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Abstract

In this work, we introduce a semiparametric
token-sequence co-supervision training method.
It trains a language model by simultaneously
leveraging supervision from the traditional next
token prediction loss which is calculated over
the parametric token embedding space and the
next sequence prediction loss which is calcu-
lated over the nonparametric sequence embed-
ding space. The nonparametric sequence em-
bedding space is constructed by a separate
language model tasked to condense an input
text into a single representative embedding.
Our experiments demonstrate that a model
trained via both supervisions consistently sur-
passes models trained via each supervision in-
dependently. Analysis suggests that this co-
supervision encourages a broader generaliza-
tion capability across the model. Especially,
the robustness of parametric token space which
is established during the pretraining step tends
to effectively enhance the stability of nonpara-
metric sequence embedding space, a new space
established by another language model1.

1 Introduction

Language models are typically trained through
next-token prediction (NTP), where the model fore-
casts the distribution of the next token’s embedding,
given a current token embedding (Touvron et al.,
2023a; Brown et al., 2020; Zhang et al., 2022). This
process relies on a language model head, which in-
cludes embeddings for the entire vocabulary. While
this approach has demonstrated high performance,
its reliance on predicting over a finite parametric
vocabulary space restricts the models’ expressiv-
ity (Min et al., 2022; Yang et al., 2017; Pappas
et al., 2020). Also, such supervision constrains the
model’s predictive capabilities to only the next to-
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1Code and Data in https://github.com/kaistAI/
Semiparametric_Token-Sequence_Co-Supervision

ken, whereas humans can anticipate sequences of
varying granularities highlighting a significant gap.

In this work, we aim to enhance the capabilities
of language models by superposing parametric to-
ken embedding space and nonparametric sequence
embedding space at the output space of a language
model. Drawing on previous research that high-
lights the adaptable nature of language models’
parametric token embedding space (Li and Liang,
2021; Lester et al., 2021; Hao et al., 2023), we the-
orize that the language model can integrate a new
embedding space alongside the model’s existing
parametric space and can also leverage the stable
foundation of its parametric space established dur-
ing the pretraining phase when integrating the new
embedding space.

To this end, we introduce semiparametric token-
sequence co-supervision, a novel training approach
that trains a language model (Gen) by incorporat-
ing supervision from both the traditional next token
prediction (NTP), calculated over the parametric
token embedding space, and next sequence predic-
tion (NSP), which is calculated over nonparametric
sequence embedding space as in Figure 1. This
nonparametric sequence embedding space is con-
structed by another language model, Embseq, which
compresses the entire input text into a singular,
representative embedding. The supervision is cal-
culated via contrastive learning over embedding
from the nonparametric embedding space and the
output distribution from Gen.

We experiment across 10 information-seeking
datasets from the KILT (Petroni et al., 2021) and
ALCE (Gao et al., 2023) benchmarks. We compare
a model trained via semiparametric token-sequence
co-supervision, which employs multi-task training
over NTP and NSP, against a model trained un-
der each supervision individually. The findings
reveal that models under co-supervision signifi-
cantly outperform those trained with separate su-
pervision, with an average performance improve-
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Figure 1: While previous methods train language models
with next token prediction loss (NTP), semiparametric token-
sequence co-supervision trains a language model in a multi-
task manner where supervision from parametric token em-
bedding space (NTP) and supervision from nonparametric
sequence embedding space (NSP) flow simultaneously.

ment of 14.2. This demonstrates that constructing
a common space through co-supervision fosters
the generalization and robustness of the language
model. The nonparametric space under semipara-
metric token-sequence co-supervision is more sta-
ble compared to models trained solely on NSP,
suggesting that the robustness of the parametric
space, established through pretraining, provides a
solid foundation that enhances the stability of the
nonparametric space. Also, unlike models trained
only via NTP, the model trained via semiparametric
token-sequence co-supervision tends to effectively
use knowledge from the nonparametric space dur-
ing generation, suggesting a shift from rote learning
to active knowledge utilization.

Notably, models trained via token-sequence co-
supervision exhibit significant improvements, par-
ticularly in out-of-domain datasets, with an average
enhancement rate of 6.6 over in-domain datasets.
Also, this co-supervision fosters a strong interac-
tion between the parametric token and nonparamet-
ric sequence spaces, with Gen more inclined to gen-
erate responses by drawing upon knowledge from
the nonparametric space. Moreover, the inherent
distribution of Embseq established during a pretrain-
ing step influences the overall performance where
aligning Embseq and Gen to the same pretrained LM
thereby the same distribution contributes to a more
stable training process.

2 Related Works

Aligning two different models Various studies
have explored ways to align two different models.
In multi-modal tasks, efforts have been made to
connect pretrained vision-only and language-only
models, either by employing cross-attention mech-
anisms (Alayrac et al., 2022) or by aligning the
vision encoder’s output embedding with the lan-
guage model’s input space (Liu et al., 2023). Also,
aligning a language model with another multilin-
gual language model enables the model to perform
multilingual tasks by leveraging the distribution
from the multilingual model (Bansal et al., 2024;
Yoon et al., 2024). Moreover, recent research has
focused on retrieval-augmented language models
that align a retrieval model with a language model
to mitigate the issue of hallucination in language
models. Studies suggest that aligning these two
models leads to improved performance compared
to training them separately (Lin et al., 2023; Shi
et al., 2023). semiparametric token-sequence co-
supervision also aims to train on aligning two dif-
ferent models but is unique in that it focuses on
aligning the two models at the output space of the
language model rather than the input space.

Language Models with Nonparametric Em-
beddings Integrating nonparametric embeddings
into language models has consistently demon-
strated advantages. This approach enhances the
expressiveness beyond the inherent capabilities of
language models (Khandelwal et al., 2019; Zhong
et al., 2022). Also, leveraging the rich contextual
knowledge through nonparametric embeddings ef-
fectively reduces instances of hallucination and
improves the generation of accurate and factual
content (Lewis et al., 2020; Borgeaud et al., 2022;
Guu et al., 2020). Moreover, it shows high perfor-
mance for rare and unseen cases as such tend to not
exist in model parametric space (Lee et al., 2023b;
Min et al., 2022). semiparametric token-sequence
co-supervision also leverages the nonparametric
embedding space but is unique in that it trains the
model to utilize both the parametric and nonpara-
metric embedding space, where the nonparametric
embedding space is not static at the training step,
but is trainable making the nonparametric space
more adaptable to the well-constructed parametric
embedding space.
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Figure 2: Overview of semiparametric token-sequence co-supervision. Gen is an autoregressive LM with LM head on top, which
is trained with co-supervision over parametric token embedding space (LNTP) and nonparametric sequence embedding space
(LNSP). Embseq , another autoregressive LM constructs nonparametric sequence embedding space with the output embeddings
when given sequence as input. ti indicates tokens, h indicates dimension size of hidden state, and M indicates number of
sequences in a batch (Refer Appendix A.1 for datailed calculation).

3 Semiparametric Token-Sequence
Co-Supervision

In Section 3.1, we delve into our interpretation of
the Next Token Prediction (NTP), first laying the
foundation for our hypothesis. Subsequently, in
Section 3.2, we explore next sequence prediction
(NSP), an extension of next token prediction to
nonparametric sequence embedding space. In Sec-
tion 3.3, to test our hypothesis we introduce Semi-
parametric token-sequence co-supervision, a train-
ing method with supervision from both parametric
token embedding space (NTP) and nonparametric
sequence embedding space (NSP) in a simultane-
ous manner.

3.1 Revisiting Next Token Prediction
We revisit the conventional approach of Next Token
Prediction (NTP), which forms the foundation of
most modern language models (LMs). NTP is a
process to predict token t over the vocabulary set
V when given the preceding tokens t1, . . . , tk to a
language model:

argmaxt∈V P (t|t1, . . . , tk) (1)

In more detail, as shown in Figure 2, a language
model (Gen) consists of a language model (Autore-
gressive LM) and language model head (LM Head).
LM Head WV (∈ R|V |×h) is a linear layer where
h denotes the model hidden state dimension. When

given sequence of tokens t1, . . . , tk to LM, it re-
turns a hidden state vector qk (∈ Rh). The hidden
state is calculated with LM Head which returns
the probability distribution over vocabulary size.
Thereby Equation 1 can be reformulated as:

argmaxt∈V WV qk (2)

Equation 2 can be interpreted as a retrieving
stage, indicating that the parametric token em-
bedding space WV (LM Head) which consists of
model vocab set determines the corpus (the range of
objects from which "what" we will retrieve) when
given qk, the hidden state embedding as a query.
As the conventional language modeling paradigm
only provides supervision over a fixed vocabulary-
sized token embedding space WV , the usage was
limited to predicting the most probable next to-
ken embedding. However, with such interpretation,
when given multiple supervision from various em-
bedding spaces, the methodology is extendable to
predicting not only token embedding WV but also
various representatives in any other non-parametric
embedding spaces.

3.2 Next Sequence Prediction
Broadening the scope of next token prediction
(NTP), we explore the domain of sequence-level
embedding space WC . In natural language process-
ing, many tasks extend beyond merely predicting
the next token; they necessitate the utilization of
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sequence-level knowledge such as contexts from
external memory from a corpus (Zhong et al., 2022;
Hao et al., 2023; Lewis et al., 2020). This is where
the next sequence prediction (NSP) becomes in-
valuable. Unlike traditional NTP, which operates
over parametric token embedding space, NSP in-
teracts with nonparametric sequence embedding
space. NSP allows models to anticipate and gener-
ate answers based on given sequences on-demand,
mirroring the human-like ability to anticipate se-
quences of varying granularities and its ability to
refer to external sequences while answering a ques-
tion.

When equipped with an embedding space WC
representing embedding space constructed with a
corpus set of sequences C, NSP is a process to
predict the sequence s akin to Equation 2.

argmaxs∈CWCqk

Specifically, as shown in Figure 2, the embed-
ding space WC is constructed by the last hidden
state embedding of another autoregressive model
Embseq; WC is a nonparametric embedding space
constructed with a set of last hidden state embed-
ding s where s = Embseq(s) for s ∈ C.

There are previous studies that explore supervi-
sion beyond the token level, targeting higher lev-
els of text granularity (Devlin et al., 2018; Joshi
et al., 2020). However, their motivations are
distinct from semiparametric token-sequence co-
supervision; our objective of additional supervision
(NSP) is to leverage co-supervision to foster a uni-
fied space that bridges the nonparametric sequence
embedding space with the parametric token em-
bedding space. In contrast, earlier efforts, such
as the next sentence prediction (NSP) feature in
BERT (Devlin et al., 2018), focused on a simpler
binary supervision task that determines the rele-
vance of a succeeding sentence. Also to the best
of our knowledge, semiparametric token-sequence
co-supervision is the first approach to train autore-
gressive language model with co-supervision apart
from only NTP.

3.3 Co-Supervision

We introduce semiparametric token-sequence co-
supervision, a training approach that trains a lan-
guage model (Gen) by incorporating supervision
from both the traditional next token prediction
(NTP) which is calculated over the parametric to-
ken embedding space, and next sequence predic-

tion (NSP) which is calculated over nonparametric
sequence embedding space as shown in Figure 2.

For NTP, we apply an ordinary casual language
modeling loss function. When given input X:

LNTP = − 1

|X|
∑

ti∈X
logPGen(ti|t<i) (3)

For NSP, we apply the contrastive InfoNCE
loss (Karpukhin et al., 2020; Izacard et al., 2021);
when given a query embedding, positive sequence
pair relevant to the query, and a pool of negative
sequences unrelated to the query, Embseq and Gen
are trained to maximize the similarity between the
query embedding and the positive pair and mini-
mize the similarity with the negatives pairs where
the query embedding is last hidden state embed-
ding of Gen and sequence embeddings are set of
embeddings from the last hidden state of Embseq.
As it is impractical to dump all embeddings of a
corpus set every step, here we approximate soft-
max over all corpus by softmax over positive and
negative pairs in the same batch (Karpukhin et al.,
2020; Izacard et al., 2021); we consider other se-
quences in the same batch as negatives (in-batch
negatives). Formally, given a query embedding
q, positive pair passage embedding c+i , and nega-
tive pairs c−1 , · · · , c−M−1 where M is the number
of sequences in a batch, NSP is calculated via:

LNSP(qi, c+i , c−1 , . . . , c−M−1)

= − log
esim(qi,c

+
i )

esim(qi,c
+
i ) +

∑M−1
j=1 esim(qi,c

−
j )

(4)

Thereby total loss over semiparametric token-
sequence co-supervision is calculated as:

Lco-supervision = LNTP + λLNSP (5)

where λ is the weight parameter to match the loss
scale between LNSP and LNTP as it flows through
Gen together.

4 Implementation Details

In this section, we share implementation details of
experiments over information-seeking datasets. In
Section 4.1, we share details of the problem setup.
In Section 4.2, we describe details of how we train
a language model (Gen) with both supervision of
next token prediction (NTP) and next sequence
prediction (NSP) simultaneously, and the inference
step of the trained model in Section 4.3. More
details are in Appendix A.
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4.1 Problem Setup
For details, we start with an explanation of nota-
tions and training instances. Gen is the trainable
language model that trains over by co-supervision
from both NTP and NSP. Embseq is the trainable
language model that constructs the nonparametric
sequence embedding space and which calculates
over Gen output embedding for NSP loss.

Training instances are in a form of
“q, n1, [NSP], c1, n2, · · ·ni, [NSP], ci, · · · ” (Asai
et al., 2023) (Examples in Appendix 5). q is an
input query. [NSP] is a special token indicating
the model to calculate over sequence embedding
space, in other words when the model itself
considers external knowledge is necessary. ci is a
relevant (positive) sequence when given sequences
before [NSP] as input. For example, c1 is the
relevant sequence when given q, n1 as an input.
The number of [NSP] varies from 0 to multiple
differing by how many times the query necessitates
external knowledge during generation.

4.2 Training
Figure 2 shows the overview of how we train a
language model Gen with semiparametric token-
sequence co-supervision, where both LNTP (equa-
tion 3) and LNSP (equation 4) flows through a lan-
guage model Gen simultaneously. For LNSP loss,
we train another language model Embseq together
which constructs a nonparametric sequence embed-
ding space. Specifically, the query embedding (q)
and sequence embeddings (c) to calculate LNSP are
calculated by:

q = Gen (query[NSP]) [−1] (6)

c = Embseq (<s>sequence</s>) [−1] (7)

which is the last layer token representation of [NSP]
from Gen and the last layer token representation of
end-of-sequence token (</s>) from Embseq, respec-
tively. Thereby the gradient of LNSP flows through
both Embseq and Gen. Whereas for LNTP, the gradi-
ent only flows through Gen.

4.3 Inference
During the inference step, we first dump all se-
quence embeddings with Embseq during the offline
time. Given a set of sequences of size M , we feed
each sequence into Embseq and extract represen-
tative embedding c from which we get a context
embedding matrix of C ∈ Rh×M .

After dumping, Embseq is no longer neces-
sary and we only need Gen. The generated re-
sponse is in the same form as the training in-
stances “q, n1, [NSP], c1, n2, · · ·ni, [NSP], ci, · · · ”
(Section 4.1). When Gen generates [NSP], it treats
the last layer representation of [NSP], generated af-
ter inputting sequences up to [NSP] (q, · · · , ni), as
the query embedding q. This embedding q is then
calculated over the context embedding matrix C to
find the most relevant sequence (ci) for the query.
ci is added after [NSP], allowing the generation pro-
cess to proceed based on the sequence. When Gen
generates a token other than [NSP], it functions the
same as a standard language model, selecting the
next token based on the highest probability through
the language modeling head.

5 Experiments Setup

In this section, we share the experimental setup
of baseline, metric, training and evaluation dataset,
and training details. More details of each paragraph
are in Appendix B.

Baseline For the analysis of how co-supervision
affects model performance, we train a baseline
model using the same approach as outlined in Sec-
tion 4.2, but with each supervision (NTP and NSP)
separately. NTP is computed in the same man-
ner for both semiparametric token-sequence co-
supervision and the baseline, involving the flow of
gradients through Gen. However, NSP is calculated
differently: while semiparametric token-sequence
co-supervision computes it between the output em-
beddings of Gen (Eq 6) and Embseq (Eq 7) thereby
flowing the gradient through both models, the base-
line computes it between the output embeddings of
Embseq only, where c is the same and q is different:

q = Embseq (query[NSP]) [−1]

c = Embseq (<s>sequence</s>) [−1]

which limits the gradient of NSP to only Embseq.

Metric To measure how training a language
model with both supervision of NTP and NSP
shows different aspects over the model trained with
each supervision separately, we measure model
performance via three metrics. Correctness and
grounding performance measures the generation
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ability of the model and how well it utilizes knowl-
edge from the external sequence. Retrieval per-
formance mainly measures how well the model
finds relevant sequences. Correctness (Cor) eval-
uates how well the model generates a response
thereby answering the given query for each task.
For instance, in the case of question answering
(QA), correctness is measured by answer accu-
racy (Table 6 in the Appendix). Retrieval perfor-
mance measures whether the model finds relevant
paragraphs to answer the given question which re-
quires well-constructed nonparametric sequence
space. Grounding (Gr) performance evaluates how
well the model generates based on given external
knowledge. Following the approach of previous
works (Gao et al., 2023; Lee et al., 2023a), we use
TRUE (Honovich et al., 2022), a T5-11B model
finetuned on various NLI datasets, to see whether
the external knowledge entails a part of the re-
sponse that is generated based on the knowledge.

Training Dataset All models undergo training
using the dataset provided by Asai et al. (2023),
featuring a diverse range of instruction-following
datasets. The dataset contains information-seeking
questions paired with long-form responses, where a
set of sequences are annotated within the responses
(example form in Section 4.1). As the dataset in-
cludes instances beyond our scope such as cases
where the matching sequence is irrelevant to the
response as Asai et al. (2023) aims to train model
self-critique, a filtering process was applied. This
refined the dataset to 42,932 instances suitable for
our research objectives.

Evaluation Dataset We conduct evaluations on
ten long-form information-seeking datasets from
two benchmarks KILT (Petroni et al., 2021) and
ALCE (Gao et al., 2023). Some of these datasets
overlap with the training dataset, categorized as
in-domain datasets, while others are considered
out-of-domain datasets. While the ALCE setting
shows closer alignment of our training dataset, as
the benchmark does not contain annotation of rel-
evant sequences, we adapt the KILT benchmark
to conform to the ALCE setting. For this reason,
we mainly focus analysis on the KILT benchmark,
which we can measure all three metrics.

Training details We use pretrained Llama2
7B (Touvron et al., 2023b) as an initial model for
both Gen and Embseq. We use 8 Nvidia A100 for
the experiments. We also set the base hyperpa-

rameter as epoch 3, batch size 8, learning rate of
2e-5 and a decayed rate gamma of 0.85 every 1
epoch, and AdamW optimizer (Loshchilov and
Hutter, 2019) with no decay across all the experi-
ments. For experimenting semiparametric token-
sequence co-supervision, we set the weight λ as
0.01 while training and apply gradient clipping to
the Gen model, with a maximum norm equal to 1.

6 Experimental Results & Analysis

Table 1 and Table 2 show the overall performance
on the KILT and ALCE benchmark, respectively.2.
Both tables show that models trained with semi-
parametric token-sequence co-supervision consis-
tently outperform models trained under each type
of supervision separately. This suggests that this
co-supervision encourages a broader generalization
capability throughout the model. In this section, we
delve into the impact of each type of supervision
on the model’s performance and explore the effects
of co-supervision. From now, for simplicity we
name the model trained with semiparametric
token-sequence co-supervision as NTP + NSP
and the model trained under each supervision
separately as NTP3. More details of each para-
graphs are in Appendix C.

Co-supervision makes Embseq more robust
Training a language model with both supervi-
sions from LNTP and LNSP consistently shows
higher retrieval performance (average of +16.6)
over those trained only with LNSP. Especially,
the performance gap tends to increase as corpus
size increases and over out-of-domain (improve-
ment rate of 35.04 for in-domain and 41.67 for
out-of-domain). Such results suggest that the
co-supervision makes Embseq, a language model
that constructs the nonparametric sequence space
through its output embeddings, more robust. We
could further see that it shows more robust per-
formance over other Embseq which is trained via
NSP with more datasets and larger batch size (Ap-
pendix C.1). As previous research has shown that
new embeddings (tokens) can easily adapt to well-
established parametric token embedding space of
the model (Hao et al., 2023; Schick et al., 2023), we

2ELI5 in the ALCE benchmark is a reformulated version
from the KILT benchmark where it contains a smaller number
of instances and the evaluation metric is different. For more
details on reformulation, please refer to Gao et al. (2023)

3Please note that NTP is not only trained with NTP but
also NSP but separately. We name it NTP for simplicity.
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Retriever Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr

NQ* WoW* FEVER* ELI5

Top 20
NTP 62.0 49.7 51.5 31.0 14.7 44.9 58.0 57.1 5.8 30.9 21.8 9.3

NTP + NSP 65.1 55.7 62.6 49.8 15.7 63.7 77.5 65.2 28.0 36.3 21.5 8.7

Top 100
NTP 35.7 38.1 43.0 14.7 13.4 40.0 28.8 56.7 5.2 12.7 21.9 7.0

NTP + NSP 56.8 50.5 58.7 36.9 14.8 61.3 66.2 64.3 26.1 21.0 21.6 10.2

zsRE T-REx TriviaQA HotpotQA

Top 20
NTP 51.2 40.3 54.6 60.6 40.6 48.5 63.0 65.2 41.7 30.2 29.9 43.1

NTP + NSP 80.5 59.6 74.0 75.5 67.1 63.9 74.5 71.7 47.9 55.6 37.9 48.9

Top 100
NTP 32.8 27.1 47.2 47.4 30.8 45.1 46.5 54.9 37.7 12.6 19.6 11.8

NTP + NSP 71.2 53.4 70.0 67.7 58.9 59.1 67.3 68.0 45.7 46.2 34.3 45.5

Table 1: Overall performance of NTP + NSP (model trained with semiparametric token-sequence co-supervision)
and NTP (models trained under each type of supervision separately) in KILT benchmark. Datasets with * on top
indicate in-domain datasets. Top 20 and Top 100 show the performance when given a corpus of size 20 and 100,
respectively.

ASQA* ELI5

Cor Gr Cor Gr

Top 5
NTP 28.4 42.5 9.7 8.9

NTP + NSP 31.8 44.0 9.3 10.3

Top 100
NTP 20.2 31.1 9.9 13.1

NTP + NSP 26.3 36.8 10.5 13.4

Table 2: Overall performance of NTP + NSP and NTP
in ALCE benchmarks. Dataset with * on top indicates
in-domain datasets. Top 5 and Top 100 show the per-
formance when given a corpus of size 5 and 100, re-
spectively. As the benchmark does not provide gold
passages, we skip the retrieval performance.

hypothesize such adaptability applies to nonpara-
metric sequence embedding space; the robustness
of the parametric token embedding space, estab-
lished during the pretraining step provides a solid
foundation that enhances the stability of the non-
parametric space.

Co-supervision enhances generation generaliza-
tion Models trained with semiparametric token-
sequence co-supervision consistently outperform
those trained under single supervision in terms of
correctness and grounding performance across both
KILT and ALCE benchmarks. Such results suggest
that co-supervision enhances generation general-
ization of Gen. The performance gap is particu-
larly noticeable in datasets such as FEVER, T-REx,
and zsRE. Such results suggest that models under
co-supervision demonstrate higher generalization
ability showing a broader understanding across di-
verse input distributions, whereas models trained
solely with next token prediction (NTP) struggle

NQ TQA zsRE Trex
0

5

10

15

20

NTP
NTP+NSP

Figure 3: Reduction rate of correctness when consider-
ing those correct by parametric knowledge as wrong.

with unique input formats. For example, T-REx
and zsRE are slot-filling tasks, which present a
unique input format “subject [SEP] relationship
type” which is less likely to be encountered during
standard training phases. Additionally, in FEVER,
the issue of low grounding performance arises from
a poor understanding of instruction. Despite being
instructed to generate evidence-based responses,
the model tends to generate simple answers with-
out grounding to external knowledge.

Co-supervision encourages high interaction be-
tween the two spaces Figure 3 (Numbers are in
Table 7 of Appendix) shows the degradation rate
of correctness when removing the ones that are
correct by the parametric knowledge (categoriz-
ing responses associated with incorrect paragraphs
as wrong). Models trained with semiparametric
token-sequence co-supervision show less degrada-
tion compared to the one with separate supervi-
sion, highlighting that co-supervising encourages
interaction between token and sequence embed-
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ding space as it is trained to share a common space.
Also, it suggests that the model leverages the con-
textual knowledge within the nonparametric space
for generating responses, as supported by previous
research (Min et al., 2022; Lee et al., 2023b), rather
than depending exclusively on its parametric knowl-
edge base. Even with the restriction of Gen to the
parametric space during inference, thereby exclud-
ing access to the nonparametric sequence embed-
ding space, the model trained with co-supervision
experiences a substantial decline in correctness
(from 45.7 to 32.8) in contrast to the model solely
supervised with NTP (from 32.8 to 32.0). This
suggests that semiparametric token-sequence co-
supervision promotes the utilization of knowledge
from the nonparametric sequence space rather than
relying solely on memorization, effectively lever-
aging information from its parametric space.

Flowing loss over the sequences when calculat-
ing LNTP in co-supervision tends to make the
model memorize the knowledge rather than
utilizing the knowledge from nonparametric
embedding space When we do not mask se-
quences when calculating LNTP of token-sequence
co-supervision, Gen tend to rely more on their
memorized parametric knowledge whereas models
trained with the sequences masked tend to utilize
the external knowledge retrieved from the non-
parametric sequence embedding space. Such a
tendency aligns with the findings of Mallen et al.
(2022), where the model tends to depend on re-
trieved knowledge more when it lacks familiarity
with the information (long-tail knowledge). By
calculating LNTP over the sequences, the model
tends to encode the context knowledge in its pa-
rameters, leading to a reduced reliance on retrieved
knowledge and more on its own knowledge.

How does the choice of Embseq affect perfor-
mance? We investigate how using different pre-
trained models for Embseq impacts overall perfor-
mance as the nonparametric sequence embedding
space is constructed through the output embeddings
of Embseq. We compare results over three different
pretrained models for Embseq: GPT2-large (Rad-
ford et al., 2019), TinyLlama (Zhang et al., 2024),
and Llama2-7B. As shown in Figure 4, Llama2-
7B shows the highest performance. The result
suggests that the specific distribution inherent to
each pretrained language model influences the per-
formance. As semiparametric token-sequence co-
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Figure 4: Overall performance of how different Embseq ,
which constructs the nonparametric sequence embed-
ding space, affects the overall performance when train-
ing with NTP + NSP. We experiment over 3 different
models, GPT2-large, TinyLlama, Llama2-7B.
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Figure 5: Average performance of each metric over 8
datasets in KILT when changing weight parameter λ of
NTP + NSP.

supervision trains a model in a multi-task manner
thereby constructing a common space of paramet-
ric token space and nonparametric sequence space
through co-supervision, the training process ap-
pears to be most stable when Gen and Embseq are
derived from the same model, thus sharing the same
distribution. This observation underlines the signif-
icance of distribution compatibility between Gen
and Embseq in enhancing model training and perfor-
mance.

Affect of weight lambda (λ) when training semi-
parametric token-sequence co-supervision We
investigate how different weights ({10−1, 10−2,
10−3}) between the next token prediction super-
vision (LNTP) and next sequence prediction su-
pervision (LNSP) affect the model’s performance,
which is the lambda weight in Equation 5. In our
setup, as a single generation model Gen receives co-
supervision from both the parametric token embed-
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ding space and the nonparametric sequence embed-
ding space, the weight determines the balance of
influence between these two spaces on the model’s
training. Figure 5 (numbers in Table 14 in the Ap-
pendix) illustrates that a weight of 10−3 results in
poor retrieval performance, indicating challenges
in grasping and stabilizing the nonparametric se-
quence embedding space. Moreover, at a weight
of 10−1, the model’s generation ability tends to
decline, suggesting that it rather ruins the well-
formed parametric token embedding space. This
analysis underscores the critical role of balancing
supervision from both embedding spaces to opti-
mize model performance across various metrics.

7 Conclusion

In this paper, we propose a semiparametric token-
sequence co-supervision training method, which
trains a single autoregressive language model with
both supervision from parametric token embed-
ding space and nonparametric sequence embedding
space in a simultaneous manner. Experiments over
10 information-seeking datasets show that such
co-supervision consistently outperforms models
trained with each supervision separately of average
+14.2, demonstrating that constructing a common
space through co-supervision fosters the general-
ization and robustness of the language model. Such
a method is not only limited to sequence space but
can be expandable to any embedding space which
we leave as future work.

8 Limitation

Due to resource constraints, our experimentation
did not extend to altering Gen with other pretrained
LMs such as Mistral (Jiang et al., 2023). While
we have identified several indicators suggesting
that training Gen and Embseq through semiparamet-
ric token-sequence co-supervision enhances robust-
ness compared to training each model separately,
further exploration with increased computational
resources would provide a more comprehensive
understanding.
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A Implementation Details

A.1 Gathering in-batch negatives
Suppose we have B batched instances D1, . . . DB

for each training step, and each Di has ci,1, . . . ci,li
reference context(li ≥ 1). We can collect M =∑B

i=1 li context embeddings(after counting dupli-
cates) and the same amount of query embedding,
each referring to one positive target. We set the
target context embedding as the positive one, while
setting the rest M − 1 as the in-batch negative sam-
ples.

During the experiments, we gather all the con-
text embeddings across all 8 GPUs to increase the
number of in-batch negatives. We ensure at least
63 4, but the exact number differs across training
steps (experimentally about 80 to 90).

4at least 1 context per instance, 8 per each GPU, a total of
8 GPUs infer 64 total reference context embeddings, yielding
at least 64− 1 = 63 in-batch negatives.
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A.2 Generation by Grounding in Inference
Step

To distinguish where the model generates by
grounding on the retrieved sequence and where the
model generates in a freeform, we add two special
tokens [CS] and [CE] which each indicate the start
of the generation by grounding on the retrieved se-
quence and the end, respectively. In other words,
when the model generates a response in the form of
“q, n1, [NSP], c1, g1, · · ·ni, [NSP], ci, gi, · · · ”, the
part between [CS] and [CE] is the gi part and the
rest is ni indicating freeform generation.

B Experiments Setup

B.1 Details of metrics

We assess the generation results in three axes: cor-
rectness, retrieval performance, and grounding per-
formance

Correctness Correctness evaluates how well the
model answers the given query for each task. For
each dataset, we chose the metric to evaluate fol-
lowing the metric used in its official paper. Details
for each dataset is in Table 6.

Retrieval Performance Retrieval performance
measures whether the model retrieves relevant para-
graphs to answer the given question. We measure
in two aspects, whether the gold paragraph exists
within retrieved paragraphs (Ret) and retrieval pre-
cision to assess how many of the model-retrieved
paragraphs contain gold paragraphs (Ret-P). For
example, when the model retrieves three differ-
ent paragraphs {P1, P2, P3} while generating a
response and only one of them {P2} is the gold
paragraph, Ret will be 100 since there is a gold
paragraph in the set of retrieved paragraphs while
Ret-P is 1

3 since only one is correct. Please note that
we measure the metric by considering both gold
and retrieved as a set; when the same paragraph is
retrieved twice, we consider it as one during the
calculation.

Grounding Performance Grounding perfor-
mance evaluates how well the model generates
based on given external knowledge. Following
the approach of previous works (Gao et al., 2023;
Lee et al., 2023a), we use TRUE (Honovich et al.,
2022), a T5-11B model finetuned on various NLI
datasets, to see whether the external knowledge en-
tails a part of the response that is generated based
on the knowledge. To be more specific, as we

Source Name Instance Num

Open-Instruct

GPT-4 Alpaca 6363
Stanford Alpaca 7826

FLAN-V2 720
ShareGPT 2544

Open Assistant 1 2671

KILT
Wizard of Wikipedia 2159

Natural Questions 12306
FEVER 5502

HF Dataset
OpenBookQA 54

Arc-Easy 183

ASQA ASQA 2732

Table 3: Statistic and characteristics of training dataset
(42932 instances). Instance Num inside the parentheses in-
dicate the number of corresponding instances within all the
filtered instances (43060 instances)

add special tokens [CS] and [CE] to distinguish
between natural form generation and generation
based on given external knowledge (grounding gen-
eration); [CS] indicates the starting point of ground-
ing generation, and [CE] indicates the endpoint.
(Appendix A.2) Thereby we parse the generated
response into pairs (external knowledge, grounding
generation) and calculate the average of whether
the external knowledge entails the grounding gen-
eration in sentence wise of grounding generation.

B.2 Details of training dataset

Filtering We apply 3 filtering from Asai et al.
(2023) to make our training dataset.

1. Relevance and Support: We retained instances
with relevant and fully or partially supported
citations to ensure dataset integrity.

2. Citation Count: Instances without citations or
with more than 3 citations were filtered out to
balance complexity and informativeness.

3. Length Constraint: We removed instances ex-
ceeding 1024 tokens (input + output) to opti-
mize computational efficiency.

These criteria yielded a final training dataset of
42932 instances, poised to provide high-quality
examples for effective model training.

Statistics Among 42.9k training instances, 32.1k
instances contain 1 [NSP], 6.7k instances contain
2 [NSP], and 4k instances contain 3 [NSP] in the
output. The source of these instances is shown in
Table 3.
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Single [NSP] Example Question: "which river
has the largest basin in world"

Answer: "[NSP] Amazon River and Crenar-
chaeota. The Amazon has over 1,100 tributaries,
12 of which are over long. Some of the more no-
table ones are: Amazon River The Amazon River (,
; Spanish and ) in South America is the largest river
by discharge volume of water in the world, and by
some definitions it is the longest. The headwaters
of the Apurímac River on Nevado Mismi had been
considered for nearly a century as the Amazon’s
most distant source, until a 2014 study found it
to be the Cordillera Rumi Cruz at the headwaters
of the Mantaro River in Peru. The Mantaro and
Question: which river has the largest basin in world
[CS] Amazon [CE] "

Multi [NSP] Example Question: "Why do corpo-
rations lobby for laws that impoverish lower class
citizens?"

Answer: "[NSP] Corporate capitalism power and
influence corporations and large business interest
groups have over government policy, including the
policies of regulatory agencies and influencing po-
litical campaigns (see corporate welfare). Many
social scientists have criticized corporations for
failing to act in the interests of the people, and
their existence seems to circumvent the principles
of democracy, which assumes equal power rela-
tions between individuals in a society. In an April
29, 1938 message to the Congress, Franklin D.
Roosevelt warned that the growth of private power
could lead to fascism: Dwight D. Eisenhower crit-
icized the notion of the confluence of corporate
power and d̈e factoQ̈uestion: Why do corporations
lobby for laws that impoverish lower class citi-
zens? [CS] While it is true that corporations may
lobby for laws or regulations that are favorable to
their own interests, it is not necessarily the case
that these laws or regulations would have nega-
tive impacts on lower class citizens. [CE] [NSP]
Anti-corporate activism control the markets, that
income inequality is increasing, and that corpo-
rations have gained too much power. As part of
the political left, activists against corporate power
and influence support a decreased income gap and
improved economical equity. The defenders of
corporations such as Ron Arnold highlight that
governments do legislate in ways that restrict the
actions of corporations (see Sarbanes-Oxley Act)
and that lawbreaking companies and executives are
routinely caught and punished, usually in the form

of monetary fines. In addition, from the perspective
of business ethics it might be argued that chief ex-
ecutives are not inherently more evil than Question:
Why do corporations lobby for laws that impov-
erish lower class citizens? [CS] For example, a
corporation may lobby for laws that reduce regu-
lation on its industry, which could potentially lead
to lower costs and higher profits for the corpora-
tion, but could also have negative consequences for
workers or consumers. [CE] It is important to rec-
ognize that the relationship between corporations,
lobbying, and public policy is complex, and it is
not always clear how specific laws or regulations
will impact different groups of people.In general,
it is important for citizens to stay informed about
the activities of corporations and to advocate for
policies that benefit the common good.",

B.3 Details of evaluation dataset

Construction Step Following the evaluation
setup of Gao et al. (2023), we retrieve the top 100
paragraphs from the Wikipedia corpus provided
by KILT for each instance in the dataset. We re-
trieve paragraphs by utilizing a well-performing
retriever model, contriever-msmarco (Izacard
et al., 2021). When constructing the top 100 para-
graphs, we initially populate the corpus set with
gold annotations from the KILT benchmark and
subsequently supplement the remainder with para-
graphs retrieved from contriever-msmarco, en-
suring that all gold paragraphs are in the top 100
paragraphs.

Dataset Statistics and Characteristics In Ta-
ble 5, we present the statistics and characteristics
of the datasets in KILT (Petroni et al., 2021) bench-
mark employed for evaluation. Datasets lacking ev-
idence annotation, such as WNED-CWEB, WNED-
WIKI, and AIDA CoNLL-YAGO, are excluded
from the KILT benchmark.

B.4 Training Details

The default experiment setting for both semi-
parametric token-sequence co-supervision and the
baselines is set to train the pre-trained Llama2
7B (Touvron et al., 2023b) provided from hugging-
face (Wolf et al., 2019) as the initial model for both
Gen and Embseq. We use 8 Nvidia A100 with 80GB
memory for our experiments. We set the maximum
token length to be 1,024 due to the memory con-
straint. We use FSDP (Zhao et al., 2023) to conduct
multi-GPU distributed training. We set the base hy-
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perparameter as epoch 3, batch size 8, and AdamW
optimizer (Loshchilov and Hutter, 2019) with no
decay, and learning rate of 2e-5 and a decayed rate
gamma of 0.85 every 1 epoch. For semiparametric
token-sequence co-supervision, we set the weight
λ as 0.01 while training. We also apply gradient
clipping to the Gen model, with a maximum norm
equal to 1. We run inference of our trained models
using 1 A6000 GPU with 48GB memory.

B.5 Instructions for evaluation

Table 4 shows the instructions used during evalua-
tion. For those datasets where it is used in Asai et al.
(2023) or Gao et al. (2023), we follow or reformu-
late the instruction so that the model provides the
evidence to measure the grounding performance.

C Experimental Results

C.1 Does the benefit of semiparametric
token-sequence co-supervision still hold
when replacing Embseq trained via NSP to
more general retrieval model?

Table 12 shows the overall Top100 performance
of the KILT benchmark when replacing Embseq to
other general models trained via NSP, including
the one that is widely known in out-of-domain,
contriever-msmarco (Izacard et al., 2021). Llama
without parameter sharing tends to show the
strongest performance, where we could see that
Embseq trained via co-supervision (NTP + NSP)
tend to show robust performance over all cases.
Such results suggest that the nonparametric se-
quence embedding space constructed through co-
supervision is well-constructed compared to those
trained via only NSP.

C.2 Co-supervision encourages high
interaction between the two spaces

Correctness degradation in cases where re-
trieval fails Table 7 shows the degradation of
correctness when removing the ones that are cor-
rect by the parametric knowledge (categorizing re-
sponses associated with incorrect paragraphs as
wrong). Models trained with semiparametric token-
sequence co-supervision exhibit less degradation
compared to those with separate supervision. This
suggests that co-supervision promotes interaction
between token and sequence embedding space, en-
couraging the model to share a common space for
enhanced performance.

Grounding performance tends to vary by re-
trieval performance When analyzing the im-
pact of retrieval success on grounding performance,
NTP + NSP significantly outperforms in ground-
ing when retrieval is successful compared to when
it fails, whereas the model trained only by NTP
shows little difference regardless of retrieval out-
come. Upon investigating why models trained
with NTP + NSP exhibit lower grounding per-
formance upon retrieval failure, it appears to stem
from the disconnect caused by attempting to an-
swer the query with the incorrect document. In
such cases, the model might fetch information that
seems closest to the expected answer from the ex-
ternal knowledge but ends up generating content
that also contains knowledge from the given query,
leading to less relevance to the retrieved paragraph
or fabricating information not present in the para-
graph (Examples in Table 11 in Appendix). Con-
versely, models trained with NTP demonstrate con-
sistent grounding performance, unaffected by the
success or failure of retrieval. This suggests that
NTP’s grounding capability is more reliant on its
generative performance rather than the accuracy of
retrieval, leading to similar outcomes irrespective
of whether the correct information was retrieved
or not. Based on these findings, future work could
explore critiquing the success of retrieval based on
grounding scores.

Generation performance without the condition
of retrieval performance As correctness and
grounding performance depend on retrieval per-
formance, we evaluate both NTP + NSP and NTP
trained models in a setting where retrieval is always
correct or always wrong to see the correctness and
grounding performance without the condition of
retrieval performance. We evaluate two settings
where 1. oracle: retrieval is always correct and
2. failure: retrieval is always wrong. Table 13
shows the average performance of each metric over
datasets in the KILT benchmark for oracle setting
(all numbers in Table 8) and Table 9 shows per-
formance for failure setting. NTP + NSP trained
models shows higher performance in the oracle
setup whereas lower performance in the failure
setup. Such results correlate with the findings on
top where since semiparametric token-sequence co-
supervision trained tends to get the answer correct
based on the retrieved paragraphs, it shows high
correctness in the oracle setup whereas lower cor-
rectness in the failure setup. Also as we could see
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Table 4: Instructions used during evaluation.

Dataset Instruction

WoW Given a chat history separated by new lines, generates an informative, knowledgeable and engaging response.
FEVER Is the following statement correct or not? Say supports if it’s correct; otherwise say refutes. Also provide the evidence.
ELI5 Provide a paragraph-length response using simple words to answer the following question.
NQ, TriviaQA Answer the following question with corresponding evidence.
zsRE, T-REx Find the correct entity given subject and relation with corresponding evidence.
HotpotQA Answer question that require 2 step reasoning where each reasoning steps have corresponding evidence.

ASQA Answer the following question. The question may be ambiguous and have multiple correct answers, and in that case, you
have to provide a long-form answer including all correct answers.

Name Task Instance Num Input Format Output Format Reference

Natural Questions (NQ) ODQA 2,837 Question Extractive Kwiatkowski et al. (2019)
Wizard of Wikipedia (WoW) Dialogue Conversation 3,054 Long Abstractive Dinan et al. (2019)

FEVER Fact Checking 10,444 Claim Classification Thorne et al. (2018)

TriviaQA ODQA 5,359 Question Extractive Joshi et al. (2017)
ELI5 ODQA 1,507 Question Long Abstractive Fan et al. (2019)

Zero Shot RE (zsRE) Slot Filling 3,724 Structured Entity Levy et al. (2017)
T-REx Slot Filling 5,000 Structured Entity ElSahar et al. (2018)

HotpotQA ODQA 5,600 Question Short Abstractive Yang et al. (2018)

Table 5: Statistic and characteristics of evaluation dataset.

Name Metric

Natural Questions (NQ) Answer Accuracy
Wizard of Wikipedia (WoW) Unigram F1

FEVER NLI

TriviaQA Answer Accuracy
ELI5 Rougel

Zero Shot RE (zsRE) Answer Accuracy
T-REx Answer Accuracy

HotpotQA Answer Accuracy

Table 6: Correctness metric for each datasets

that semiparametric token-sequence co-supervision
trained models tend to show low grounding perfor-
mance when retrieval fails, we can see that it shows
lower grounding performance in the failure setup
whereas high grounding performance in the oracle
setup.

C.3 Weight parameter λ

Table 14 shows the Top20 performance of the KILT
dataset with varying values of the weight parameter
(λ) in Equation 5. Notably, for λ = 10−3, we could
see that the model tends to not converge, resulting
in significantly lower performance.

C.4 Effect of Batch Size

Results in Figure 6 (Numbers in Table 10) show the
average performance of each metric over 8 datasets
in KILT with different batch sizes per GPU. Results
show the importance of increasing the batch size
in NTP + NSP; performance of all metrics tends

Ret Ret-P Cor Cor- Gr
20

25

30

35

40

45

50

55

60
BS 2
BS 4
BS 8

Figure 6: Average performance of each metric over 8 datasets
in KILT when changing batch size. Each number indicates
batch size per GPU.

to increase with increasing batch size. We hypoth-
esize such a trend largely due to stable training of
NSP; as it is widely known that retrieval models
tend to show higher performance with larger batch
size, which is not always true for generation mod-
els (Keskar et al., 2017). As NSP is calculated via
in-batch negatives, training with larger batch size
in other words increasing the number of negatives
consistently improves retrieval performance (Izac-
ard et al., 2021; Karpukhin et al., 2020).

C.5 Performance gap tends to increase as
corpus size increases

Figure 7 shows that the performance gap between
NTP + NSP and NTP tends to increase as corpus
size increases; NTP + NSP shows more stable
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Cor. Cor− Cor. Cor− Cor. Cor− Cor. Cor−

NQ* zsRE T-REx TriviaQA

Top20
NTP 49.7 40.5 40.3 37.5 40.6 36.4 65.2 53.1

NTP + NSP 55.7 49.3 59.6 58.1 67.1 62.5 71.7 65.2

Top100
NTP 38.1 27.7 27.1 24.3 30.8 25.8 54.9 39.2

NTP + NSP 50.5 44.4 53.4 52.0 58.9 54.6 68.0 59.8

Table 7: Performance of correctness performance (Cor.) and correctness when considering those instances where
retrieval fail as incorrect (Cor−)

Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr

Force [NSP] NQ* WoW* FEVER* zsRE

X
NTP 99.9 73.7 67.4 100.0 19.4 57.1 100.0 59.1 6.0 99.9 72.4 74.7

NTP + NSP 99.8 68.6 69.3 100.0 19.6 69.8 100.0 65.4 31.0 100.0 71.7 80.8

O
NTP 100.0 71.9 69.5 100.0 19.3 59.4 100.0 59.1 6.0 100.0 70.3 74.8

NTP + NSP 100.0 70.9 70.7 100.0 19.9 69.5 100.0 65.6 31.7 100.0 71.8 80.3

T-REx TriviaQA ELI5 Avg

X
NTP 98.0 58.0 56.0 96.7 73.2 48.9 100.0 20.7 6.5 99.2 53.8 45.2

NTP + NSP 100.0 78.2 71.8 100.0 68.0 45.4 100.0 20.7 6.8 100.0 56.0 53.5

O
NTP 100.0 66.2 71.0 100.0 72.4 48.6 100.0 20.7 6.5 100.0 54.3 47.9

NTP + NSP 100.0 78.9 72.0 100.0 68.4 44.2 100.0 20.7 6.3 100.0 56.6 53.5

Table 8: Performance over the oracle setup. We skip HotpotQA as the dataset requires two paragraphs, making it
difficult to make in the same setting

Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr Ret Cor Gr

Force [NSP] NQ* zsRE T-REx TriviaQA Avg

X
NTP 0.0 12.2 13.8 0.0 7.9 15.7 0.0 9.3 7.9 0.0 7.6 8.3 0.0 9.2 11.4

NTP + NSP 0.0 11.7 13.6 0.0 7.3 11.6 0.0 9.3 6.6 0.0 7.6 5.2 0.0 9.0 9.2

O
NTP 0.0 11.9 15.6 0.0 7.6 16.8 0.0 8.8 8.1 0.0 7.7 8.7 0.0 9.0 12.3

NTP + NSP 0.0 11.9 13.6 0.0 7.3 11.7 0.0 8.9 7.1 0.0 7.4 5.0 0.0 8.9 9.3

Table 9: Experiment over the case where retrieval always fail. We skip HotpotQA as the dataset requires two
paragraphs, making it difficult to make in the same setting, and datasets without answers as it is hard to distinguish
false negatives.

and robust performance with different sizes of the
corpus.

C.6 Comparison with self-RAG

To compare the performance with other models
trained on the same dataset, we conducted an eval-
uation against self-RAG (Asai et al., 2023). From
the results in Table 15, three key characteristics
emerge. First, Self-RAG appears to be sensitive
to thresholding. It requires thresholding to deter-
mine whether to retrieve external knowledge at the
end of every sentence. In the case of the ALCE
benchmark, as it requires to utilization of exter-
nal knowledge (citation) for every sentence, they
keep the threshold as 0, making the model cite
for every sentence (self-RAG thres=0). However,

for other datasets, as they do not necessitate cita-
tions for every sentence, they apply a threshold
(self-RAG thres=0.2). When experimenting over
both scenarios in the ALCE and the KILT bench-
mark, we could see that self-RAG is sensitive to
threshold; it tends to struggle with retrieval un-
less it retrieves every sentence for the four datasets.
Second, Self-RAG demonstrates comparable or su-
perior performance on in-domain datasets (ASQA,
NQ) but exhibits degradation on out-of-domain
datasets (ELI5, zsRE). Last, our approach appears
to be computationally efficient and performs well,
particularly on large corpora. Self-RAG calculates
similarity across all documents in a corpus, akin
to the cross-encoder architecture, resulting in com-
putational intensity. Additionally, our observations
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BS R R-P Cor C− Gr R R-P Cor C− Gr R R-P Cor C− Gr R R-P Cor C− Gr

Top20

NQ* WoW* FEVER* ELI5

2 63.1 59.1 50.0 44.6 60.6 37.5 36.8 14.4 7.3 33.5 71.4 67.5 56.3 40.7 6.0 38.9 27.0 21.8 8.4 8.7

4 63.3 59.0 50.8 44.9 49.0 40.8 40.1 15.3 8.2 31.7 73.7 69.2 66.0 50.0 21.0 35.1 25.0 22.2 7.8 5.3

8 65.1 62.7 55.7 49.3 62.6 49.8 49.7 15.7 10.4 63.7 77.5 75.9 65.2 51.5 28.0 36.3 29.4 21.5 7.8 8.7

zsRE T-REx TriviaQA HotpotQA

2 68.8 65.9 50.8 49.4 48.1 68.0 66.5 60.0 55.0 46.5 71.4 68.9 57.8 54.6 43.0 48.9 71.0 29.2 26.4 43.1

4 78.0 75.2 56.4 55.1 50.5 73.0 71.3 65.0 60.1 46.5 72.7 68.9 68.5 62.7 38.6 52.2 73.6 36.8 33.9 36.8

8 80.5 80.2 59.6 58.1 74.0 75.5 75.4 67.1 62.5 63.9 74.5 73.0 71.7 65.2 47.9 55.6 79.1 37.9 35.2 48.9

Top100

NQ* WoW* FEVER* ELI5

2 53.3 49.2 43.2 38.1 56.9 24.3 23.9 13.8 4.8 29.8 58.6 54.2 55.8 32.9 5.3 21.4 14.2 21.7 4.6 8.5

4 52.9 48.2 44.6 38.0 56.9 27.9 27.4 14.6 5.8 30.6 61.2 56.8 61.7 34.9 18.8 18.9 12.6 22.2 4.1 8.9

8 56.8 53.8 50.5 44.4 58.7 36.9 36.9 14.8 7.9 61.3 66.2 64.2 64.3 43.4 26.1 21.0 15.8 21.6 4.6 10.2

zsRE T-REx TriviaQA HotpotQA

2 54.1 50.2 41.1 39.7 43.7 57.6 55.0 52.2 46.1 41.4 64.0 61.3 53.1 49.4 42.0 37.1 53.8 25.7 20.8 41.1

4 67.0 63.3 50.3 48.6 45.9 65.3 62.8 59.2 53.7 42.0 65.2 60.9 64.4 56.9 35.6 41.2 57.8 32.6 27.6 33.3

8 71.2 70.7 53.4 52.0 70.0 67.7 67.5 58.9 54.6 59.1 67.3 65.6 68.0 59.8 45.7 46.2 65.3 34.3 29.7 45.5

Table 10: Performance by changing batch size (BS).

Question Retrieved Paragraph Generated Response

who plays peter in what we do in
the shadows

Steve Pemberton :: Steven James Pemberton (born 1 September
1967) is an English actor, comedian and writer, best known as
a member of T̈he League of Gentlemenẅith Reece Shearsmith,
Mark Gatiss, and Jeremy Dyson. Pemberton and Shearsmith also
co-wrote and appeared in the sitcom P̈sychovilleänd the comedy-
drama Ïnside No. 9.̈ His other television credits include D̈octor
Who,̈ B̈enidorm,̈ B̈lackpool,̈ S̈hameless,̈ Ẅhitechapel,̈ Ḧappy
Valleyänd M̈app and Lucia.̈

The actor Steve Pemberton plays the role of
Peter in the British comedy television show.

the basic steps of rational de-
cision making include defining
goals and

Rational planning model :: The rational model of decision-making
is a process for making sound decisions in policy making in the
public sector. Rationality is defined as 2̆01ca style of behavior that
is appropriate to the achievement of given goals, within the limits
imposed by given conditions and constraints2̆01d. It is important
to note the model makes a series of assumptions in order for it to
work, such as:

The basic steps of rational decision making
include defining goals and then analyzing
alternative solutions to determine the best
course of action.

Table 11: Example from NQ

indicate that the performance of self-RAG tends to
decline further with larger corpus sizes, potentially
due to distractions from similar documents. We
skip the grounding performance as it is difficult to
have a fair comparison due to the difference in dis-
tinguishing natural part generation from grounded
generation.
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Model Param Sharing Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R

NQ* WoW* FEVER* ELI5

Llama2-7B x 53.3 50.3 54.2 28.0 28.3 28.1 15.2 48.0 61.9 60.7 58.2 5.7 18.5 14.9 22.1 7.3

Llama2-7B o 35.7 34.4 38.1 43.0 14.7 14.6 13.4 40.0 31.4 30.4 56.7 5.2 12.7 11.0 21.9 7.0

contriever-msmarco o 50.3 49.8 51.0 52.1 23.0 23.0 14.9 42.5 39.0 38.9 54.5 11.0 18.8 9.6 22.1 7.3

NTP + NSP 56.8 53.8 50.5 58.7 36.9 36.9 14.8 61.3 66.2 64.2 64.3 26.1 21.0 15.8 21.6 10.2

zsRE T-REx TriviaQA HotpotQA

Llama2-7B x 49.8 49.5 38.4 53.9 52.4 52.4 33.2 45.7 65.1 64.1 66.4 44.8 43.1 63.3 34.0 39.3

Llama2-7B o 32.8 32.7 27.1 47.2 47.4 47.4 30.8 45.1 46.5 45.8 54.9 37.7 12.6 12.4 19.6 11.8

contriever-msmarco o 45.0 44.0 36.2 42.2 36.9 36.7 33.8 33.1 67.3 65.1 73.0 42.2 46.0 65.1 34.0 37.4

NTP + NSP 71.2 70.7 53.4 70.0 67.7 67.5 58.9 59.1 67.3 65.6 68.0 45.7 46.2 65.3 34.3 45.5

Table 12: Overall Top100 performance of the KILT benchmark when replacing Embseq to other general models
trained via NSP. Param Sharing shows whether the Embseq that extracts query embedding and Embseq that extracts
context embedding are the same. Llama2-7B models are initialized with Llama2-7B and are further trained with the
training dataset whereas contriever-msmarco is the released model from huggingface which is trained via msmarco.

Oracle Failure

Cor Gr Cor Gr

NTP 54.3 47.9 9.0 12.3
NTP + NSP 56.6 53.5 8.9 9.3

Table 13: Generation performance without the condition
of retrieval performance
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Figure 7: NTP + NSP tend to be more robust with larger
corpus size (x-axis)
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Np weight Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R Ret Ret-P Cor. C-R

NQ* WoW* FEVER* ELI5

10−1 59.0 55.9 47.7 43.3 42.0 41.6 15.2 36.8 67.5 64.7 64.4 36.0 40.7 29.0 22.5 5.2

10−2 65.1 62.7 55.7 62.6 49.8 49.7 15.7 63.7 77.5 75.9 65.2 28.0 36.3 29.4 21.5 8.7
10−3 33.7 33.6 35.7 34.9 14.0 14.0 13.2 27.0 27.4 27.3 28.3 9.2 19.9 19.4 22.6 4.2

zsRE T-REx TriviaQA HotpotQA

10−1 64.7 64.0 39.0 47.2 64.2 63.6 50.0 45.2 70.2 68.0 64.9 41.1 41.7 61.0 29.2 41.8

10−2 80.5 80.2 59.6 74.0 75.5 75.4 67.1 63.9 74.5 73.0 71.7 47.9 55.6 79.1 37.9 48.9
10−3 33.6 33.6 26.2 41.8 48.5 48.4 48.0 38.3 40.3 40.2 53.9 24.9 20.7 31.1 23.9 29.9

Table 14: Performance by different value of weight parameter λ.

Top5 Top100

ASQA* ELI5 NQ* zsRE ASQA* ELI5 NQ* zsRE

Cor Cor Ret Cor Ret Cor Cor Cor Ret Cor Ret Cor

NTP+NSP 31.8 9.3 65.1 55.7 80.5 59.6 26.3 10.5 56.8 50.5 71.2 53.4
self-RAG (thres=0) 30.0 8.0 73.7 60.1 80.8 46.8 13.3 9.3 59.3 51.3 67.5 38.7

self-RAG (thres=0.2) 16.5 4.8 0.0 25.2 0.0 8.6 16.5 4.8 0.0 25.2 0.0 8.6

Table 15: Performance of NTP+NSP and self-RAG

3882


