated into MarkLLM (Pan et al., 2024),
an open-source toolkit for LLM Watermarking.

8 Limitations

X-SIR relies on the semantic clustering described
in Algorithm 1 which only considers tokens shared
by the vocabulary V of the model and the external
dictionary D. This design results in the following
limitations:
• Language coverage: X-SIR only supports lan-

guages supported by the model. However, in a
real scenario, an attacker can choose the original
and the pivot language at will. This limitation
has revealed by Figure 6, where X-SIR brings
a much more significant boost to Ja & Zh than
to De & Fr since the vocabulary of the LLM
(BAICHUAN-7B) supports Zh & Ja better.

• Vocab coverage: Since the external dictionary
D only contains whole words, word units can
not be clustered in Algorithm 1 and will left as
isolated nodes. Consequently, X-SIR’s perfor-
mance might be compromised if the tokenizer
favors finer-grained token segmentation.

X-SIR does not solve the issue of cross-lingual
consistency but sets the stage for future research.
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A Details of Watermarking Methods

As discussed in § 6.1, we focus on the watermark-
ing methods for large language models (LLMs).
A watermarking method can be divided into two
processes: the watermark ironing process and the
watermark detection process. In ironing process,
the watermark is embedded into the text by modi-
fying the logits of the LLM during text generation.
In detection process, the watermark detector cal-
culates the watermark strength score s to assess
the presence of watermark. s is a scalar value to
indicate the strength of the watermark in the text.
For any given text, we can calculate its watermark
strength score s based on detection process of the
watermarking method. A higher s indicates that
the text is more likely to contain watermark. In the
opposite, a lower s indicates that the text is less
likely to contain watermark. Every watermarking
method has its own way to ironing the watermark
and calculate the watermark strength score s. We
detail KGW, UW and SIR in the following sections.

A.1 KGW

In § 2.2, we introduce the processes of water-
mark ironing and watermark detection in the KGW
method. Here, we detail the experimental settings
employed for KGW. KGW uses a hash function H
to compute the hash of the previous k tokens. In
this work, we adhere to the experimental setting
reported by Kirchenbauer et al. (2023a), employing
the hash function minhash with k = 4. The ratio
of green token lists Vg to the total word list V is
set at γ = 0.25. Additionally, the constant bias δ
is fixed at 2.0.

A.2 UW

The ironing process in UW is analogous to that in
KGW; however, the two differ in their respective
function of modifying the logits. Here is the detail
watermark ironing process in UW:
(1) compute a hash of x1:n: hn+1 = H(x1:n),

and use hn+1 as seed generating a random
number p ∈ [0, 1).

(2) determine the token t satisfies:

p ∈
[
t−1∑

i=1

PMi(x
n+1|x1:n),

t∑

i=1

PMi(x
n+1|x1:n)

)
(10)

(3) set PMi(x
n+1|x1:n) = 0 for i ̸= t and

PMt(x
n+1|x1:n) = 1.

Then we get the adjusted probability of next token
P̃M (xn+1|x1:n).

The detection process calculates a maximin vari-
ant Log Likelihood Ratio (LLR) of the detected
text to assess the watermark strength score. Log
Likelihood Ratio (LLR) is defined as:

ri =
P̃M (xi|x1:i−1)

PM (xi|x1:i−1)
(11)

The total score is defined as:

R =
P̃M (xa+1:n|x1:a)

PM (xa+1:n|x1:a)
(12)

Where x1:a is prompt and xa+1:n is the detected
text. Let

Pi = PM (xi|x1:i−1) (13)

Qi = P̃M (xi|x1:i−1) (14)

Ri = (ri(x1), ri(x2), · · · , ri(x|V|)) (15)

Where ri(xk) is the LLR of token xk at position
i. UW use a maximin variant LLR (Hu et al.,
2023) to avoid the limitation of the origin LLR.
The calculating process of maximin variant LLR
can be formulated as follows:

max
Ri

min
Q

′
i∈∆V ,TV (Q

′
i,Qi)≤d

〈
Q′

i, Ri

〉
,

s.t. ⟨Pi, exp (Ri)⟩ ≤ 1 (16)

Where ∆V is the set of all probability distributions
over the symbol set V , and TV is the total variation
distance, d is a hyperparameter to control TV , and
⟨·, ·⟩ is the inner product. UW utilizes the maximin
variant LLR to calculate the watermark strength
score.

In the experiments, we follow the experiment set-
tings of original paper, using the previous 5 tokens
to compute the hash and set d = 0.

A.3 SIR
As introduced in § 2.2, the ironing process in SIR
assigns a watermark bias, ∆i, to every token vi.

For any given text, the watermark detector cal-
culates the mean watermark bias to determine the
watermark strength score. Consider the detected
text represented as x =

(
x1, . . . , xN

)
. The wa-

termark strength score, s, can be expressed by the
following equation:

s =

∑N
n=1∆I(xn)(x

1:n−1)

N
, (17)
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where I(xn) indicates the index of the token xn

within the vocabulary V , and ∆I(xn)(x
1:n−1) de-

notes the watermark bias for token xn at position n.
Given that the watermark bias satisfies the unbiased
property,

∑
t∈V ∆I(t) = 0, the expected detection

score for normal text is 0. Consequently, the de-
tection score for watermarked text should exceed 0
significantly.

B Full Result of Watermark Removal
Attack

Figure 9 presents the full results of watermark re-
moval attacks. It is equivalent to Figure 4, but
presents results on text summarization and ques-
tion answering separately.

C Full Result of X-SIR

Figure 10 presents full watermark detection perfor-
mance (ROC curves, AUCs and TPRs) of X-SIR.
We tested it on the following LLMs:

• BAICHUAN-7B (Baichuan., 2023)5

• BAICHUAN2-7B-BASE (Yang et al., 2023a)6

• LLAMA-2-7B (Touvron et al., 2023)7

• MISTRAL-7B-V0.1 (Jiang et al., 2023)8.

We tested it under the following attack methods:

• No attack

• Paraphrase attack (§ 4.1)

• Direct translation (En→XX): translating original
English responses to other languages.

We also plot the performance of SIR as baselines.

5https://huggingface.co/baichuan-inc/
Baichuan-7B

6https://huggingface.co/baichuan-inc/
Baichuan2-7B-Base

7https://huggingface.co/meta-llama/
Llama-2-7b-hf

8https://huggingface.co/mistralai/
Mistral-7B-v0.1
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Figure 9: ROC curves for KGW, UW and SIR under various attack methods: Re-translation, Paraphrase and CWRA.
We also present TPR values at a fixed FPR of 0.1.
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Figure 10: ROC curves for X-SIR and SIR under various attack methods: no attack, paraphrase and direct translation.
We also present AUC and TPR values at a fixed FPR of 0.1.
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