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Abstract

LLMs confront inherent limitations in terms
of its knowledge, memory, and action. The
retrieval augmentation stands as a vital mecha-
nism to address these limitations, which brings
in useful information from external sources to
augment the LLM. However, existing retrieval
methods encounter two pressing issues. On
one hand, the general retrievers are not prop-
erly optimized for retrieval augmentation hence
exhibit limited effectiveness; on the other hand,
the task-specific retrievers excel in the targeted
retrieval augmentation scenario, while lack the
versatility to handle diverse scenarios. In this
work, we propose LLM-Embedder for the uni-
fied support of diverse retrieval augmentation
scenarios. Our method presents three technical
contributions. Firstly, we introduce a new re-
ward formulation, namely rank-aware reward.
It exploits the ranking position of the desired
output among N sampled outputs from the
LLM, which leads to fine-grained and robust
computation of reward from the LLM’s feed-
back. Secondly, we design a novel distillation
objective, called graded distillation. It incorpo-
rates both the absolute value and the relative or-
der of the reward for more sufficient utilization
of the LLM’s feedback. Thirdly, we systemat-
ically optimize the multi-task learning, which
effectively unifies the multiple retrieval func-
tionalities into one model. In our experiment,
LLM-Embedder notably improves the LLM’s
performances in various downstream tasks, and
outperforms both general and task-specific re-
trievers with a substantial advantage. Our data,
code, and model have been released at https:
//github.com/FlagOpen/FlagEmbedding.

1 Introduction

Large language models (LLMs) present a unified
foundation to support general artificial intelligence
* Co-first authors. This work was done when Peitian

Zhang is in an internship at BAAIL
f Corresponding author.
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Figure 1: LLM-Embedder presents a unified embedding
model for the diverse retrieval augmentation scenarios.
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applications (Brown et al., 2020a; Chowdhery et al.,
2022; Touvron et al., 2023). Despite the substan-
tial improvement over the last-gen methods, LLMs
still face many severe problems, such as halluci-
nation (Ji et al., 2023; Bang et al., 2023), limited
memory (Bai et al., 2023b; An et al., 2023), mis-
following of instructions (Ouyang et al., 2022; Bai
et al., 2022). Many of the challenges can be traced
back to the inherent limitations of LLMs in terms
of knowledge, memory, and action. Specifically,
LLMs cannot internalize the vast and constantly
changed world knowledge due to their finite and
static parameters. LLMs are incapable of memo-
rizing and utilizing long-term information because
of the limited context length. Finally, LLMs re-
quire manually in-context examples and tools to
accomplish complex real-world tasks.

Retrieval augmentation stands as a vital mech-
anism to address these inherent limitations of the
LLM. It brings in useful information from exter-
nal sources, such as knowledge, memory pieces,
in-context examples, and tools, which substantially
enhances the LLLM for the generation of desired
outputs (Gao et al., 2023). The embedding model
(a.k.a. embedder) is a critical part of retrieval aug-
mentation, which bridges the LLLM’s information
needs with external sources. The existing embed-
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ding models can be briefly partitioned into two
categories. One is the general-purpose embedders,
which aim to be universally applicable for various
retrieval tasks (Izacard et al., 2021; Wang et al.,
2022b; Xiao and Liu, 2023). Despite their popu-
larity, they are not properly optimized for retrieval
augmentation, and are thus prone to an inferior ef-
fectiveness in the corresponding task. The other
one is the task-specific embedders, which are tai-
lored for one specific retrieval augmentation sce-
nario, e.g., knowledge retrieval (Yu et al., 2023)
and example retrieval (Wang et al., 2023a). How-
ever, these methods lack versatility across different
scenarios. As the LLMs require assistance from
diverse external sources in solving real-world prob-
lems, it becomes imperative to develop an effective
and versatile embedding model to support the di-
verse retrieval augmentation needs.

In this paper, we present LLM-Embedder, a uni-
fied embedding model to support a broad range of
retrieval augmentation scenarios, including knowl-
edge retrieval, memory retrieval, example retrieval,
and tool retrieval. Training such a versatile embed-
ding model presents multiple challenges in terms of
1) how to learn from the LLM, and 2) how to harmo-
nize different retrieval tasks. In LLM-Embedder,
the following technical contributions are presented.

e Reward Formulation. For each retrieval aug-
mentation scenario, the embedder is learned from
the LLM’s feedback, i.e. the retrieval candidate
needs to be promoted if it contributes to the gener-
ation of the desired output. Conventional methods
rely on the generation likelihood (Shi et al., 2023;
Izacard et al., 2023). However, the absolute gen-
eration likelihood tends to fluctuate dramatically,
which may lead to inaccurate estimation of the
contribution of each retrieval candidate. In LLM-
Embedder, we propose a new reward formulation
called rank-aware reward. Essentially, a retrieval
candidate will receive a higher reward if it can bet-
ter promote the desired output’s ranking among N
sampled outputs from the LLM. Thus, it is free
from dealing with the absolute generation likeli-
hood, which facilitates a fine-grained and more
robust computation of the reward.

¢ Distillation Objective. Based on the LLM’s
reward, the embedding model is learned by knowl-
edge distillation. Typically, this is accomplished
by minimizing the KL-divergence between the re-
ward distributions and the relevance distribution
estimated by the embedder (Shi et al., 2023; Yu

et al., 2023). In many cases, the reward distribution
are either polarized (extremely high rewards for
one candidate while low rewards for others) or flat
(even rewards for every candidate), which makes
it difficult to distill fine-grained knowledge with
KL-Divergence. To address this problem, we de-
sign the graded distillation. It integrates both the
absolute values of rewards and their relative orders
for knowledge distillation, which leads to a more
sufficient exploitation of the LLM’s feedback.

o Multi-task Learning. LLM-Embedder is trained
to support diverse retrieval augmentation scenarios
through multi-task learning. However, different
scenarios need to capture distinct semantic rela-
tionships, hence the multiple training tasks may
conflict with each other. To harmonize the learning
process, we perform systematic optimization with
three techniques: 1) self-paced learning schedul-
ing, where lossy tasks can be automatically com-
pensated by higher learning rates; 2) homogeneous
batching, where training samples from one com-
mon task are gathered in the same batch to optimize
the impact of in-batch negative sampling; 3) diversi-
fied prompting, which presents different tasks with
unique prefixes such that the embedding model can
better distinguish each of them.

To summarize, LLM-Embedder stands as a pi-
oneering work for the uniform support of the di-
verse retrieval augmentation scenarios of LLMs. It
makes threefold technical contributions, and brings
valuable inspirations on how to learn from LLM’s
feedback and how to harmonize different retrieval
tasks. In our experiment, LLM-Embedder achieves
a superior performance, where it notably improves
the LLM’s performance in a variety of downstream
tasks. Meanwhile, its retrieval augmentation’s ef-
fect is superior to both general and task-specific
retrieval methods. Our model and code will be
publicly available to facilitate future research.

2 Related Works

e Embedding Model maps the input text into
dense vector (i.e. embedding) in the semantic
space, where the relevance between texts is mea-
sured by the similarity between embeddings. It has
become the de-facto choice for modern information
retrieval systems. There are mainly three research
threads for improving the performance of embed-
ding models. The first one is leveraging advanced
backbone models, including the retrieval oriented
models (Liu and Shao, 2022; Wang et al., 2022a)
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and large language models (Ma et al., 2023; Li
et al., 2023). Another thread is enhancing the learn-
ing methodology, such as upgrading the negative
sampling strategy (Karpukhin et al., 2020; Izacard
et al., 2021; Xiong et al., 2020) and incorporating
knowledge distillation from a more precise rank-
ing model (Qu et al., 2020; Hofstitter et al., 2021;
Xiao et al., 2022). Last but not least, many recent
works dedicate to train a universal retriever across a
wide array of tasks (Wang et al., 2021; Lewis et al.,
2021; Karouzos et al., 2021; Yu et al., 2022; Su
et al., 2022; Asai et al., 2022). LLM-Embedder in-
herits successful practices for training high-quality
dense retriever, while innovating novel techniques
to tailor for the multi-task learning of diverse re-
trieval augmentation scenarios.

¢ Retrieval Augmentation is a vital mechanism
to address the inherent limitations of the LLM in
terms of knowledge, memory, and action. Con-
cretely, the LLM can 1) generate factoid answers
with retrieved knowledge (Gao et al., 2024; Jiang
et al., 2023); 2) utilize long-context information
with retrieved memory pieces (Rubin and Berant,
2023; Wang et al., 2023b; Xu et al., 2023); 3) better
follow human instruction with retrieved in-context
examples (Brown et al., 2020b; Cheng et al., 2023);
4) execute complex tasks with retrieved tools (Qin
et al., 2023). In practice, there are two common
options of retrievers: the general retrievers (Robert-
son et al., 2009; Izacard et al., 2021; Xiao and
Liu, 2023; Neelakantan et al., 2022) and the task-
specific retrievers (Yu et al., 2023; Wang et al.,
2023b; Qin et al., 2023). The general retrievers
exhibit superior versatility, but may suffer from
an inferior retrieval quality in retrieval augmenta-
tion tasks. In contrast, task-specific retrievers are
more specialized, achieving better performance in
the targeted scenario, while falling short when han-
dling other scenarios. Compared with the existing
works, LLM-Embedder unifies the generality and
specialty: it comprehensively supports all major
retrieval augmentation needs of the LLM, mean-
while achieving the leading performance in every
retrieval augmentation scenario.

3 LLM-Embedder

In this section, we will present the retrieval aug-
mentation scenarios with LLM-Embedder (§3.1),
and introduce its training methodology (§3.2).

User Input U

How many seasons
is Rick&Morty

Ranked Outputs

> Four Seasons.
;
4
-el---> Seven Seasons. Rankr® =8
N
|\\ :
~> Rick&Morty has five ...

User Input U Reward R(C;) =7

How many seasons T

is Rick&Morty

Ranked Outputs
-> Seven Seasons. Rank r? =
Six Se'asons.
T> Rick&Mc:)rty isa..
Retrieval Candidate C;

Rick and Morty is an American ... It has
seven seasons until now ...

Figure 2: The rank-aware reward for each retrieval can-
didate. It measures the improvement of the rank of the
desired output among multiple sampled outputs.

3.1 Retrieval Augmentation

LLM-Embedder targets on the unified support
for the major retrieval augmentation needs of the
LLMs, including knowledge retrieval, memory re-
trieval, example retrieval, and tool retrieval. It
transforms each retrieval candidate C; € C into
its embedding C; € R” and stores all embeddings
in a vector DB. It also embeds the user input U
into U € RP, then retrieves the top-K relevant
candidates based on cosine similarity:

Ret(U) <+ top-K{cos(U,C;)}. (1)
C;

The retrieval result and the user input are synthe-
sized with template ¢ to prompt the LLM O:

0 « O(¥(U, Ret(U))). 2)

Each retrieval augmentation scenario has its unique
formulation of retrieval candidate, user input, and
prompt template, which are elaborated as follows.
o Knowledge Retrieval. The LLLM can generate
factoid answers with retrieved knowledge. Each
retrieval candidate is a passage from an external
knowledge corpus. The user input is usually an
explicit question. It can also be a conversation
context with a context-dependent question. In this
case, we concatenate the entire context as the user
input. The retrieved passages and the user input are
synthesized according to Template A.1.

e Memory Retrieval. The LLM can remember
and utilize long context memory with memory re-
trieval (Xu et al., 2023). Specifically, the long
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context split into equal-size chunks {v1, ..., v, }.
When processing the v;, each previous chunk con-
catenated with its subsequent chunk is treated as
aretrieval candidate, i.e. C; < v; + v;11, @ < j.
The user input is v; itself. Denote the LLM’s con-
text window size as L*. We maintain the recent L
tokens in the context window, while the rest L* — L
are populated with retrieved chunks.

o Example Retrieval. In-context examples help
the LLM to better follow human instruction. In-
stead of relying on manual specification, in-context
examples can be retrieved automatically to improve
the performance. Each example contains an op-
tional task description, an input, and an output,
which are all concatenated to form a retrieval can-
didate. The user input is the concatenation of the
task description and the task-specific input. The re-
trieved examples and the user input are synthesized
with Template A.5 to feed into the LLM.

e Tool Retrieval. The LLM leverages tools to
execute complex real-world tasks (Qin et al., 2023;
Yao et al., 2023). Tool retrieval efficiently provides
useful tools for the LLM. The tool’s description and
its API are concatenated as the retrieval candidate.
The user’s request is treated as the user input.

3.2 Training Methodology
3.2.1 Reward Formulation

A retrieval candidate is useful if it can facilitate
the generation of the desired output (denoted as
O%). The absolute value of generation likelihood
is not an appropriate measurement because it is
prone to dramatic numerical fluctuations. Alter-
natively, as shown in Figure 2, we argue that a
retrieval candidate is useful if it can lead to a better
ranking position of the desired output among N
sampled outputs from the LLM’s ({O;},). Based
on this argument, we descendingly sort the sam-
pled outputs based their generation likelihoods and
compute the rank of the desired output among them
when retrieval is disabled:

r r%gk({Ol, .., On: O; ~0O(U)}).

We then compute the rank of the desired output
with the same operation except that the retrieval
augmentation is enabled:

rb raogk({Ol, ...,On: O; ~O(U,Cy))})

Finally, the reward for the retrieval candidate C; is
computed as its improvement of the rank:

R(Cy) + % —rb. 3)

This reward formulation is free of dealing with
absolute likelihood values, but focuses on the re-
trieval candidate’s real impact on facilitating the
generation of the desired output.

3.2.2 Distillation Objective

Based on the LLM’s rewards, the embedding model
is learned through knowledge distillation, so that
the relevance estimated by the embedder becomes
consistent with the retrieval candidate’s actual use-
fulness. Minimizing KL-Divergence between the
relevance distribution and the reward distribution is
the most typical approach (Shi et al., 2023; Izacard
et al., 2023; Yu et al., 2023). However, the reward
distribution sometimes exhibits polarized (substan-
tially high reward for one candidate while low for
others) or flat (even reward for each candidate) pat-
terns. The KL-Divergence cannot effectively distill
fine-grained knowledge from these distributions.
To address this problem, we innovate a graded
distillation objective, which integrates both the ab-
solute reward values and the relative reward orders
for learning. It consists of a series of contrastive
losses, where the negatives of each loss include the
lower-rewarded candidates and the in-batch candi-
dates. All contrastive losses are aggregated with
normalized rewards as weights. Formally, given the
retrieval candidates {C;}},, their normalized re-
wards w(C;) < softmax(R(Cy))]i], the objective
is formulated as:

N(C;) + {C = R(C) < R(C;)} UInBatch(C;),

ecos(U,Ci)
min Z —w(C;) log
C;

Toexicy «=@ @
The graded distillation objective enjoys two advan-
tages. On one hand, it can robustly optimize the
embedder from various reward distributions. For
the polarized rewards, it will become the one-hot
contrastive learning. For the flat rewards, it will al-
ways supervise the embedder to prioritize the more
useful candidates against the less useful ones, re-
gardless of the absolute value of the reward. On
the other hand, it incorporates in-batch negatives
in the training process, which further improves the
discrimination capability of the embedder.

3.2.3

LLM-Embedder learns to support the four retrieval
augmentation needs with a single model through
multi-task learning. Different retrieval tasks call for
distinct semantic relationships, which may conflict

Multi-Task Learning
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with each other. Therefore, it’s important to distin-
guish these tasks and harmonize the their learning
process. In this place, we tailor the multi-task learn-
ing framework with three techniques.

e Self-Paced Learning Scheduling. The intrinsic
learning difficulty of each task may vary, poten-
tially leading to differences in the model’s learn-
ing pace for each task. This may result in the
over-optimization of simpler tasks and the under-
optimization of more challenging tasks. Inspired
by (Liu et al., 2019), we propose to dynamically
adjust the learning pace of each retrieval task to
address this problem. Specifically, we deem the
loss of each retrieval task as a proxy to the learning
condition of that task. Based on it, we amplify the
learning rate for lossy tasks and reduce the learning
rate for already learned tasks. To achieve this goal,
we periodically checkpoint the loss of retrieval task
T during training, denoted as L. Given the basic
learning rate o, and the current loss of the retrieval
task 7', the learning rate of the current optimization

step is set to o X 1/é—;.
0

e Homogeneous Batching. The embedding
model’s discrimination capability benefits from the
quality and quantity of negative samples (Izacard
et al., 2021; Wang et al., 2022b), which consist of
hard negatives and in-batch negatives. The vanilla
batching strategy often packs training samples from
different tasks in the same batch. These samples
are irrelevant to each other and hence adversely
influence the quality of in-batch negatives. Instead,
we gather the training samples from the same re-
trieval task to form every batch. In this way, LLM-
Embedder should discriminate the positive sample
against B x M x Z — 1 negatives from the same
retrieval task, where B is the batch size, M the
candidate number, and Z the GPU number.

e Diversified Prompting. For retrieval task 7T,
two unique instructions I, I, g are assigned, which
are prefixed to the user input and the retrieval can-
didate, respectively. The concatenated sequence is
encoded into its embedding by LLM-Embedder:

UT < encode(IF+U), CT «+ encode(IL+C;).

The resulting embedding U7 and C7 are differen-
tiated across tasks, which helps LLM-Embedder to
distinguish each task.

4 Experiment

The experimental studies aim to investigate three
research questions. RQ I. Can LLM-Embedder

support the LL.M’s diverse retrieval augmentation
need? (§4.2) RQ 2. What is LLM-Embedder’s
impact on each retrieval augmentation scenario?
(§4.3) RQ 3. What is the individual contribution of
each technique in LLM-Embedder? (§4.4)

4.1 Settings
4.1.1 Training & Evaluation

We introduce the details of training and evaluation
on the four retrieval augmentation scenarios. Statis-
tics of all training datasets are reported in Table 7.
e Knowledge Retrieval. We train LLM-Embedder
with three datasets for knowledge retrieval, in-
cluding MSMARCO (Nguyen et al., 2016), Nat-
ural Questions (Kwiatkowski et al., 2019), and
QReCC (Anantha et al., 2020). Note that QReCC
does not have well-formed answers for generat-
ing rewards, thus, we use the annotated relevance
for contrastive learning. We include three datasets
to evaluate the impact of knowledge retrieval. 1)
MMLU (Hendrycks et al., 2020), a multiple-choice
questions dataset that covers a wide range of knowl-
edge. We retrieve 3 passages from the MSMARCO
Passage corpus (Nguyen et al., 2016), which are in-
tegrated as a prompt with the official Template A.2.
The metric is accuracy. 2) PopQA (Mallen et al.,
2022), a question answering dataset that focuses
on long-tail entities. We retrieve 3 passages from
Wikipedia (Karpukhin et al., 2020), which are inte-
grated with the official Template A.3. The met-
ric is exact match. 3) QReCC (Anantha et al.,
2020), a conversational search dataset that requires
the retriever to find the relevant passage accord-
ing to a conversation context. It already provides
the ground-truth passage, we directly evaluate the
ranking metric, i.e. NDCG@3 following previous
works (Mao et al., 2023).

e Memory Retrieval. We consider two tasks
for memory retrieval. 1) Long-context conversa-
tion with MSC (Xu et al., 2021), where the LLM
should generate the ground-truth response. We
retrieve 1 historical dialogue turn as additional con-
text, which is synthesized with Template A.4. We
use its training set to fine-tune LLM-Embedder. 2)
Long-range language modeling with Books3 (Gao
et al., 2020), ArXiv (Gao et al., 2020), CodePar-
rot (Tunstall et al., 2022), and PG19 (Rae et al.,
2019), where PG19 is held-out from training. We
set the chunk size to 128, and maintain a recent
context length of 2048. We retrieve 8 chunks and
their continuation chunk to prepend to the recent
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context. Perplexity is the metric for both tasks.

e Example Retrieval. We follow LLM-R (Wang
et al., 2023a) to use in-context learning tasks from
FLAN (Chung et al., 2022) for training and eval-
uating the impact of example retrieval. It consists
of 9 distinct categories with 30 datasets: Closed-
Book QA (CQA), Commonsense (Comm), Corefer-
ence (Coref), Paraphrase (Para), Natural Language
Inference (NLI), Reading Comprehension (RC),
Sentiment Analysis (Sent), Data2Text (D2T), Sum-
marization (Summ). We retrieve 8 examples from
the union of the training set examples, which are
synthesized with Template A.5. The evaluation
metric is specified in Table 6.

e Tool Retrieval. We use the ToolBench (Qin
et al., 2023) for training and evaluating the tool
retrieval performance. Akin to QReCC, this dataset
does not include desired output from the LLM,
hence we train LLM-Embedder with contrastive
loss and directly evaluate NDCG@5.

4.1.2 Baselines

Firstly, we measure the performance of the LLM
without retrieval augmentation, denoted as None.
Secondly, we compare with two types of retrievers.
1) General retrievers, which aim to support a wide
range of text retrieval and representation tasks, such
as question answering, entity retrieval, and dupli-
cation detection. We include the following widely-
recognized baselines: BM25 (Robertson et al.,
2009), Contriever (Izacard et al., 2021), Instruc-
tor (Su et al., 2022), RetroMAE-BEIR (Liu and
Shao, 2022), and BGE (Xiao and Liu, 2023). These
methods are empirically competitive according to
BEIR (Thakur et al., 2021) and MTEB (Muen-
nighoff et al., 2022) benchmarks. 2) Task-specific
embedding models. These models are optimized
for one specific retrieval augmentation scenario.
We include the following baselines that excel in
their respective scenario: ARR (Yu et al., 2023) for
knowledge retrieval, LLM-R (Wang et al., 2023a)
for example retrieval, and API-Retriever (Qin et al.,
2023) for tool retrieval. Since retrieval augmenta-
tion introduces additional context to the LLM, we
add a simple yet strong baseline called Recency for
memory retrieval. It directly extends the context
window by the length of retrieved context.

4.1.3 Implementation

We use Llama-2-7B-Chat (Touvron et al., 2023)
as the backbone LLM. Besides, we utilize BGE
base (Xiao and Liu, 2023) to initialize LLM-

Knowledge Retrieval

— BGE
—— AAR
LLM-R
API-R
—— LLM-Embedder

Tool Retrieval Memory Retrieval

Example Retrieval

Figure 3: Impact of retrieval augmentation from differ-
ent retrievers (metric values are min-max normalized).

Embedder and fine-tune it as described in §3.2. The
hyper parameters during fine-tuning are shown in
Table 9. Although using rewards from Llama-2 7B
Chat, LLM-Embedder is also applicable to other
LLMs and its advantage remains. The experimental
results are shown in Appedix D. We use Flat index
from faiss (Johnson et al., 2019) for searching.

4.2 Overall Analysis

The evaluation results of the four retrieval augmen-
tation scenarios are presented in Table 1-3.

Firstly, compared with the results without re-
trieval augmentation, i.e. None, LLM-Embedder
delivers more precise answers with the retrieved
knowledge (Table 1), improved quality of long-
sequence generation with the retrieved memory
(Table 2), better instruction following effect with
the retrieved examples (Table 3), and more accu-
rate tool retrieval (Table 3). Besides, though the
LLM’s performance can also by improved by other
baseline retrievers, LLM-Embedder always leads
to the most amplified retrieval augmentation ef-
fect across all scenarios. It outperforms all general
retrievers and is competitive against task-specific
retrievers, i.e. AAR for knowledge enhancement,
LLM-R for example retrieval, and API-Retriever
for tool retrieval. This observation validates that
the LLM benefits from the retrieved information;
meanwhile, LLM-Embedder can provide a strong
and unified foundation to support diverse retrieval
augmentation needs of the LLM.

We can also observe that the task-specific em-
bedders optimized for one scenario result in lim-
ited performances in others, suggesting that the se-
mantic relationships required by different retrieval
scenarios are not transferable. To better illustrate
this point, we visualize the retrieval augmenta-
tion’s impact from five representative methods in
Figure 3. Notably, although task-specific embed-
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| MMLU | PopQA | QReCC
Method | STEM Social Human Other | All Avg. | PopQA | QReCC
None 0.347 0.533 0.509 0.497 0.460 0.206 -
BM25 0.376  0.538 0.505 0.509 0.472 0.349 0.434
Instructor 0.370 0.541 0.511 0.508 0.472 0.353 0.286
Contriever 0.368  0.538 0.508  0.501 0.468 0.328 0.356
RetroMAE-BEIR 0.386 0.546 0.522 0.528 0.485 0.436 0.404
BGE* 0.385  0.556 0.519  0.539 0.490 0.449 0.386
AAR' 0380 0550 0513 0529 | 0483 | 0479 | 0288
API-Retriever 0354 0534 0500 0507 | 0463 | 0249 | 0.114
LLM-R 0.363  0.528 0.502  0.498 0.463 0.251 0.023
LLM-Embedder (Ours) ‘ 0.385  0.557 0.523  0.536 ‘ 0.490 ‘ 0.505 ‘ 0.505

Table 1: The impact of knowledge retrieval. “+” and “}” indicate the SOTA general embedder and the task-specific
embedder, respectively. The best metrics are in bold, and the second-best metrics are underlined.

| Conversation | Language Modeling
Method | MSC | Books3  Arxiv  CodeParrot | PG19 (0.d.)
None 19.350 8.819 3.765 2.766 10.251
Recency 13.957 8.739 3.416 2.599 10.222
BM25 14.651 8.658 3.311 2.459 10.196
Instructor 14.880 8.662 3.355 2.476 10.201
Contriever 14.213 8.646 3.271 2.444 10.162
RetroMAE-BEIR 14.399 8.638 3.290 2.459 10.173
BGE* 14.294 8.631 3.291 2.458 10.154
AAR 14.700 8.638 3.326 2.467 10.181
API-Retriever 14.783 8.672 3.386 2.492 10.183
LLM-R 14.475 8.662 3.364 2.472 10.202
LLM-Embedder (Ours) | 13.483 | 8.608  3.232 2430 | 10.118

Table 2: The impact of memory retrieval. Recency is to directly extend the context without retrieval.

ders exhibit competitive performance for their tar-
geted scenario, their impacts are severely weakened
when applied on other scenarios. In contrast, LLM-
Embedder demonstrates a steady and competitive
performance across all scenarios. To summarize,
the irrelevant or even adverse retrieval patterns
can be reconciled by one unified embedding model
on top of our optimized training methodology.

4.3 Individualized Analysis

o Knowledge Retrieval. The evaluation results
of knowledge retrieval are reported in Table 1. We
make the following observations. 1) Benefit of ex-
ternal knowledge. On both MMLU and PopQA, we
can observe significant empirical advantages of the
retrieval augmentation methods compared with the
plain LLM, i.e. None. Among all retrieval methods,
LLM-Embedder is able to return the most accuracy
knowledge, leading to the best retrieval augmenta-
tion effect on both datasets. 2) Distinction among
datasets. The impact of knowledge retrieval is more
noticeable on PopQA than MMLU. This is because
PopQA is more knowledge-intensive, with a focus
on questions about long-tail entities. Moreover, the
baseline embedding models fail to handle conver-

sational search queries, resulting in their inferior
NDCG compared with BM25 on QReCC. In con-
trast, LLM-Embedder significantly outperfoms all
baselines on QReCC, again verifying its versatility.

e Memory Retrieval. The evaluation results of
memory retrieval are reported in Table 2. On one
hand, baseline retrievers underperform the Recency
baseline on MSC, which translates to the negative
impact of the retrieved conversation compared with
the recent one. This observation underscores the
challenges in effective memory retrieval. On the
other hand, the LLM-Embedder retains its superior
performance, reducing the perplexity against the
all baseline methods on all datasets.

o Example Retrieval. The evaluation results of
example retrieval are reported in Table 3. We have
the following observations. 1) Compared with ran-
dom examples, using retrieved examples yields
improved performances in most cases. This find-
ing underscores the effect of example retrieval for
helping the LLM to properly follow instructions.
2) BM25’s performance is substantially weaker
than its performance in other scenarios. This dis-
crepancy can be attributed to the specific nature
of in-context learning, where useful examples may
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In-Context Learning

Tool

Method | CQA  Comm Coref Para  NLI RC Sent  D2T  Summ | Avg | ToolBench
None 0.292  0.721 0.658 0.524 0448 0.489 0.708 0.198 0.145 | 0.465 -
Random 0.359  0.719 0.589 0.520 0477 0553 0916 0.350 0.357 | 0.545 0
BM25 0.360 0.702 0.603 0.506 0.458 0.540 0.728 0.302 0.156 | 0.484 0.512
Instructor 0.500 0.777 0.574 0.631 0536 0.622 0915 0460 0.457 | 0.604 0.388
Contriever 0.491 0.772  0.562 0.636 0.547 0.630 0.914 0.438 0.444 | 0.601 0.490
RetroMAE-BEIR | 0.459 0.774 0.584 0.576 0.541 0.603 0.929 0.466 0.447 | 0.594 0.521
BGE™ 0.472 0.777 0.555 0.617 0541 0599 0928 0472 0.452 | 0.597 0.576
AAR 0.481 0.780 0.585 0.589 0.535 0.604 0921 0.445 0.441 | 0.594 0.420
APL-Retriever! | 0477 0762 0547 0.627 0520 0610 0924 0487 0442 | 0595 |  0.802
LLM-R' 0.517 0.780 0.583 0.657 0.615 0.622 0906 0.478 0.488 | 0.626 0.132
LLM-Embedder ‘ 0.516 0.784 0.593 0.656 0.604 0.632 0922 0473 0474 ‘ 0.627 ‘ 0.865

Table 3: The impact of example retrieval and tool retrieval.

Method | Knwl. Mem. Expl Tool
LLM-Embedder 0.505 13483  0.627  0.865
w.0. Rank-Aware Reward 0.485 14.253 0.622  0.861
w.o0. Graded Distillation 0.492 13.547  0.610 0.854
w.o0. Self-Paced Scheduling 0.492 13.883  0.619  0.809
w.o. Homogeneous Batching | 0.447 14183  0.605  0.836
w.o. Diversified Instruction 0.503 13942  0.619  0.828

Table 4: Ablation studies of LLM-Embedder.

have low lexical similarity with the user input.

e Tool Retrieval. The evaluation results of exam-
ple retrieval are reported in Table 3. We observe
that the task-specific method, i.e. the API retriever,
beats other baseline methods by a large margin.
This is because these baselines are unfamiliar with
tools and hence fail to properly estimate the rel-
evance. However, LLM-Embedder continues to
maintain the leading position, highlighting its un-
fied support for diverse retrieval tasks.

4.4 Ablation Studies

The ablation studies are performed to to evaluate
the impact from each technical factor. The evalua-
tion results are reported in Table 4.

For “w.o. Rank-Aware Reward”, we switch to the
typical likelihood-based reward formulation (Shi
et al., 2023). Notably, the performance on knowl-
edge retrieval and memory retrieval substantially
decreases. We conjecture that in both scenarios, the
generation likelihood of the desired output drasti-
cally fluctuate, resulting in the inaccurate measure-
ment of the retrieval candidate’s usefulness.

For “w.o. Graded Distillation”, the graded dis-
tillation objective is replaced by the typical KL-
divergence (Izacard et al., 2023). As introduced,
graded distillation can stay robust to the polarized
or flat rewards, which leads to more effective us-
age of the LLM’s feedback. In this place, we can
observed that LLM-Embedder’s performance is re-
duced when graded distillation is disabled, espe-

cially for example retrieval.

For “w.o. Self-Paced Scheduling”, the learning
rate is the kept static for all retrieval tasks during
fine-tuning. We can observe that the performance
of tool retrieval drops significantly. This is because
the learning for this scenario does not proceed at
the same pace as other scenarios, necessitating the
dynamic control over learning speed for different
retrieval tasks.

For “w.o. Homogeneous Negatives”, the ho-
mogeneous in-batch negatives are disabled. This
change reduces the discrimination capability of the
embedder, because a great portion of the in-batch
negative samples will come from different tasks,
which are irrelevant to the target one. As we can ob-
serve, LLM-Embedder’s performance is decreased
due to such a change, especially for knowledge re-
trieval, where LLM-Embedder should discriminate
the relevant passage from a massive corpus.

For “w.o. Diversified Instruction”, we remove
the task-specific instructions in fine-tuning and
evaluation. Without this technique, it becomes
harder for the embedding model to distinguish dif-
ferent retrieval tasks. This intuition is consistent
with the observed result, as LLM-Embedder’s per-
formance decreases across all tasks.

5 Conclusion

In this work, we present LLM-Embedder, a unified
embedding model to support the LLM’s diverse
retrieval augmentation needs, including knowledge
retrieval, memory retrieval, example retrieval, and
tool retrieval. We propose three key techniques to
facilitate the training of LLM-Embedder, spanning
from reward formulation, distillation objective, and
multi-task learning recipe. Our experiments show
LLM-Embedder’s empirical advantages over both
general and task-specific embedding models across
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all evaluation scenarios. This highlights its effec-
tiveness as a foundational building block to support
the retrieval augmentation of the LLM.

6 Limitations

A few recent studies incorporate large language
models as the embedding backbone and achieve
new state-of-the-art performance. However, LLM-
Embedder is a BERT-base scale model. Its scal-
ing effect remains unexplored. Besides, LLM-
Embedder is specifically tailored for the four re-
trieval scenarios. For tasks that fall outside its
scope of coverage, such as documentation retrieval,
the effectiveness of the LLM-Embedder may not
be as robust as that of a strong general embedding
model like BGE.

7 Ethical Considerations

LLM-Embedder is an embedding model that maps
the text into high-dimensional vectors and relies on
vector similarity to determine relevance between
texts. Therefore, it inherits the potential risks of
the embedding model family. Specifically, LLM-
Embedder may process a large amount of personal
or sensitive data, which must be handled with con-
sent. There is also the security concern as recent
works have proven it possible to decrypt the orig-
inal textual information from embedded vectors.
Lastly, it may perpetuate and amplify biases present
in the training data, leading to unfair or discrimina-
tory outcomes.
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A Prompt Templates

Prompt A.1: Rank-Aware Reward (Knowledge)

Knowledge:
<Passage>

Q: <Question> A:

Prompt A.2: MMLU

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

The following are multiple-choice questions (with
answers) about <subject>.

<Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
Answer:

.

Prompt A.3: PopQA

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

\

Q: <Question 1> A: <Answer 1>
Q: <Question 2> A: <Answer 2>

Q: <Question 15> A: <Answer 15>
Q: <Question> A:

Prompt A.4: Multi-Session Chat

Speaker 1: <Retrieved/Recent Utterance 1>
Speaker 2: <Retrieved/Recent Utterance 2>
Speaker 1: <Utterance 1>

Speaker 2:
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Dataset Average Length
Books3 101010
Arxiv 26735
CodeParrot 217364
PG19 90447

Table 5: Average lengths of long-range language model-
ing datasets.

Prompt A.5: In-Context Learning

<Example 1 Input><Example 1 Ouptut>
<Example 2 Input><Example 2 Ouptut>
<Example 8 Input><Example 8 Ouptut>

<Input>

\ J

B Dataset Details

The detailed information of in-context learning
datasets is reported in Table 6. The statistics of
all training and evaluation datasets are reported in
Table 7. The average lengths of long-range lan-
guage modeling datasets are reported in Table 5.

C Implementation Details

C.1 Instructions

The instructions used for each retrieval task are
shown in Table 8.

C.2 Training Settings

The hyper parameter settings for training LLM-
Embedder are reported in Table 9.

D Impact of LLM-Embedder on
Different LLLMs

We evaluate the impact of LLM-Embedder when
augmenting different LLMs to validate its gener-
alization ability. Specifically, we utilize Aquila-
7B-Chat (Aqu, 2023), Qwen-7B-Chat (Bai et al.,
2023a), Baichuan2-7B-Chat (Baichuan, 2023), and
Llama-2-13B-Chat (Touvron et al., 2023). The re-
sults are shown in Table 10. We report the average
accuracy for MMLU, accuracy for PopQA, the av-
erage score for in-context learning, and perplexity
for both Multi-Session Chat and Arxiv. Note that
we do not replicate the evaluation of tool learn-
ing and conversational search because their perfor-
mances are directly measured by retrieval metrics.

We can observe that our conclusions in Sec-
tion 4.2 still hold. First of all, retrieval from the ex-
ternal world benefits LLM’s performance in all four
scenarios, since the performance of the plain LLM
(i.e. None) underperforms retrieval-augmented one
(BGE and LLM-Embedder). Besides, our proposed
LLM-Embedder is able to generalize well to other
LLMs and maintain its superiority over BGE on
most datasets (PopQA and ICL in particular). This
observation highlights the practical effectiveness
and versatility of LLM-Embedder.
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Scenario ‘ Dataset Corpus Size | #Training Samples | #Testing Samples
MSMARCO 8841823 400870 -
. NQ 21051324 58622 -
Knowledge Retrieval MMLU 2841823 B 14042
PopQA 21051324 - 14267
QReCC 54573064 29596 8209
MSC - 48925 2763
Books3 - 10000 1000
Memory Retrieval Arxiv - 10000 757
CodeParrot - 10000 1000
PG19 - - 1000
Example Retrieval | Misc. | 6283120 | 591359 | 177230
Tool Retrieval | ToolBench | 10439 | 87322 | 100
Total | - | - | 1333911 | -
Table 7: Statistics of all training and evaluation datasets.
Scenario ‘ Task ‘ Input ‘ Instruction
Encode this query and context for
Query searching relevant passages:
Conversational Search & passages:
‘ ‘ Key ‘ Encode this passage for retrieval:
Knowledge Retrieval Query Represent this query for retrieving
relevant documents:
Others Represent this document for
Key .
retrieval:
Embed this dialogue to find useful
Query historical dialogues:
Long-Context gues:
Conversation Ke Embed this historical dialogue for
. y retrieval:
Memory Retrieval
Embed this text chunk for finding
Query L
useful historical chunks:
Long-Range Language
Modeling Ke Embed this historical text chunk for
y retrieval:
Quer Convert this example into a vector
y to look for useful examples:
Example Retrieval In-Context Learning ‘e Convert this example into vector for
y retrieval:
Transform this user request for
Query . .
fetching helpful tool descriptions:
Tool Retrieval Tool Retrieval Ke Transform this tool description for
y retrieval:

Table 8: Instructions for each task.

3552



#GPU

#Hard Negative (M)
#Sampled Outputs (V)
Batch Size Per GPU (B)
Optimizer

Learning Rate ()
Learning Rate Checkpoint Step
Weight Decay
Scheduler

Max Steps

Gradient Checkpointing

8xA100 (40G)
7
10
100
AdamW
Se-5
1000
0.01
Linear with warm-up of 0.2
10000
v

Table 9: Hyper parameter settings for fine-tuning.

Embedder MMLU PopQA ICL MSC Arxiv
None 0.460 0.206 0.465 19.350 3.765
Llama-2-7B-Chat BGE 0.490 0.449 0.597 14.294 3.291
LLM-Embedder | 0.490 0.505 0.627 13.483 3.232
None 0.450 0.203  0.515 16.011 3.120
Aquila-7B-Chat BGE 0.483 0.398 0.573 14.184 2.791
LLM-Embedder | 0.485 0440 0.590 14.184 2.735
None 0.556 0.239 0.535 21.047 2.789
Qwen-7B-Chat BGE 0.579 0445 0.633 16.206 2.517
LLM-Embedder | 0.576 0478 0.646 15.452 2.482
None 0.523 0.236 0491 18.971 2.751
Baichuan2-7B-Chat | BGE 0.553 0.441 0596 16.076 2.444
LLM-Embedder | 0.551 0.485 0.618 15.589 2.413
None 0.539 0.289 0.461 14.733 3.236
Llama-2-13B-Chat | BGE 0.560 0460 0.620 11.688 2.904
LLM-Embedder | 0.558 0.503 0.644 11.538 2.854

Table 10: The impact of LLM-Embedder on different LLMs.
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