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Abstract

Despite its crucial role in research experiments,
code correctness is often presumed solely based
on the perceived quality of results. This as-
sumption, however, comes with the risk of er-
roneous outcomes and, in turn, potentially mis-
leading findings. To mitigate this risk, we posit
that the current focus on reproducibility should
go hand in hand with the emphasis on software
quality. We support our arguments with a case
study in which we identify and fix three bugs
in widely used implementations of the state-of-
the-art Conformer architecture. Through exper-
iments on speech recognition and translation
in various languages, we demonstrate that the
presence of bugs does not prevent the achieve-
ment of good and reproducible results, which
however can lead to incorrect conclusions that
potentially misguide future research. As coun-
termeasures, we release pangoliNN, a library
dedicated to testing neural models, and propose
a Code-quality Checklist, with the goal of pro-
moting coding best practices and improving
software quality within the NLP community.

1 Introduction

In the field of natural language processing (NLP),
as well as in broader contexts, the validity and
soundness of research findings are typically upheld
by “establishing consistency of results versus ex-
isting implementations, standard benchmarks, or
sanity checks via statistically significant experimen-
tal results” (Rozier and Rozier, 2014). Embracing
these recommendations as the exclusive criteria for
validating scientific credibility, the research com-
munity has recently devoted significant attention
to the reproducibility (Dodge et al., 2019; Branco
et al., 2020; Belz et al., 2021b; Belz, 2022; The Tur-
ing Way Community, 2022) and the soundness of
experimental settings and comparisons (Denkowski
and Neubig, 2017; Dror et al., 2018; Marie et al.,
2021). Specifically, in response to evidence indicat-
ing the absence of these aspects in many research

papers (Raff, 2019) and to mitigate the so-called
“reproducibility crisis” (Baker, 2016),1 top-tier con-
ferences have introduced dedicated checklists and
targeted questions in the reviewing forms (Pineau
et al., 2021; Rogers et al., 2021).

However, a fundamental question remains re-
garding the initial assumption: are reproducibility
and thorough evaluation against robust base-
lines sufficient to ensure the soundness of a re-
search finding? According to Peng (2011), repro-
ducibility alone does not “guarantee the quality,
correctness, or validity of the published results”
since the code employed to produce them may not
accurately execute its intended purpose. This en-
tails inherent risks, as flawed code that produces
good and easily reproducible results can propagate
as the foundation for further research, ultimately
leading to further unreliable and potentially mis-
leading findings (McCullough et al., 2008).

Expanding on these observations, this paper is a
call to action, underpinned by empirical evidence,
to bolster the dependability of NLP findings by
complementing current initiatives toward repro-
ducibility and experimental soundness with equal
emphasis on software quality. To this end, we
adopt as a reference framework the principles of
software quality assurance (SQA – Buckley and
Poston 1984; Tripathy and Naik 2011), which have
so far been overlooked by our community. Building
on this foundation, we contribute as follows:

1. We examine the extent to which research works
consider the attributes studied in the SQA field
(§2), highlighting that code correctness has been
neglected by the NLP community thus far (§3);

1The term “reproducibility crisis” refers to the increasing
difficulties reported by scientists in replicating others’ and
own works (Prinz et al., 2011; Gundersen and Kjensmo, 2018;
Wieling et al., 2018a; Chen et al., 2019; Gundersen, 2019),
also in the specific context of NLP (Wieling et al., 2018b;
Marie et al., 2021; Narang et al., 2021; Gehrmann et al., 2022;
Arvan et al., 2022; Belz et al., 2021a, 2022, 2023).
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2. Through a case study on open-source implemen-
tations of the widespread Conformer architec-
ture (Gulati et al., 2020), we show that:

- At least one impactful bug is present in all the
analyzed implementations (§4.1);

- Such bugs do not prevent from achieving good
and reproducible results that outperform other
architectures in speech recognition and trans-
lation across different language pairs (§4.3);

- Undetected bugs can lead to erroneous conclu-
sions when evaluating new techniques (§4.4).

3. We release a bug-free implementation of Con-
former,2 along with all the pre-trained models;

4. We promote code correctness and software qual-
ity by releasing pangoliNN,3 a library featuring
easily-usable unit tests to enforce the proper be-
havior of neural models (§5.1), and proposing
the integration into current conferences check-
lists of a Code-quality section, which would
focus on coding best practices (§5.2).

2 SQA and Research

Software Quality Assurance (SQA) attributes have
been studied for many years (McCall et al., 1977;
Deutsch and Willis, 1988; Glass, 1992). Delineated
in the ISO 9126 standard (ISO/IEC, 2001), they
were later extended and superseded by ISO 25010
(ISO/IEC, 2010), having production code as the
main target. However, as they are desirable for any
codebase, here we analyze how each attribute has
an effect on research code and work.

Portability and usability refer, respectively, to
the possibility of executing the same experiments
in diverse hardware or software environments, and
the effort required to use the software (i.e., how
easy it is to run the code). As such, they pertain
to the reproducibility of a paper, which, accord-
ing to ACM,4 holds when “an independent group
can obtain the same result using the author’s own
artifacts”, a definition that is aligned with those
given in NLP (Ulmer et al., 2022) and other fields
(Schloss, 2018). Regarding these aspects, ample
literature already discussed the need to go beyond
code openness in research (Chen et al., 2019; Triso-
vic et al., 2022), highlighting the role of proper

2Availabe at https://github.com/hlt-mt/FBK-fairseq/ under
the Apache 2.0 License.

3Availabe at https://github.com/hlt-mt/pangolinn/ under
the Apache 2.0 License.

4https://www.acm.org/publications/policies/
artifact-review-and-badging-current

documentation and validation in different environ-
ments. However, as many research groups lack
access to a wide range of hardware options, we
argue that research works can hardly target porta-
bility due to the significant economic and human
resources it requires. On the contrary, proper docu-
mentation of the code is a reasonable demand and,
in addition to increasing reproducibility, it facili-
tates code reuse and adoption for other works.

Code reusability also pertains to the maintain-
ability attribute, which denotes the effort required
for implementing targeted modifications. Along-
side comprehensive documentation, software main-
tainability hinges on code structure, i.e. the organi-
zation of the software into building blocks (Perry
and Wolf, 1992; Garlan and Shaw, 1993). While
there is currently no incentive to develop reusable
code (Barba, 2019), the research community would
greatly benefit in the long term from a commitment
to this objective, which would reduce the time spent
in replicating prior work and accelerate the imple-
mentation of new techniques upon existing code.

The expeditiousness of testing new methods also
depends on the efficiency and reliability of the
codebase. Efficiency refers to the amount of re-
sources a software uses, e.g. the number of GPU
hours or VRAM GBs needed for training. Increas-
ing efficiency constitutes a research direction on its
own and can hardly be considered a prerequisite for
orthogonal investigations. Reliability, instead, is
the capability of the software to seamlessly operate
in all conditions and for a long time: software caus-
ing frequent crashes (i.e. terminations due to errors)
or whose efficiency is not constant over time is not
reliable. Although both properties would contribute
to reducing the environmental footprint of NLP re-
search by avoiding computing-resource wastes or
unexpected failures (Strubell et al., 2019; Shteri-
onov and Vanmassenhove, 2023), a commitment in
this direction is arguably an excessive demand for
research works not expressly dedicated to it.

Last but not least, functionality or functional
correctness (hereinafter: correctness) pertains to
the “extent to which a program satisfies its speci-
fications” (McCall et al., 1977). In research, this
holds when the code exactly performs the opera-
tions described in a paper, thereby establishing the
validity of the reported findings. Achieving correct-
ness requires the creation and execution of tests,
as they are the sole mechanism that guarantees the
correct behavior of software. For example, when
designing a causal model (i.e. a model that can-

3658

https://github.com/hlt-mt/FBK-fairseq/
https://github.com/hlt-mt/pangolinn/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current


not look at future elements in the input sequence),
researchers should test that the model predictions
always remain unaffected by future elements. If
a bug breaks the causality property, any observed
gains may not stem from the proposed solutions
but from undue access to forbidden information. It
is worth emphasizing that the validity of these tests
expires after any code alteration, regardless of its
apparent relevance. Therefore, tests should be exe-
cuted after each modification to ensure correctness
and, in turn, the trustworthiness of the findings.

In summary, we have observed that, in the con-
text of research software, i) portability and usabil-
ity support reproducibility, ii) maintainability pro-
motes reusability, iii) efficiency and reliability re-
duce environmental costs, and iv) correctness plays
a crucial role in ensuring trustworthy findings and
research soundness. However, despite its impor-
tance, we show in the next section that the research
community has largely neglected correctness, fo-
cusing primarily on reproducibility.

3 Research Code Quality Evaluation

To assess the level of consideration given to the
above SQA attributes within the NLP research
community, we examined their inclusion in the
review forms of top-tier conferences and journals
in the field, namely: *ACL (i.e., AACL-IJCNLP,
ACL, EACL, EMNLP, NAACL),5 ACL Rolling Re-
view (ARR), ICASSP, ICML, ICLR, Interspeech,
NeurIPS, and TACL. We specifically focused on
reproducibility (as a proxy of portability and us-
ability) and correctness. Table 1 shows the results.

Most of the venues (5 out of 8) include an ex-
plicit score for reproducibility and NeurIPS men-
tions it among the factors contributing to the overall
recommendation score. Reproducibility is com-
monly evaluated through dedicated checklists6 that
mainly focus on the detailed descriptions of the hy-
perparameters and the software/hardware environ-
ment (while disregarding whether different hard-
ware/software is supported, i.e. portability, which
seems reasonable as seen in §2). Accordingly, these
checklists are not strictly related to SQA, although
they do include recommendations for proper code
documentation, which is related to the software
usability and maintainability.

5Since EACL 2024, *ACL conferences adopt ARR only.
6E.g., NeurIPS (https://neurips.cc/Conferences/2021/

PaperInformation/PaperChecklist), AAAI (https://aaai.org/
Conferences/AAAI-22/reproducibility-checklist), and ARR
(https://aclrollingreview.org/responsibleNLPresearch).

Venue Reproducibility Correctness
*ACL
ARR
ICASSP
ICML
ICLR
Interspeech
NeurIPS
TACL

Table 1: Reproducibility and correctness in the review
forms of major NLP conferences/journals.

Correctness is instead mentioned in fewer forms
(3 out of 8). When present, its definition varies
and is not explicitly related to the code: at ICLR
and ICASSP, the scope of the term is not clearly
defined, while in TACL it is included in the broader
concept of soundness of the experiments/results.
In this result-oriented definition, soundness per-
tains to assessing the significance of results (are
the reported improvements robust to statistical fluc-
tuations?) with respect to either the state of the art
(are the results competitive with those reported in
recent literature?) or strong baselines. Soundness
is also assessed at NeurIPS and ICML but, again,
code correctness is never explicitly mentioned. No-
tably, the Interspeech form contains a “Technical
Correctness” score, which however refers to the re-
producibility of the paper (“are enough details pro-
vided to be able to reproduce the experiments?”).
In general, when considered, software is explicitly
evaluated only in terms of accessibility (is the code
released open-source?) and potential usefulness
(will the research community benefit from the use of
the software?). For instance, the “Software” score
in the ARR form only refers to the usefulness and
documentation of newly-released code rather than
to its correctness, thus being again more related to
its usability and maintainability.

We can conclude that, unlike reproducibility-
related SQA attributes, correctness is largely ne-
glected in favor of a result-based evaluation of
soundness. From the researchers’ perspective, this
entails the risk of basing future work on unreliable
software that yields high and easily reproducible
results but lacks guarantees of its correctness. This
risk, in turn, can lead to misleading findings (Mc-
Cullough et al., 2008). In the next section, we
present a concrete instance of this problem with a
case study analyzing open-source implementations
of the widespread Conformer architecture.
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4 The Case Study

In our case study, we examine the Conformer (Gu-
lati et al., 2020) architecture – the state-of-the-art
solution for speech processing tasks (Guo et al.,
2021; Ma et al., 2021; Srivastava et al., 2022; Li
and Doddipatla, 2023) such as automatic speech
recognition (ASR) and speech-to-text translation
(ST) – whose rapid and wide adoption is evidenced
by more than 2,000 citations since 2020.7

In the following, we first analyze the Conformer
implementation of six widely-used open-source
codebases, showing that they all contain at least
one bug (§4.1). Then, through extensive experi-
ments on the two tasks and on eight language pairs,
we demonstrate that the presence of bugs can be
hidden by good – but incorrect – results (§4.3), con-
sequently leading to erroneous conclusions (§4.4).
An introduction of the ASR and ST tasks object of
our study, along with an overview of the Conformer
architecture is provided in Appendix A.

4.1 Analysis of the Codebases

We analyze the behavior of the open-source im-
plementations of the Conformer by systematically
varying a parameter that should not affect the re-
sults: the inference batch size (IBS). With high
IBSs, many samples are collected in the same batch,
allowing for their parallel processing on GPU to re-
duce the overall computational cost. When samples
of different lengths are collected in the same batch
– a frequent situation in speech tasks, where the in-
put length largely varies – the input sequences are
brought to the same dimension by filling them with
padding. Since with correct implementations the
results are independent of the presence of padding
(and, therefore, of the IBS), research papers usu-
ally include only the training batch size (which,
instead, is an important hyperparameter for the sta-
bility of the training). However, as we demonstrate
in this section, the bugs present in the Conformer
implementations undermine the above assumption.

We studied six widely-used repositories, namely:
Fairseq-ST (Wang et al., 2020), ESPnet-ST (In-
aguma et al., 2020), NeMo (Kuchaiev et al., 2019),
SpeechBrain (Ravanelli et al., 2021), an open
source codebase named “Conformer”,8 and Tor-
chAudio (Yang et al., 2021). We discovered that
all these implementations return different results
with different IBSs, showing that the presence of

7Source: Google Scholar – November 15th, 2023.
8https://github.com/sooftware/conformer

(1) Before shifting, the Relative PE matrix (P00, ..., P22)
is padded (zero values).

(2) When relative shift is applied to the Relative PE matrix
without considering padding, some values of the padding
area (in red) are incorrectly moved to the non-padding area.

(3) When relative shift is applied to the Relative PE matrix
considering padding, the values P00, ..., P22 are not moved
to the padding area.

Figure 1: Example of relative shift operation starting
from a Relative PE matrix containing padding (1), both
considering a codebase with 3 (2) and without (3) bug.
The first row is always discarded.

padding incorrectly alters the results.9 Upon in-
spection of the codes, we isolated three bugs asso-
ciated with padding handling in: Conformer Con-
volutions ( 1), Initial Subsampling ( 2), and Po-
sitional Encodings ( 3).

Conformer Convolutions ( 1) The depthwise
and pointwise convolutions of the Conformer con-
volution module do not consider the presence of
padding and produce a non-padded output with non-
zero values adjacent to the input sample. These
values modify the behavior of the subsequent batch
normalization and of the other convolutions, lead-
ing to incorrect alterations of the valid values.

9We emphasize that our intention is not to single out the
shortcomings of individual libraries. Conversely, we are ex-
tremely thankful for the invaluable contribution they represent
to our community. Our analysis is only intended to further
improve the reliability of codes and, consequently, of the ex-
perimental results, which we believe is of utmost importance.
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Repository Conv. Mod. SubSampl. Pos. Enc.
Fairseq-ST 1 2 3

ESPnet-ST 1 2 3

NeMo - 2 3

SpeechBrain 1 2 3

Conformer 1 2 3

TorchAudio 1 NA NA

Table 2: Bugs present in the analyzed repositories. NA
stands for “Not Applicable”.

Initial Subsampling ( 2) The two initial con-
volutions that subsample the input sequence by a
factor of 4 do not consider padding. Hence, the
second convolution is fed with non-zero values ad-
jacent to the input sequence, which are wrongly
considered in the computation of the last valid ele-
ments.

Positional Encodings ( 3) The relative sinu-
soidal positional encodings (PEs), which are added
to the attention matrix, are computed by shifting
a sinusoidal matrix. This shifting operation first
prepends a zero column to the sinusoidal matrix
and then reshapes it so that the last element of the
first row becomes the first element of the second
row, the last two elements of the second row be-
come the first ones of the third row, and so on. By
doing this, this operation assumes that all elements
are valid. However, when a sequence is padded,
only part of the attention matrix is valid (in green
in Figure 1.1) and spurious values are moved to
the beginning of the next row (Figure 1.2). In Fig-
ure 1, for the sake of clarity of the example, we
set to 0 the PE in the padding area. While this is
not what happens in practice (as the padding area
contains other sinusoidal PEs), it shows that the
correct values are discarded and the final matrix
significantly differs from the one obtained without
padding, which is instead shown in Figure 1.3.

In Table 2, we report the presence (or absence) of
these bugs for each analyzed codebase in its current
version. All the implementations but one (NeMo)
are affected by 1. Also, all are affected by 2 and

3, except for TorchAudio, whose implementation
neither includes relative positional encodings in the
attention nor the initial sub-sampling convolutional
layers. Having ascertained that all the analyzed
implementations contain at least one bug, the next
sections will concentrate on their impact on ASR
and ST results and, in turn, the related findings.

4.2 Experimental Settings

We train and evaluate ASR and ST models on
MuST-C v1.0 (Cattoni et al., 2021), which con-
tains parallel speech-to-text data with English (en)
as source language and 8 target text languages,
namely Dutch (nl), French (fr), German (de), Ital-
ian (it), Portuguese (pt), Romanian (ro), Russian
(ru), and Spanish (es). For ASR, we use the
en-es section (the largest of the corpus). For
ST, 8 different models are trained, one for each
language direction. Evaluation is performed on
the tst-COMMON, by computing word error rate
(WER) for ASR and BLEU with SacreBLEU (Post,
2018)10 for ST. We assess statistical significance
using bootstrap resampling (Koehn, 2004) with
95% confidence interval. Detailed experimental
settings are reported in Appendix B.

Trainings and inferences were performed on, re-
spectively, two and one A40 GPU(s). On Ampere
GPUs, PyTorch computes convolutions and ma-
trix multiplications with TensorFloat-3211 (TF32)
tensor cores by default. TF32 speeds up the compu-
tation but introduces numeric errors that can cause
small random fluctuations, e.g. in the presence of
padding. In the following, we experiment both with
and without TF32 (both at training and inference
time) because padding has no effect on the final
outputs only when TF32 is disabled.

4.3 Impact of the Identified Bugs

We evaluate the impact of the identified bugs (§4.1)
on ASR and ST results by varying the IBSs as in-
creasing the batch size introduces more padding,
amplifying the effects of the bugs. Initially, experi-
ments are conducted on our correct codebase ( ).
Subsequently, we enable single precision (TF32).
Then, we reintroduce the bugs individually ( 1,

2, and 3), and all together ( 1,2,3).

ASR Table 3 shows, in comparison to , the im-
pact of TF32 and of the different bugs on ASR
performance. First, TF32 causes a not statistically
significant quality drop (+0.21 WER), which does
not vary with the IBS (despite the presence of mi-
nor variations in the outputs attested by a slightly
different number of generated words). When the
bugs are present ( 1, 2, 3), instead, the perfor-
mance becomes sensitive to the IBS. This is particu-
larly evident with 1, which significantly increases

10BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|v:2.0.0
11https://pytorch.org/docs/stable/notes/cuda.html#

tensorfloat-32-tf32-on-ampere-devices.
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Code IBS
1 10 100

10.52 10.52 10.52
+ TF32 10.73 10.73 10.73

+ 1 10.72 11.25* 19.50*
+ 2 10.73 10.74 10.74
+ 3 10.46 10.62 10.73
+ 1,2,3 11.32* 14.25* 54.56*

Table 3: WER for ASR with TF32 and bugs as IBS
varies (1, 10, and 100 sentences). * indicates that the
difference with is statistically significant.

en-de en-es

Code IBS IBS
1 10 100 1 10 100

24.67 24.67 24.67 30.34 30.34 30.34
+ TF32 24.84 24.84 24.83 30.63 30.62 30.63

+ 1 24.52 24.65 24.67 29.53* 29.41* 27.71*
+ 2 24.56 24.57 24.58 30.53 30.53 30.53
+ 3 24.53 24.46 24.42 30.33 30.35 30.24
+ 1,2,3 24.68 24.58 23.23* 28.57* 27.81* 21.15*

Table 4: BLEU for ST with TF32 and bugs as IBS
varies (1, 10, and 100 sentences). * indicates that the
difference with is statistically significant.

the error rate (+8.78 WER) when we introduce a
considerable amount of padding (IBS=100). It is
noteworthy that most of the differences compared
to the bug-free version ( ) are not statistically sig-
nificant, and the best result is achieved with 3
and 1 as IBS. Only the presence of all bugs 1,2,3
causes consistent and statistically significant qual-
ity drops. Nonetheless, the results with 1 and 10
as IBS are still far better than those obtained with
Transformer architectures on the same benchmark
(i.e. 26.61 by Cattoni et al. 2021 and 15.6 by Gaido
et al. 2021). Moreover, their reproducibility is not
hindered by the presence of bugs, as setting the IBS
to any particular value consistently yields the same
score. We can conclude that even flawed code can
produce competitive and reproducible results and,
therefore, focusing only on these two aspects is not
enough to ensure the trustworthiness of the code.

ST Table 4 reports the same study on the two
most used sections of MuST-C (en-de, and en-es).
The behavior is quite different between the two,
but the best scores are always obtained with TF32
and without bugs. On en-es, 1 causes statisti-
cally significant drops that increase with the IBS
and are exacerbated if combined with the other two
bugs ( 1,2,3). On en-de, instead, none of the bugs
significantly impacts the results. Interestingly, the

Model en-de en-es
ESPNet (Inaguma et al., 2020) 22.9 28.0
Fairseq (Wang et al., 2020) 22.7 27.2
Speechformer (Papi et al., 2021) 23.6 28.5
E2E + ML (Zhao et al., 2021) - 28.5
SATE (no KD) (Xu et al., 2021) 24.1 -
E2E-ST-FS (Zhang et al., 2022) 23.0 28.0
S2T-Perceiver (Tsiamas et al., 2023) 24.2 28.0
Conformer 1,2,3 24.7 28.6

Table 5: BLEU of models trained on MuST-C en-de and
en-es compared to Conformer 1,2,3 (IBS=1).

result obtained with all bugs ( 1,2,3) and 1 as IBS is
slightly higher (+0.01) than that without bugs ( ).
Furthermore, by comparing the scores obtained
with all bugs ( 1,2,3) and 1 as IBS with those of
previous ST works (Table 5), we can notice that,
as previously observed for ASR, the presence of
bugs is not evident from the results, which are still
competitive with those of other models. This sup-
ports our conclusion that good (and reproducible)
results do not imply code correctness, as this state-
ment holds for different tasks and language pairs.

4.4 Impact of Building on Incorrect Code

We now showcase how incorrect code can lead to
misleading conclusions when experimenting with
a new technique. We choose to evaluate the CTC
compression (Liu et al., 2020; Gaido et al., 2021)
because we speculate that it limits the negative ef-
fects of the bugs identified in §4.1, as it reduces
the sequence lengths and, in turn, the amount of
padding. Introduced in the context of Transformer-
based models, CTC compression reduces training
and inference times, as well as VRAM require-
ments, while yielding minimal (not statistically
significant) gains in terms of translation quality
(Gaido et al., 2021). A detailed description of the
CTC compression is provided in Appendix C.

ASR Table 6 shows the effects on ASR perfor-
mance of introducing CTC compression (CTC
Compr.) into the codebase with all bugs ( 1,2,3)
and without them ( ). CTC compression causes a
small and not statistically significant performance
degradation (+0.12 WER) when the correct imple-
mentation ( ) is used (in accordance with the find-
ings on the Transformer architecture). When bugs
are present in the codebase ( 1,2,3), instead, the
outcome is overturned: CTC compression brings
statistically significant gains (-0.93 WER even with
1 as IBS). These observations lead to the conclu-
sion that building on incorrect code can produce
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Code Model IBS en-de en-es en-fr en-it en-nl en-pt en-ro en-ru Avg

Conformer
1

24.67 30.34 36.22 25.73 30.04 30.55 23.43 17.29 27.2810
100

Conformer
+

CTC Compr.

1
24.97 30.48 36.43 26.25* 30.31 30.09† 24.67* 17.35 27.5710

100

1,2,3

Conformer
1 24.68 28.57 35.70 25.81 29.68 30.22 23.52 15.83 26.75
10 24.58 27.81 35.65 25.70 29.35 30.02 23.43 15.36 26.49

100 23.23 21.15 31.70 23.42 24.92 27.72 22.68 11.05 23.23
Conformer

+
CTC Compr.

1 24.95 30.49* 36.27* 25.84 29.42 30.04 23.96* 17.05* 27.25
10 25.21* 30.72* 36.18* 26.01 29.64 30.14 23.95* 17.06* 27.36

100 25.26* 30.52* 36.36* 25.88* 29.66* 30.16* 23.92* 16.87* 27.33

Table 7: BLEU for ST of the correct/incorrect codebase with and without CTC Compr. as IBS varies (1, 10, and
100). */† indicate that the improvement/degradation of CTC Compr. is statistically significant.

Model Code IBS
1 10 100

Conformer 10.52 10.52 10.52
+ CTC Compr. 10.64 10.64 10.64

Conformer
1,2,3

11.32 14.25 54.56
+ CTC Compr. 10.39* 10.34* 10.81*

Table 6: WER for ASR of the correct/incorrect codebase
with and without CTC Compr. as IBS varies (1, 10, and
100). * indicates that the improvement of CTC Compr.
is statistically significant.

misleading findings. Besides, the best overall re-
sult is achieved with the 1,2,3 codebase (with 10
as IBS and CTC compression), reiterating that high
scores do not imply code correctness.

ST Table 7 reports the same analysis on the 8 lan-
guage pairs of MuST-C. As in ASR, the presence of
bugs ( 1,2,3) unduly rewards the CTC compression
mechanism, which yields statistically significant
gains on all the languages with 100 as IBS and on
4/5 out of 8 languages with 1/10 as IBS. With the
bug-free version ( ), instead, the improvements
are statistically significant only on two language
pairs (en-it, and en-ro), while on en-pt there is a
statistically significant degradation. On average
over all language pairs, the gain brought by CTC
compression in the presence of bugs ( 1,2,3) ranges
from 0.5 BLEU (with 1 as IBS) to 4.1 BLEU (with
100 as IBS), while it is only of 0.29 BLEU with
the correct code ( ). We can hence confirm that
the presence of bugs leads to erroneous findings
also in the ST task, as CTC compression seems to
significantly improve translation quality, which is
not the case with the correct Conformer implemen-
tation (as well as with Transformer, as proved by
Gaido et al. 2021). Moreover, the best scores for
en-de and en-es are achieved with the presence of

all bugs ( 1,2,3), and the average performance gap
between codebases with ( 1,2,3) and without ( )
bugs can be as little as 0.21 BLEU (when IBS is 10)
and may be further narrowed, or even overturned,
by “tuning” the IBS. This demonstrates again the
impossibility to assess code correctness only by
looking at the results.

5 Increasing Research Code Correctness

After demonstrating that the current tendency to as-
sess code correctness solely based on the reported
results (§3) potentially leads to wrong findings (§4),
in this section we propose countermeasures. Specif-
ically, we aim at fostering the adoption of SQA best
practices in two ways: 1) by releasing a Python
package (pangoliNN) for testing neural networks
and assisting researchers in the verification of code
correctness (§5.1); 2) by proposing the integration
of current conference checklists with recommenda-
tions for SQA best practices (§5.2).

5.1 pangoliNN

As discussed in §2, testing software is the only way
to enforce that it works correctly. Therefore, as
the first and foremost method to increase code cor-
rectness, we recommend the extensive implemen-
tation and adoption of Unit Tests (UTs) to check
that the code has the expected behavior (Liskov,
1975; Goodenough and Gerhart, 1975; Huizinga
and Kolawa, 2007; Kassab et al., 2017). Ideally,
this should be done prior to writing the actual code,
following the so-called “test-driven development
practice” (Beck, 2002). UTs should cover all the
assumptions about how the code works (e.g., ensur-
ing that the presence of padding does not alter the
results). While achieving complete test coverage
is a utopian objective, the higher the coverage, the
higher the quality of the codebase.
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To ease this work, we introduce pangoliNN,12

a Python package specifically designed for test-
ing neural modules. Built upon the widely used
PyTorch library (Paszke et al., 2019), pangoliNN
offers a collection of pre-defined tests that enforce
specific behaviors of the modules.13 Its primary
objective is to simplify and expedite the process
of testing neural networks, alleviating researchers
from the burden of creating UTs from scratch. In-
deed, writing UTs may initially be perceived as
an additional and undesirable cost, although ample
literature dispels this perception. Williams et al.
(2003), for instance, proved that the inclusion of
UTs does not hamper code-writing productivity, El-
lims et al. (2004, 2006) showed that the perceived
cost is “exaggerated”, and Hevery (2009) that the
initial overhead14 pays off by saving time spent on
manual experiments.

Furthermore, unlike manual experiments that are
often resource-intensive and environmentally im-
pactful (Strubell et al., 2019), UTs are generally
lightweight (e.g., they do not involve any training
phase). As such, writing UTs would contribute to
the environmental sustainability of NLP research,
facilitating the transition to Green AI (Schwartz
et al., 2020). Also, UTs do not require any pre-
trained model to run, as their nature and goal
greatly differ from assessing the quality of a trained
model, as recently proposed with behavioral testing
(Ribeiro et al., 2020). Through behavioral testing,
we check whether a specific instance properly han-
dles different aspects, such as linguistic phenomena
(e.g., negation, co-references), and/or produces cor-
rect outputs with challenging inputs. Through UTs,
instead, we assess the behavior and robustness of
the code itself (rather than of model instances), by
verifying whether assumptions about properties of
the network or about its behavior in specific condi-
tions (e.g., not being influenced by the presence of
padding) are respected.

Currently, pangoliNN includes tests for two as-
pects: i) proper handling of padding and batching,
ensuring consistent output of neural modules irre-
spective of padding presence; and ii) addressing
causality by verifying the independence of mod-
ule output from future elements in the input se-
quence, which is crucial for autoregressive and

12As a pangolin looks for bugs and catches them, this library
aims at finding bugs in neural networks (NN). Hence the name.

13See https://readthedocs.org/projects/pangolinn/.
14Estimated in 16%-35% of the overall software develop-

ment cost (George and Williams, 2003; Hevery, 2009).

other sequence-to-sequence models. It also fea-
tures comprehensive documentation13 with simple
examples to guide researchers in its usage. More-
over, pangoliNN itself is extensively unit tested,
and these UTs provide additional implicit guidance
on how to effectively utilize the package.

Despite being in its initial stage (for the limited
number of tests currently covered), we argue that
the first release of pangoliNN represents a mile-
stone toward increasing the quality and trustworthi-
ness of NLP research code and, in turn, outcomes.
We hope that it will be embraced and expanded
upon by the research community, with the integra-
tion of additional tests, ultimately growing it into a
comprehensive testing library for neural networks.

5.2 Code-quality Checklist
As a complementary initiative, we also propose to
integrate the existing conference checklists with
questions targeting the improvement of code cor-
rectness and quality in research (Table 8). It is
worth mentioning that we have strictly adhered to
these guidelines throughout the development of
both pangoliNN and of our padding-safe imple-
mentation of the Conformer architecture.

The first questions (Q1-2) focus on the adoption
of UTs (possibly leveraging pangoliNN), whose
importance has been stressed in the previous sec-
tion. However, the presence of UTs alone does not
guarantee that the code works. Indeed, UTs should
be executed every time the codebase is modified,
even in case of a seemingly unrelated change, as
the validity of a test expires whenever the software
is edited (as seen in §2). This is commonly en-
forced through continuous integration (CI), which
executes all UTs at every code change (Duvall et al.,
2007). A running and successful CI offers the sup-
plementary advantage of providing implicit guid-
ance on the installation and execution of the code
for individuals attempting to replicate a study. Fur-
thermore, it mitigates the occurrence of replication
failures due to syntax or runtime errors, as it of-
ten happens in current NLP artifacts (Arvan et al.,
2022). Such failures can arise because the released
version of the code might slightly differ from those
used for the experiments due to small refactorings
prior to the release. For this reason, Q3 and Q4
respectively focus on test execution and on the pres-
ence of a CI, so as to ensure that the checks of the
UTs are actually respected.

Lastly, we encourage (Q5) the adoption of a code
reviewing practice (Baum et al., 2016), in which
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1. Have you tested your code with relevant tests?

2. Have you tested assumptions about code be-
havior with Unit Tests (UTs)?

3. Have UTs been executed on the code version
used for the experiments and, if applicable, the
publicly released version?

4. Does the repository contain a continuous inte-
gration that runs the UTs?

5. Has every contribution to the codebase been
reviewed by at least one person?

Table 8: Code-quality Checklist.

all changes are reviewed and approved by a person
different from the code author.15 Code review is a
lightweight and informal process compared to code
inspection (Fagan, 1976) and has been shown to
cause little overhead for most code changes (Sad-
owski et al., 2018). It consists in reading and com-
menting on the source code for a change, which
should be kept small and focused on one single
aspect or new feature. This aims not only at avoid-
ing bugs, but also at improving code readability
and documentation (Baum et al., 2017; Chen et al.,
2019; Bahaidarah et al., 2022; Trisovic et al., 2022),
and, in turn, reusability and reproducibility. In ad-
dition, it serves as a powerful tool for knowledge
transfer (Bacchelli and Bird, 2013), thus novices
would particularly benefit from it.

As a final note, we would like to emphasize that
our proposed “Code-quality Checklist” should be
interpreted as the “Reproducibility Checklist” now
required by many top-tier venues: though strongly
encouraged, following the checklist is not manda-
tory for paper submissions and its intent is fostering
software quality and correctness rather than certify-
ing it. Specifically, it will encourage awareness of
SQA concepts and coding best practices, especially
among researchers who have not been exposed to
them during their education.

6 Conclusions

In parallel with the current efforts to enhance the re-
producibility of NLP research, this paper urges sim-
ilar actions targeting the improvement of research
software quality, underscoring its importance for
the reliability of research findings. In comparison
to the attention given to reproducibility within our

15The reviewer(s) can be any person with basic knowledge
of the codebase, such as lab teammates or advisors.

community, we observed the predominant neglect
of code correctness and elaborated on the risks as-
sociated with assessing soundness solely on the
basis of experimental results. As we empirically
demonstrated through a case study involving the
widespread Conformer architecture, such risks in-
clude the potential of drawing misleading conclu-
sions from positive results obtained using flawed
code. As a countermeasure, besides releasing a
corrected Conformer implementation, we created
the pangoliNN Python package to facilitate test-
ing neural models and proposed the adoption of a
“Code-quality Checklist” aimed at fostering coding
best practices. While we acknowledge that these
solutions are not a panacea, their purpose is to raise
awareness within the NLP community about the
importance of software quality. We hope that our
endeavor will inspire a collective commitment to
developing high-quality and reliable code.
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Limitations

To back up our call to action toward the adoption of
coding best practices aimed at fostering correctness
and improving the quality of the developed soft-
ware, we presented a case study involving the use
of the Conformer architecture in the two most pop-
ular speech processing tasks: speech recognition
and translation. Although the effects of the pres-
ence of bugs might be found also in other scenarios,
such as text-to-speech, speech emotion recognition,
spoken language understanding, and speech sepa-
ration, we did not cover them in this paper. While
the undesired effect of the bugs we isolated (and
corrected) was empirically demonstrated, extend-
ing the analysis to other research areas would be
a natural extension of our study, which could pro-
vide a more comprehensive understanding of the
impact of the identified bugs on the broader NLP
community working on speech-related tasks.

Moreover, in our case study, we examined the
open-source implementations of Conformer, in
which we identified three types of bugs related
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to the Convolution Module, Initial Subsampling,
and Positional Encodings. While we found effi-
cient solutions for the first two bugs, for the last
one our fix introduces a significant overhead. As
a result, the implementation we release, although
correct, increases the training time of the models.
We are confident that, by open-sourcing our code,
the community will soon find a way to optimize it
and overcome this limitation, capitalizing on our
findings and spreading the use of more reliable
versions of a state-of-the-art architecture.
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A Conformer in ASR and ST

ASR is the task in which an audio containing
speech content is transcribed in its original lan-
guage. In ST, instead, the source audio is trans-
lated into text in a different language. Nowadays,
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Figure 2: Convolution module in the Conformer encoder layer. Convolutional blocks are 1D convolutions.

both tasks are commonly performed with end-to-
end (or direct) models (Graves and Jaitly, 2014;
Chorowski et al., 2014; Bérard et al., 2016; Weiss
et al., 2017), whose architecture is based on the
Transformer (Vaswani et al., 2017). The Trans-
former has been adapted to work with audio in-
puts (Dong et al., 2018; Di Gangi et al., 2019) by
introducing two convolutional layers that shrink the
length of the input sequence by a factor of 4, so as
to reduce the otherwise excessive memory require-
ments. More recently, Gulati et al. (2020) proposed
the Conformer: a novel architecture with a modi-
fied encoder that led to significant improvements
in both ASR and ST (Inaguma et al., 2021).

The changes introduced in the Conformer en-
coder layer structure can be summarized as fol-
lows: i) relative sinusoidal positional encodings
(Dai et al., 2019) are introduced in the self-attention
for improved generalization with respect to vary-
ing input lengths; ii) the FFN sublayer is replaced
by two FFNs that wrap the self-attention, inspired
by the Macaron-Net (Lu et al., 2019); iii) a con-
volution module (Figure 2) is added after the self-
attention, before the second FFN layer. The con-
volution module, which is wrapped in a residual
connection, applies layer normalization, followed
by a pointwise convolution that doubles the dimen-
sion of the feature vector, which is restored to its
original size by a Gated Linear Unit (GLU) activa-
tion function (Dauphin et al., 2017). Then, a depth-
wise convolution with 31 kernel size is applied
before a batch normalization (Ioffe and Szegedy,
2015), followed by the Swish activation function
(Ramachandran et al., 2017), and another pointwise
convolution. Lastly, a dropout module (Srivastava
et al., 2014) randomly zeroes out a percentage of
the features to prevent the network from overfitting.

B Experimental Settings

Our Conformer-based architecture is composed of
12 Conformer (Gulati et al., 2020) encoder layers
and 6 Transformer (Vaswani et al., 2017) decoder
layers, with 8 attention heads each. Embedding
size is set to 512 and hidden neurons in the feed-
forward layers to 2,048, with a total of 114,894,730
model parameters. Dropout is set to 0.1 for feed-

forward, attention, and convolution layers. The
kernel size of the Convolution Module is set to 31
for both point-wise and depthwise convolutions.
We train all the models using Adam (Kingma and
Ba, 2015) optimizer (betas (0.9, 0.98)) and label-
smoothed cross-entropy (LSCE) loss (smoothing
factor 0.1). We also use an auxiliary Connection-
ist Temporal Classification or CTC loss (Graves
et al., 2006) during training to ease convergence
and obtain competitive results without pre-training
the encoder with that of an ASR model (Gaido
et al., 2022). The auxiliary loss is summed to the
LSCE with 0.5 relative weight. The learning rate
is set to 2 · 10−3 with Noam scheduler (Vaswani
et al., 2017) and 25k warm-up steps. The vocabular-
ies are based on SentencePiece models (Kudo and
Richardson, 2018) with size 5,000 (Inaguma et al.,
2020) for the English source and 8,000 (Di Gangi
et al., 2020) for the ST target languages. We set
100k maximum updates with early stopping after
10 epochs without loss decrease on the dev set and
average 5 checkpoints around the best (best, two
preceding, and two following). All trainings are
performed with 40k tokens as batch size and 4 as
update frequency on two GPUs. All other settings
are the default of Fairseq-ST (Wang et al., 2020),
which we forked as a base of our implementation.
SpecAugment (Park et al., 2019) is applied dur-
ing training, while utterance-level Cepstral mean
and variance normalization is performed both at
training and inference time. Trainings lasted 18-33
hours depending on the model configuration (e.g.,
with or without the fixes) and the language pair due
to the different sizes of the training data.

C CTC compression

CTC compression has been proposed to reduce the
difference in terms of sequence length between
corresponding audio and text representations. In
contrast with fixed reduction methods like max
pooling or strided convolutions that apply a prede-
termined reduction to each sequence, CTC com-
pression leverages the probability distribution over
the source vocabulary augmented with a <blank>
symbol produced by the CTC module. These prob-
abilities are used to assign a label (the most likely
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one) to each vector of the sequence and collapse
contiguous vectors corresponding to the same la-
bel by averaging them. By dynamically determin-
ing which vectors of the audio sequence should be
merged, it tries to avoid the mismatch in terms of
sequence length with the sub-word sequence of the
corresponding transcript.
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