A Multi-Task Embedder For Retrieval Augmented LLLMs

Peitian Zhang?; Shitao Xiao'*, Zheng Liu'*] Zhicheng Dou?, Jian-Yun Nie!?,

'Beijing Academy of Artificial Intelligence, 2Renmin University of China, *University of Montreal

{namespace.pt, zhengliul1026}@gmail.com

Abstract

LLMs confront inherent limitations in terms
of its knowledge, memory, and action. The
retrieval augmentation stands as a vital mecha-
nism to address these limitations, which brings
in useful information from external sources to
augment the LLM. However, existing retrieval
methods encounter two pressing issues. On
one hand, the general retrievers are not prop-
erly optimized for retrieval augmentation hence
exhibit limited effectiveness; on the other hand,
the task-specific retrievers excel in the targeted
retrieval augmentation scenario, while lack the
versatility to handle diverse scenarios. In this
work, we propose LLM-Embedder for the uni-
fied support of diverse retrieval augmentation
scenarios. Our method presents three technical
contributions. Firstly, we introduce a new re-
ward formulation, namely rank-aware reward.
It exploits the ranking position of the desired
output among N sampled outputs from the
LLM, which leads to fine-grained and robust
computation of reward from the LLM’s feed-
back. Secondly, we design a novel distillation
objective, called graded distillation. It incorpo-
rates both the absolute value and the relative or-
der of the reward for more sufficient utilization
of the LLM’s feedback. Thirdly, we systemat-
ically optimize the multi-task learning, which
effectively unifies the multiple retrieval func-
tionalities into one model. In our experiment,
LLM-Embedder notably improves the LLM’s
performances in various downstream tasks, and
outperforms both general and task-specific re-
trievers with a substantial advantage. Our data,
code, and model have been released at https:
//github.com/FlagOpen/FlagEmbedding.

1 Introduction

Large language models (LLMs) present a unified
foundation to support general artificial intelligence
* Co-first authors. This work was done when Peitian

Zhang is in an internship at BAAIL
f Corresponding author.

Action Limitation

H—\

Knowledge il Example {fc?}Tool
1t 1t 1

LLM-Embedder

& K K

Knowledge Base Example Pool Tool Store Memory Cache

Figure 1: LLM-Embedder presents a unified embedding
model for the diverse retrieval augmentation scenarios.

@:"D!\Acmor'y
il

applications (Brown et al., 2020a; Chowdhery et al.,
2022; Touvron et al., 2023). Despite the substan-
tial improvement over the last-gen methods, LLMs
still face many severe problems, such as halluci-
nation (Ji et al., 2023; Bang et al., 2023), limited
memory (Bai et al., 2023b; An et al., 2023), mis-
following of instructions (Ouyang et al., 2022; Bai
et al., 2022). Many of the challenges can be traced
back to the inherent limitations of LLMs in terms
of knowledge, memory, and action. Specifically,
LLMs cannot internalize the vast and constantly
changed world knowledge due to their finite and
static parameters. LLMs are incapable of memo-
rizing and utilizing long-term information because
of the limited context length. Finally, LLMs re-
quire manually in-context examples and tools to
accomplish complex real-world tasks.

Retrieval augmentation stands as a vital mech-
anism to address these inherent limitations of the
LLM. It brings in useful information from exter-
nal sources, such as knowledge, memory pieces,
in-context examples, and tools, which substantially
enhances the LLLM for the generation of desired
outputs (Gao et al., 2023). The embedding model
(a.k.a. embedder) is a critical part of retrieval aug-
mentation, which bridges the LLLM’s information
needs with external sources. The existing embed-

3537

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3537-3553

August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/FlagOpen/FlagEmbedding
https://github.com/FlagOpen/FlagEmbedding

ding models can be briefly partitioned into two
categories. One is the general-purpose embedders,
which aim to be universally applicable for various
retrieval tasks (Izacard et al., 2021; Wang et al.,
2022b; Xiao and Liu, 2023). Despite their popu-
larity, they are not properly optimized for retrieval
augmentation, and are thus prone to an inferior ef-
fectiveness in the corresponding task. The other
one is the task-specific embedders, which are tai-
lored for one specific retrieval augmentation sce-
nario, e.g., knowledge retrieval (Yu et al., 2023)
and example retrieval (Wang et al., 2023a). How-
ever, these methods lack versatility across different
scenarios. As the LLMs require assistance from
diverse external sources in solving real-world prob-
lems, it becomes imperative to develop an effective
and versatile embedding model to support the di-
verse retrieval augmentation needs.

In this paper, we present LLM-Embedder, a uni-
fied embedding model to support a broad range of
retrieval augmentation scenarios, including knowl-
edge retrieval, memory retrieval, example retrieval,
and tool retrieval. Training such a versatile embed-
ding model presents multiple challenges in terms of
1) how to learn from the LLM, and 2) how to harmo-
nize different retrieval tasks. In LLM-Embedder,
the following technical contributions are presented.

e Reward Formulation. For each retrieval aug-
mentation scenario, the embedder is learned from
the LLM’s feedback, i.e. the retrieval candidate
needs to be promoted if it contributes to the gener-
ation of the desired output. Conventional methods
rely on the generation likelihood (Shi et al., 2023;
Izacard et al., 2023). However, the absolute gen-
eration likelihood tends to fluctuate dramatically,
which may lead to inaccurate estimation of the
contribution of each retrieval candidate. In LLM-
Embedder, we propose a new reward formulation
called rank-aware reward. Essentially, a retrieval
candidate will receive a higher reward if it can bet-
ter promote the desired output’s ranking among N
sampled outputs from the LLM. Thus, it is free
from dealing with the absolute generation likeli-
hood, which facilitates a fine-grained and more
robust computation of the reward.

¢ Distillation Objective. Based on the LLM’s
reward, the embedding model is learned by knowl-
edge distillation. Typically, this is accomplished
by minimizing the KL-divergence between the re-
ward distributions and the relevance distribution
estimated by the embedder (Shi et al., 2023; Yu

et al., 2023). In many cases, the reward distribution
are either polarized (extremely high rewards for
one candidate while low rewards for others) or flat
(even rewards for every candidate), which makes
it difficult to distill fine-grained knowledge with
KL-Divergence. To address this problem, we de-
sign the graded distillation. It integrates both the
absolute values of rewards and their relative orders
for knowledge distillation, which leads to a more
sufficient exploitation of the LLM’s feedback.

o Multi-task Learning. LLM-Embedder is trained
to support diverse retrieval augmentation scenarios
through multi-task learning. However, different
scenarios need to capture distinct semantic rela-
tionships, hence the multiple training tasks may
conflict with each other. To harmonize the learning
process, we perform systematic optimization with
three techniques: 1) self-paced learning schedul-
ing, where lossy tasks can be automatically com-
pensated by higher learning rates; 2) homogeneous
batching, where training samples from one com-
mon task are gathered in the same batch to optimize
the impact of in-batch negative sampling; 3) diversi-
fied prompting, which presents different tasks with
unique prefixes such that the embedding model can
better distinguish each of them.

To summarize, LLM-Embedder stands as a pi-
oneering work for the uniform support of the di-
verse retrieval augmentation scenarios of LLMs. It
makes threefold technical contributions, and brings
valuable inspirations on how to learn from LLM’s
feedback and how to harmonize different retrieval
tasks. In our experiment, LLM-Embedder achieves
a superior performance, where it notably improves
the LLM’s performance in a variety of downstream
tasks. Meanwhile, its retrieval augmentation’s ef-
fect is superior to both general and task-specific
retrieval methods. Our model and code will be
publicly available to facilitate future research.

2 Related Works

e Embedding Model maps the input text into
dense vector (i.e. embedding) in the semantic
space, where the relevance between texts is mea-
sured by the similarity between embeddings. It has
become the de-facto choice for modern information
retrieval systems. There are mainly three research
threads for improving the performance of embed-
ding models. The first one is leveraging advanced
backbone models, including the retrieval oriented
models (Liu and Shao, 2022; Wang et al., 2022a)

3538

and large language models (Ma et al., 2023; Li
et al., 2023). Another thread is enhancing the learn-
ing methodology, such as upgrading the negative
sampling strategy (Karpukhin et al., 2020; Izacard
et al., 2021; Xiong et al., 2020) and incorporating
knowledge distillation from a more precise rank-
ing model (Qu et al., 2020; Hofstitter et al., 2021;
Xiao et al., 2022). Last but not least, many recent
works dedicate to train a universal retriever across a
wide array of tasks (Wang et al., 2021; Lewis et al.,
2021; Karouzos et al., 2021; Yu et al., 2022; Su
et al., 2022; Asai et al., 2022). LLM-Embedder in-
herits successful practices for training high-quality
dense retriever, while innovating novel techniques
to tailor for the multi-task learning of diverse re-
trieval augmentation scenarios.

¢ Retrieval Augmentation is a vital mechanism
to address the inherent limitations of the LLM in
terms of knowledge, memory, and action. Con-
cretely, the LLM can 1) generate factoid answers
with retrieved knowledge (Gao et al., 2024; Jiang
et al., 2023); 2) utilize long-context information
with retrieved memory pieces (Rubin and Berant,
2023; Wang et al., 2023b; Xu et al., 2023); 3) better
follow human instruction with retrieved in-context
examples (Brown et al., 2020b; Cheng et al., 2023);
4) execute complex tasks with retrieved tools (Qin
et al., 2023). In practice, there are two common
options of retrievers: the general retrievers (Robert-
son et al., 2009; Izacard et al., 2021; Xiao and
Liu, 2023; Neelakantan et al., 2022) and the task-
specific retrievers (Yu et al., 2023; Wang et al.,
2023b; Qin et al., 2023). The general retrievers
exhibit superior versatility, but may suffer from
an inferior retrieval quality in retrieval augmenta-
tion tasks. In contrast, task-specific retrievers are
more specialized, achieving better performance in
the targeted scenario, while falling short when han-
dling other scenarios. Compared with the existing
works, LLM-Embedder unifies the generality and
specialty: it comprehensively supports all major
retrieval augmentation needs of the LLM, mean-
while achieving the leading performance in every
retrieval augmentation scenario.

3 LLM-Embedder

In this section, we will present the retrieval aug-
mentation scenarios with LLM-Embedder (§3.1),
and introduce its training methodology (§3.2).

User Input U

How many seasons
is Rick&Morty

Ranked Outputs

> Four Seasons.
;
4
-el---> Seven Seasons. Rankr® =8
N
|\\ :
~> Rick&Morty has five ...

User Input U Reward R(C;) =7

How many seasons T

is Rick&Morty

Ranked Outputs
-> Seven Seasons. Rank r? =
Six Se'asons.
T> Rick&Mc:)rty isa..
Retrieval Candidate C;

Rick and Morty is an American ... It has
seven seasons until now ...

Figure 2: The rank-aware reward for each retrieval can-
didate. It measures the improvement of the rank of the
desired output among multiple sampled outputs.

3.1 Retrieval Augmentation

LLM-Embedder targets on the unified support
for the major retrieval augmentation needs of the
LLMs, including knowledge retrieval, memory re-
trieval, example retrieval, and tool retrieval. It
transforms each retrieval candidate C; € C into
its embedding C; € R” and stores all embeddings
in a vector DB. It also embeds the user input U
into U € RP, then retrieves the top-K relevant
candidates based on cosine similarity:

Ret(U) <+ top-K{cos(U,C;)}. (1)
C;

The retrieval result and the user input are synthe-
sized with template ¢ to prompt the LLM O:

0 « O(¥(U, Ret(U))). 2)

Each retrieval augmentation scenario has its unique
formulation of retrieval candidate, user input, and
prompt template, which are elaborated as follows.
o Knowledge Retrieval. The LLLM can generate
factoid answers with retrieved knowledge. Each
retrieval candidate is a passage from an external
knowledge corpus. The user input is usually an
explicit question. It can also be a conversation
context with a context-dependent question. In this
case, we concatenate the entire context as the user
input. The retrieved passages and the user input are
synthesized according to Template A.1.

e Memory Retrieval. The LLM can remember
and utilize long context memory with memory re-
trieval (Xu et al., 2023). Specifically, the long

3539

context split into equal-size chunks {v1, ..., v, }.
When processing the v;, each previous chunk con-
catenated with its subsequent chunk is treated as
aretrieval candidate, i.e. C; < v; + v;11, @ < j.
The user input is v; itself. Denote the LLM’s con-
text window size as L*. We maintain the recent L
tokens in the context window, while the rest L* — L
are populated with retrieved chunks.

o Example Retrieval. In-context examples help
the LLM to better follow human instruction. In-
stead of relying on manual specification, in-context
examples can be retrieved automatically to improve
the performance. Each example contains an op-
tional task description, an input, and an output,
which are all concatenated to form a retrieval can-
didate. The user input is the concatenation of the
task description and the task-specific input. The re-
trieved examples and the user input are synthesized
with Template A.5 to feed into the LLM.

e Tool Retrieval. The LLM leverages tools to
execute complex real-world tasks (Qin et al., 2023;
Yao et al., 2023). Tool retrieval efficiently provides
useful tools for the LLM. The tool’s description and
its API are concatenated as the retrieval candidate.
The user’s request is treated as the user input.

3.2 Training Methodology
3.2.1 Reward Formulation

A retrieval candidate is useful if it can facilitate
the generation of the desired output (denoted as
O%). The absolute value of generation likelihood
is not an appropriate measurement because it is
prone to dramatic numerical fluctuations. Alter-
natively, as shown in Figure 2, we argue that a
retrieval candidate is useful if it can lead to a better
ranking position of the desired output among N
sampled outputs from the LLM’s ({O;},). Based
on this argument, we descendingly sort the sam-
pled outputs based their generation likelihoods and
compute the rank of the desired output among them
when retrieval is disabled:

r r%gk({Ol, .., On: O; ~0O(U)}).

We then compute the rank of the desired output
with the same operation except that the retrieval
augmentation is enabled:

rb raogk({Ol, ...,On: O; ~O(U,Cy))})

Finally, the reward for the retrieval candidate C; is
computed as its improvement of the rank:

R(Cy) + % —rb. 3)

This reward formulation is free of dealing with
absolute likelihood values, but focuses on the re-
trieval candidate’s real impact on facilitating the
generation of the desired output.

3.2.2 Distillation Objective

Based on the LLM’s rewards, the embedding model
is learned through knowledge distillation, so that
the relevance estimated by the embedder becomes
consistent with the retrieval candidate’s actual use-
fulness. Minimizing KL-Divergence between the
relevance distribution and the reward distribution is
the most typical approach (Shi et al., 2023; Izacard
et al., 2023; Yu et al., 2023). However, the reward
distribution sometimes exhibits polarized (substan-
tially high reward for one candidate while low for
others) or flat (even reward for each candidate) pat-
terns. The KL-Divergence cannot effectively distill
fine-grained knowledge from these distributions.
To address this problem, we innovate a graded
distillation objective, which integrates both the ab-
solute reward values and the relative reward orders
for learning. It consists of a series of contrastive
losses, where the negatives of each loss include the
lower-rewarded candidates and the in-batch candi-
dates. All contrastive losses are aggregated with
normalized rewards as weights. Formally, given the
retrieval candidates {C;}},, their normalized re-
wards w(C;) < softmax(R(Cy))]i], the objective
is formulated as:

N(C;) + {C = R(C) < R(C;)} UInBatch(C;),

ecos(U,Ci)
min Z —w(C;) log
C;

Toexicy «=@ @
The graded distillation objective enjoys two advan-
tages. On one hand, it can robustly optimize the
embedder from various reward distributions. For
the polarized rewards, it will become the one-hot
contrastive learning. For the flat rewards, it will al-
ways supervise the embedder to prioritize the more
useful candidates against the less useful ones, re-
gardless of the absolute value of the reward. On
the other hand, it incorporates in-batch negatives
in the training process, which further improves the
discrimination capability of the embedder.

3.2.3

LLM-Embedder learns to support the four retrieval
augmentation needs with a single model through
multi-task learning. Different retrieval tasks call for
distinct semantic relationships, which may conflict

Multi-Task Learning

3540

with each other. Therefore, it’s important to distin-
guish these tasks and harmonize the their learning
process. In this place, we tailor the multi-task learn-
ing framework with three techniques.

e Self-Paced Learning Scheduling. The intrinsic
learning difficulty of each task may vary, poten-
tially leading to differences in the model’s learn-
ing pace for each task. This may result in the
over-optimization of simpler tasks and the under-
optimization of more challenging tasks. Inspired
by (Liu et al., 2019), we propose to dynamically
adjust the learning pace of each retrieval task to
address this problem. Specifically, we deem the
loss of each retrieval task as a proxy to the learning
condition of that task. Based on it, we amplify the
learning rate for lossy tasks and reduce the learning
rate for already learned tasks. To achieve this goal,
we periodically checkpoint the loss of retrieval task
T during training, denoted as L. Given the basic
learning rate o, and the current loss of the retrieval
task 7', the learning rate of the current optimization

step is set to o X 1/é—;.
0

e Homogeneous Batching. The embedding
model’s discrimination capability benefits from the
quality and quantity of negative samples (Izacard
et al., 2021; Wang et al., 2022b), which consist of
hard negatives and in-batch negatives. The vanilla
batching strategy often packs training samples from
different tasks in the same batch. These samples
are irrelevant to each other and hence adversely
influence the quality of in-batch negatives. Instead,
we gather the training samples from the same re-
trieval task to form every batch. In this way, LLM-
Embedder should discriminate the positive sample
against B x M x Z — 1 negatives from the same
retrieval task, where B is the batch size, M the
candidate number, and Z the GPU number.

e Diversified Prompting. For retrieval task 7T,
two unique instructions I, I, g are assigned, which
are prefixed to the user input and the retrieval can-
didate, respectively. The concatenated sequence is
encoded into its embedding by LLM-Embedder:

UT < encode(IF+U), CT «+ encode(IL+C;).

The resulting embedding U7 and C7 are differen-
tiated across tasks, which helps LLM-Embedder to
distinguish each task.

4 Experiment

The experimental studies aim to investigate three
research questions. RQ I. Can LLM-Embedder

support the LL.M’s diverse retrieval augmentation
need? (§4.2) RQ 2. What is LLM-Embedder’s
impact on each retrieval augmentation scenario?
(§4.3) RQ 3. What is the individual contribution of
each technique in LLM-Embedder? (§4.4)

4.1 Settings
4.1.1 Training & Evaluation

We introduce the details of training and evaluation
on the four retrieval augmentation scenarios. Statis-
tics of all training datasets are reported in Table 7.
e Knowledge Retrieval. We train LLM-Embedder
with three datasets for knowledge retrieval, in-
cluding MSMARCO (Nguyen et al., 2016), Nat-
ural Questions (Kwiatkowski et al., 2019), and
QReCC (Anantha et al., 2020). Note that QReCC
does not have well-formed answers for generat-
ing rewards, thus, we use the annotated relevance
for contrastive learning. We include three datasets
to evaluate the impact of knowledge retrieval. 1)
MMLU (Hendrycks et al., 2020), a multiple-choice
questions dataset that covers a wide range of knowl-
edge. We retrieve 3 passages from the MSMARCO
Passage corpus (Nguyen et al., 2016), which are in-
tegrated as a prompt with the official Template A.2.
The metric is accuracy. 2) PopQA (Mallen et al.,
2022), a question answering dataset that focuses
on long-tail entities. We retrieve 3 passages from
Wikipedia (Karpukhin et al., 2020), which are inte-
grated with the official Template A.3. The met-
ric is exact match. 3) QReCC (Anantha et al.,
2020), a conversational search dataset that requires
the retriever to find the relevant passage accord-
ing to a conversation context. It already provides
the ground-truth passage, we directly evaluate the
ranking metric, i.e. NDCG@3 following previous
works (Mao et al., 2023).

e Memory Retrieval. We consider two tasks
for memory retrieval. 1) Long-context conversa-
tion with MSC (Xu et al., 2021), where the LLM
should generate the ground-truth response. We
retrieve 1 historical dialogue turn as additional con-
text, which is synthesized with Template A.4. We
use its training set to fine-tune LLM-Embedder. 2)
Long-range language modeling with Books3 (Gao
et al., 2020), ArXiv (Gao et al., 2020), CodePar-
rot (Tunstall et al., 2022), and PG19 (Rae et al.,
2019), where PG19 is held-out from training. We
set the chunk size to 128, and maintain a recent
context length of 2048. We retrieve 8 chunks and
their continuation chunk to prepend to the recent

3541

context. Perplexity is the metric for both tasks.

e Example Retrieval. We follow LLM-R (Wang
et al., 2023a) to use in-context learning tasks from
FLAN (Chung et al., 2022) for training and eval-
uating the impact of example retrieval. It consists
of 9 distinct categories with 30 datasets: Closed-
Book QA (CQA), Commonsense (Comm), Corefer-
ence (Coref), Paraphrase (Para), Natural Language
Inference (NLI), Reading Comprehension (RC),
Sentiment Analysis (Sent), Data2Text (D2T), Sum-
marization (Summ). We retrieve 8 examples from
the union of the training set examples, which are
synthesized with Template A.5. The evaluation
metric is specified in Table 6.

e Tool Retrieval. We use the ToolBench (Qin
et al., 2023) for training and evaluating the tool
retrieval performance. Akin to QReCC, this dataset
does not include desired output from the LLM,
hence we train LLM-Embedder with contrastive
loss and directly evaluate NDCG@5.

4.1.2 Baselines

Firstly, we measure the performance of the LLM
without retrieval augmentation, denoted as None.
Secondly, we compare with two types of retrievers.
1) General retrievers, which aim to support a wide
range of text retrieval and representation tasks, such
as question answering, entity retrieval, and dupli-
cation detection. We include the following widely-
recognized baselines: BM25 (Robertson et al.,
2009), Contriever (Izacard et al., 2021), Instruc-
tor (Su et al., 2022), RetroMAE-BEIR (Liu and
Shao, 2022), and BGE (Xiao and Liu, 2023). These
methods are empirically competitive according to
BEIR (Thakur et al., 2021) and MTEB (Muen-
nighoff et al., 2022) benchmarks. 2) Task-specific
embedding models. These models are optimized
for one specific retrieval augmentation scenario.
We include the following baselines that excel in
their respective scenario: ARR (Yu et al., 2023) for
knowledge retrieval, LLM-R (Wang et al., 2023a)
for example retrieval, and API-Retriever (Qin et al.,
2023) for tool retrieval. Since retrieval augmenta-
tion introduces additional context to the LLM, we
add a simple yet strong baseline called Recency for
memory retrieval. It directly extends the context
window by the length of retrieved context.

4.1.3 Implementation

We use Llama-2-7B-Chat (Touvron et al., 2023)
as the backbone LLM. Besides, we utilize BGE
base (Xiao and Liu, 2023) to initialize LLM-

Knowledge Retrieval

— BGE
—— AAR
LLM-R
API-R
—— LLM-Embedder

Tool Retrieval Memory Retrieval

Example Retrieval

Figure 3: Impact of retrieval augmentation from differ-
ent retrievers (metric values are min-max normalized).

Embedder and fine-tune it as described in §3.2. The
hyper parameters during fine-tuning are shown in
Table 9. Although using rewards from Llama-2 7B
Chat, LLM-Embedder is also applicable to other
LLMs and its advantage remains. The experimental
results are shown in Appedix D. We use Flat index
from faiss (Johnson et al., 2019) for searching.

4.2 Overall Analysis

The evaluation results of the four retrieval augmen-
tation scenarios are presented in Table 1-3.

Firstly, compared with the results without re-
trieval augmentation, i.e. None, LLM-Embedder
delivers more precise answers with the retrieved
knowledge (Table 1), improved quality of long-
sequence generation with the retrieved memory
(Table 2), better instruction following effect with
the retrieved examples (Table 3), and more accu-
rate tool retrieval (Table 3). Besides, though the
LLM’s performance can also by improved by other
baseline retrievers, LLM-Embedder always leads
to the most amplified retrieval augmentation ef-
fect across all scenarios. It outperforms all general
retrievers and is competitive against task-specific
retrievers, i.e. AAR for knowledge enhancement,
LLM-R for example retrieval, and API-Retriever
for tool retrieval. This observation validates that
the LLM benefits from the retrieved information;
meanwhile, LLM-Embedder can provide a strong
and unified foundation to support diverse retrieval
augmentation needs of the LLM.

We can also observe that the task-specific em-
bedders optimized for one scenario result in lim-
ited performances in others, suggesting that the se-
mantic relationships required by different retrieval
scenarios are not transferable. To better illustrate
this point, we visualize the retrieval augmenta-
tion’s impact from five representative methods in
Figure 3. Notably, although task-specific embed-

3542

| MMLU | PopQA | QReCC
Method | STEM Social Human Other | All Avg. | PopQA | QReCC
None 0.347 0.533 0.509 0.497 0.460 0.206 -
BM25 0.376 0.538 0.505 0.509 0.472 0.349 0.434
Instructor 0.370 0.541 0.511 0.508 0.472 0.353 0.286
Contriever 0.368 0.538 0.508 0.501 0.468 0.328 0.356
RetroMAE-BEIR 0.386 0.546 0.522 0.528 0.485 0.436 0.404
BGE* 0.385 0.556 0.519 0.539 0.490 0.449 0.386
AAR' 0380 0550 0513 0529 | 0483 | 0479 | 0288
API-Retriever 0354 0534 0500 0507 | 0463 | 0249 | 0.114
LLM-R 0.363 0.528 0.502 0.498 0.463 0.251 0.023
LLM-Embedder (Ours) ‘ 0.385 0.557 0.523 0.536 ‘ 0.490 ‘ 0.505 ‘ 0.505

Table 1: The impact of knowledge retrieval. “+” and “}” indicate the SOTA general embedder and the task-specific
embedder, respectively. The best metrics are in bold, and the second-best metrics are underlined.

| Conversation | Language Modeling
Method | MSC | Books3 Arxiv CodeParrot | PG19 (0.d.)
None 19.350 8.819 3.765 2.766 10.251
Recency 13.957 8.739 3.416 2.599 10.222
BM25 14.651 8.658 3.311 2.459 10.196
Instructor 14.880 8.662 3.355 2.476 10.201
Contriever 14.213 8.646 3.271 2.444 10.162
RetroMAE-BEIR 14.399 8.638 3.290 2.459 10.173
BGE* 14.294 8.631 3.291 2.458 10.154
AAR 14.700 8.638 3.326 2.467 10.181
API-Retriever 14.783 8.672 3.386 2.492 10.183
LLM-R 14.475 8.662 3.364 2.472 10.202
LLM-Embedder (Ours) | 13.483 | 8.608 3.232 2430 | 10.118

Table 2: The impact of memory retrieval. Recency is to directly extend the context without retrieval.

ders exhibit competitive performance for their tar-
geted scenario, their impacts are severely weakened
when applied on other scenarios. In contrast, LLM-
Embedder demonstrates a steady and competitive
performance across all scenarios. To summarize,
the irrelevant or even adverse retrieval patterns
can be reconciled by one unified embedding model
on top of our optimized training methodology.

4.3 Individualized Analysis

o Knowledge Retrieval. The evaluation results
of knowledge retrieval are reported in Table 1. We
make the following observations. 1) Benefit of ex-
ternal knowledge. On both MMLU and PopQA, we
can observe significant empirical advantages of the
retrieval augmentation methods compared with the
plain LLM, i.e. None. Among all retrieval methods,
LLM-Embedder is able to return the most accuracy
knowledge, leading to the best retrieval augmenta-
tion effect on both datasets. 2) Distinction among
datasets. The impact of knowledge retrieval is more
noticeable on PopQA than MMLU. This is because
PopQA is more knowledge-intensive, with a focus
on questions about long-tail entities. Moreover, the
baseline embedding models fail to handle conver-

sational search queries, resulting in their inferior
NDCG compared with BM25 on QReCC. In con-
trast, LLM-Embedder significantly outperfoms all
baselines on QReCC, again verifying its versatility.

e Memory Retrieval. The evaluation results of
memory retrieval are reported in Table 2. On one
hand, baseline retrievers underperform the Recency
baseline on MSC, which translates to the negative
impact of the retrieved conversation compared with
the recent one. This observation underscores the
challenges in effective memory retrieval. On the
other hand, the LLM-Embedder retains its superior
performance, reducing the perplexity against the
all baseline methods on all datasets.

o Example Retrieval. The evaluation results of
example retrieval are reported in Table 3. We have
the following observations. 1) Compared with ran-
dom examples, using retrieved examples yields
improved performances in most cases. This find-
ing underscores the effect of example retrieval for
helping the LLM to properly follow instructions.
2) BM25’s performance is substantially weaker
than its performance in other scenarios. This dis-
crepancy can be attributed to the specific nature
of in-context learning, where useful examples may

3543

In-Context Learning

Tool

Method | CQA Comm Coref Para NLI RC Sent D2T Summ | Avg | ToolBench
None 0.292 0.721 0.658 0.524 0448 0.489 0.708 0.198 0.145 | 0.465 -
Random 0.359 0.719 0.589 0.520 0477 0553 0916 0.350 0.357 | 0.545 0
BM25 0.360 0.702 0.603 0.506 0.458 0.540 0.728 0.302 0.156 | 0.484 0.512
Instructor 0.500 0.777 0.574 0.631 0536 0.622 0915 0460 0.457 | 0.604 0.388
Contriever 0.491 0.772 0.562 0.636 0.547 0.630 0.914 0.438 0.444 | 0.601 0.490
RetroMAE-BEIR | 0.459 0.774 0.584 0.576 0.541 0.603 0.929 0.466 0.447 | 0.594 0.521
BGE™ 0.472 0.777 0.555 0.617 0541 0599 0928 0472 0.452 | 0.597 0.576
AAR 0.481 0.780 0.585 0.589 0.535 0.604 0921 0.445 0.441 | 0.594 0.420
APL-Retriever! | 0477 0762 0547 0.627 0520 0610 0924 0487 0442 | 0595 | 0.802
LLM-R' 0.517 0.780 0.583 0.657 0.615 0.622 0906 0.478 0.488 | 0.626 0.132
LLM-Embedder ‘ 0.516 0.784 0.593 0.656 0.604 0.632 0922 0473 0474 ‘ 0.627 ‘ 0.865

Table 3: The impact of example retrieval and tool retrieval.

Method | Knwl. Mem. Expl Tool
LLM-Embedder 0.505 13483 0.627 0.865
w.0. Rank-Aware Reward 0.485 14.253 0.622 0.861
w.o0. Graded Distillation 0.492 13.547 0.610 0.854
w.o0. Self-Paced Scheduling 0.492 13.883 0.619 0.809
w.o. Homogeneous Batching | 0.447 14183 0.605 0.836
w.o. Diversified Instruction 0.503 13942 0.619 0.828

Table 4: Ablation studies of LLM-Embedder.

have low lexical similarity with the user input.

e Tool Retrieval. The evaluation results of exam-
ple retrieval are reported in Table 3. We observe
that the task-specific method, i.e. the API retriever,
beats other baseline methods by a large margin.
This is because these baselines are unfamiliar with
tools and hence fail to properly estimate the rel-
evance. However, LLM-Embedder continues to
maintain the leading position, highlighting its un-
fied support for diverse retrieval tasks.

4.4 Ablation Studies

The ablation studies are performed to to evaluate
the impact from each technical factor. The evalua-
tion results are reported in Table 4.

For “w.o. Rank-Aware Reward”, we switch to the
typical likelihood-based reward formulation (Shi
et al., 2023). Notably, the performance on knowl-
edge retrieval and memory retrieval substantially
decreases. We conjecture that in both scenarios, the
generation likelihood of the desired output drasti-
cally fluctuate, resulting in the inaccurate measure-
ment of the retrieval candidate’s usefulness.

For “w.o. Graded Distillation”, the graded dis-
tillation objective is replaced by the typical KL-
divergence (Izacard et al., 2023). As introduced,
graded distillation can stay robust to the polarized
or flat rewards, which leads to more effective us-
age of the LLM’s feedback. In this place, we can
observed that LLM-Embedder’s performance is re-
duced when graded distillation is disabled, espe-

cially for example retrieval.

For “w.o. Self-Paced Scheduling”, the learning
rate is the kept static for all retrieval tasks during
fine-tuning. We can observe that the performance
of tool retrieval drops significantly. This is because
the learning for this scenario does not proceed at
the same pace as other scenarios, necessitating the
dynamic control over learning speed for different
retrieval tasks.

For “w.o. Homogeneous Negatives”, the ho-
mogeneous in-batch negatives are disabled. This
change reduces the discrimination capability of the
embedder, because a great portion of the in-batch
negative samples will come from different tasks,
which are irrelevant to the target one. As we can ob-
serve, LLM-Embedder’s performance is decreased
due to such a change, especially for knowledge re-
trieval, where LLM-Embedder should discriminate
the relevant passage from a massive corpus.

For “w.o. Diversified Instruction”, we remove
the task-specific instructions in fine-tuning and
evaluation. Without this technique, it becomes
harder for the embedding model to distinguish dif-
ferent retrieval tasks. This intuition is consistent
with the observed result, as LLM-Embedder’s per-
formance decreases across all tasks.

5 Conclusion

In this work, we present LLM-Embedder, a unified
embedding model to support the LLM’s diverse
retrieval augmentation needs, including knowledge
retrieval, memory retrieval, example retrieval, and
tool retrieval. We propose three key techniques to
facilitate the training of LLM-Embedder, spanning
from reward formulation, distillation objective, and
multi-task learning recipe. Our experiments show
LLM-Embedder’s empirical advantages over both
general and task-specific embedding models across

3544

all evaluation scenarios. This highlights its effec-
tiveness as a foundational building block to support
the retrieval augmentation of the LLM.

6 Limitations

A few recent studies incorporate large language
models as the embedding backbone and achieve
new state-of-the-art performance. However, LLM-
Embedder is a BERT-base scale model. Its scal-
ing effect remains unexplored. Besides, LLM-
Embedder is specifically tailored for the four re-
trieval scenarios. For tasks that fall outside its
scope of coverage, such as documentation retrieval,
the effectiveness of the LLM-Embedder may not
be as robust as that of a strong general embedding
model like BGE.

7 Ethical Considerations

LLM-Embedder is an embedding model that maps
the text into high-dimensional vectors and relies on
vector similarity to determine relevance between
texts. Therefore, it inherits the potential risks of
the embedding model family. Specifically, LLM-
Embedder may process a large amount of personal
or sensitive data, which must be handled with con-
sent. There is also the security concern as recent
works have proven it possible to decrypt the orig-
inal textual information from embedded vectors.
Lastly, it may perpetuate and amplify biases present
in the training data, leading to unfair or discrimina-
tory outcomes.

Acknowledgement

This research is supported by National Science and
Technology Major Project(2023Z2D0121504).

References

2023. AquilaChat-7B. https://huggingface.co/
BAAI/AquilaChat-7B/.

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li,
Jun Zhang, Lingpeng Kong, and Xipeng Qiu. 2023.
L-eval: Instituting standardized evaluation for long
context language models.

Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,
Shayne Longpre, Stephen Pulman, and Srinivas
Chappidi. 2020. Open-domain question answering
goes conversational via question rewriting.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2022. Task-aware retrieval
with instructions.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023a. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, et al. 2022. Constitutional ai: Harmless-
ness from ai feedback.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023b. Longbench:
A bilingual, multitask benchmark for long context
understanding.

Baichuan. 2023. Baichuan 2: Open large-scale lan-
guage models. arXiv preprint arXiv:2309.10305.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan,
Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth PASCAL recognizing textual entailment
challenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA, November 16-17, 2009. NIST.

Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar
Khot, Bhavana Dalvi Mishra, Kyle Richardson,
Ashish Sabharwal, Carissa Schoenick, Oyvind
Tafjord, and Peter Clark. 2021. Think you have
solved direct-answer question answering? try arc-da,
the direct-answer AI2 reasoning challenge. CoRR,
abs/2102.03315.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,

3545

https://huggingface.co/BAAI/AquilaChat-7B/
https://huggingface.co/BAAI/AquilaChat-7B/
https://arxiv.org/abs/2309.10305
https://arxiv.org/abs/2309.10305
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
http://arxiv.org/abs/2102.03315
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075
https://doi.org/10.18653/v1/d15-1075

2015, pages 632-642. The Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020a. Language models are few-shot
learners.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020b. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.

Daixuan Cheng, Shaohan Huang, Junyu Bi, Yuefeng
Zhan, Jianfeng Liu, Yujing Wang, Hao Sun, Furu Wei,
Denvy Deng, and Qi Zhang. 2023. Uprise: Universal
prompt retrieval for improving zero-shot evaluation.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. Palm: Scaling language
modeling with pathways.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 2924-2936. Associa-
tion for Computational Linguistics.

DataCanary, hilfialkaff, Lili Jiang, Meg Risdal, Nikhil
Dandekar, and tomtung. 2017. Quora question pairs.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop

on Paraphrasing, INP@IJCNLP 2005, Jeju Island,
Korea, October 2005, 2005. Asian Federation of Nat-
ural Language Processing.

Ondrej Dusek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
INLG 2019, Tokyo, Japan, October 29 - November 1,
2019, pages 421-426. Association for Computational
Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo,
Meng Wang, and Haofen Wang. 2024. Retrieval-
augmented generation for large language models: A
survey.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing.

Sebastian Hofstétter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy Lin, and Allan Hanbury. 2021. Ef-
ficiently teaching an effective dense retriever with
balanced topic aware sampling.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Gautier Izacard, Patrick S. H. Lewis, Maria Lomeli,
Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2023. Atlas: Few-shot learning
with retrieval augmented language models. J. Mach.
Learn. Res., 24:251:1-251:43.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of hal-
lucination in natural language generation.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547.

3546

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/n19-1300
https://doi.org/10.18653/v1/n19-1300
https://kaggle.com/competitions/quora-question-pairs
https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/W19-8652
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://arxiv.org/abs/2312.10997
http://jmlr.org/papers/v24/23-0037.html
http://jmlr.org/papers/v24/23-0037.html

Constantinos Karouzos, Georgios Paraskevopoulos, and
Alexandros Potamianos. 2021. Udalm: Unsuper-
vised domain adaptation through language modeling.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Dangi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 1 (Long Papers), pages 252-262. Association
for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research.

Hector J. Levesque. 2011. The winograd schema chal-
lenge. In Logical Formalizations of Commonsense
Reasoning, Papers from the 2011 AAAI Spring Sym-
posium, Technical Report SS-11-06, Stanford, Cali-
fornia, USA, March 21-23, 2011. AAAL

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-
ervini, Heinrich Kiittler, Aleksandra Piktus, Pontus
Stenetorp, and Sebastian Riedel. 2021. Paq: 65 mil-
lion probably-asked questions and what you can do
with them.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao.
2023. Making large language models A better foun-
dation for dense retrieval. CoRR, abs/2312.15503.

Bill Yuchen Lin, Ming Shen, Wangchunshu Zhou, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. Commongen: A constrained text genera-
tion challenge for generative commonsense reason-

ing. In Conference on Automated Knowledge Base
Construction, AKBC 2020, Virtual, June 22-24, 2020.

Shengchao Liu, Yingyu Liang, and Anthony Gitter.
2019. Loss-balanced task weighting to reduce nega-
tive transfer in multi-task learning. In The Thirty-
Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 9977-
9978. AAAI Press.

Zheng Liu and Yingxia Shao. 2022. Retromae: Pre-
training retrieval-oriented transformers via masked
auto-encoder.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and
Jimmy Lin. 2023. Fine-tuning llama for multi-stage
text retrieval. CoRR, abs/2310.08319.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Hannaneh Hajishirzi, and Daniel Khashabi. 2022.
When not to trust language models: Investigating
effectiveness and limitations of parametric and non-
parametric memories.

Kelong Mao, Hongjin Qian, Fengran Mo, Zhicheng
Dou, Bang Liu, Xiachua Cheng, and Zhao Cao. 2023.
Learning denoised and interpretable session repre-
sentation for conversational search. In Proceedings
of the ACM Web Conference 2023, WWW ’23, page
3193-3202, New York, NY, USA. Association for
Computing Machinery.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2381-2391. Association for Computational
Linguistics.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark.

Linyong Nan, Dragomir R. Radev, Rui Zhang, Am-
rit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Kr-
ishna, Yangxiaokang Liu, Nadia Irwanto, Jessica
Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma,
Yasin Tarabar, Ankit Gupta, Tao Yu, Yi Chern Tan,
Xi Victoria Lin, Caiming Xiong, Richard Socher, and
Nazneen Fatema Rajani. 2021. DART: open-domain
structured data record to text generation. In Proceed-
ings of the 2021 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 432-447.
Association for Computational Linguistics.

Courtney Napoles, Matthew R. Gormley, and Ben-
jamin Van Durme. 2012. Annotated gigaword.
In Proceedings of the Joint Workshop on Auto-
matic Knowledge Base Construction and Web-scale
Knowledge Extraction, AKBC-WEKEX@NAACL-
HLT 2012, Montréal, Canada, June 7-8, 2012, pages
95-100. Association for Computational Linguistics.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human-generated machine read-
ing comprehension dataset.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback.

3547

https://doi.org/10.18653/v1/n18-1023
https://doi.org/10.18653/v1/n18-1023
https://doi.org/10.18653/v1/n18-1023
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2502
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2502
https://doi.org/10.48550/ARXIV.2312.15503
https://doi.org/10.48550/ARXIV.2312.15503
https://www.akbc.ws/2020/papers/yuD2q50HWv
https://www.akbc.ws/2020/papers/yuD2q50HWv
https://www.akbc.ws/2020/papers/yuD2q50HWv
https://doi.org/10.1609/AAAI.V33I01.33019977
https://doi.org/10.1609/AAAI.V33I01.33019977
https://doi.org/10.48550/ARXIV.2310.08319
https://doi.org/10.48550/ARXIV.2310.08319
https://doi.org/10.1145/3543507.3583265
https://doi.org/10.1145/3543507.3583265
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/2021.naacl-main.37
https://doi.org/10.18653/v1/2021.naacl-main.37
https://aclanthology.org/W12-3018/

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu, and
Haifeng Wang. 2020. Rocketqa: An optimized train-
ing approach to dense passage retrieval for open-
domain question answering.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
Chloe Hillier, and Timothy P Lillicrap. 2019. Com-
pressive transformers for long-range sequence mod-
elling.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 784—789. Association
for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383-2392.
The Association for Computational Linguistics.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In Logical Formalizations of Commonsense
Reasoning, Papers from the 2011 AAAI Spring Sym-
posium, Technical Report SS-11-06, Stanford, Cali-
fornia, USA, March 21-23, 2011. AAAL

Ohad Rubin and Jonathan Berant. 2023. Long-range
language modeling with self-retrieval.

Tapan Sahni, Chinmay Chandak, Naveen Reddy
Chedeti, and Manish Singh. 2017. Efficient twit-
ter sentiment classification using subjective distant
supervision. In 9th International Conference on
Communication Systems and Networks, COMSNETS
2017, Bengaluru, India, January 4-8, 2017, pages
548-553. IEEE.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99-106.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. 2023. Replug: Retrieval-augmented
black-box language models.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2013, 18-21 October 2013, Grand Hyatt
Seattle, Seattle, Washington, USA, A meeting of SIG-
DAT, a Special Interest Group of the ACL, pages
1631-1642. ACL.

Hongjin Su, Jungo Kasai, Yizhong Wang, Yushi Hu,
Mari Ostendorf, Wen-tau Yih, Noah A Smith, Luke
Zettlemoyer, Tao Yu, et al. 2022. One embedder, any
task: Instruction-finetuned text embeddings.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evaluation
of information retrieval models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foun-
dation language models.

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf.
2022. Natural language processing with transform-
ers.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna
Gurevych. 2021. Gpl: Generative pseudo labeling for
unsupervised domain adaptation of dense retrieval.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2022a. Simlm: Pre-training with represen-
tation bottleneck for dense passage retrieval.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022b. Text embeddings by weakly-
supervised contrastive pre-training.

Liang Wang, Nan Yang, and Furu Wei. 2023a. Learning
to retrieve in-context examples for large language
models.

Tianshi Wang, Li Liu, Huaxiang Zhang, Long Zhang,
and Xiuxiu Chen. 2020. Joint character-level con-
volutional and generative adversarial networks for
text classification. Complex., 2020:8516216:1—
8516216:11.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu,
Xifeng Yan, Jianfeng Gao, and Furu Wei. 2023b.
Augmenting language models with long-term mem-
ory.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational

3548

https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418
http://www.aaai.org/ocs/index.php/SSS/SSS11/paper/view/2418
https://doi.org/10.1109/COMSNETS.2017.7945451
https://doi.org/10.1109/COMSNETS.2017.7945451
https://doi.org/10.1109/COMSNETS.2017.7945451
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.1155/2020/8516216
https://doi.org/10.1155/2020/8516216
https://doi.org/10.1155/2020/8516216
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101

Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 1 (Long Papers), pages 1112-1122.
Association for Computational Linguistics.

Shitao Xiao and Zheng Liu. 2023. Baai general embed-
ding.

Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang,
Defu Lian, Yeyun Gong, Qi Chen, Fan Yang, Hao
Sun, Yingxia Shao, et al. 2022. Distill-vq: Learning
retrieval oriented vector quantization by distilling
knowledge from dense embeddings.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.

Jing Xu, Arthur Szlam, and Jason Weston. 2021. Be-
yond goldfish memory: Long-term open-domain con-
versation.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Retrieval meets long context large lan-
guage models. CoRR, abs/2310.03025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Yue Yu, Chenyan Xiong, Si Sun, Chao Zhang, and
Arnold Overwijk. 2022. Coco-dr: Combating dis-
tribution shifts in zero-shot dense retrieval with con-
trastive and distributionally robust learning.

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023. Augmentation-adapted retriever improves gen-
eralization of language models as generic plug-in.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791-4800. Association for Computational Linguis-
tics.

Rui Zhang and Joel R. Tetreault. 2019. This email
could save your life: Introducing the task of email
subject line generation. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 446—456.
Association for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural In-

formation Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, pages 649—657.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume I (Long and Short Papers), pages 1298—
1308. Association for Computational Linguistics.

A Prompt Templates

Prompt A.1: Rank-Aware Reward (Knowledge)

Knowledge:
<Passage>

Q: <Question> A:

Prompt A.2: MMLU

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

The following are multiple-choice questions (with
answers) about <subject>.

<Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
Answer:

.

Prompt A.3: PopQA

Knowledge:
<Passage 1>
<Passage 2>
<Passage 3>

\

Q: <Question 1> A: <Answer 1>
Q: <Question 2> A: <Answer 2>

Q: <Question 15> A: <Answer 15>
Q: <Question> A:

Prompt A.4: Multi-Session Chat

Speaker 1: <Retrieved/Recent Utterance 1>
Speaker 2: <Retrieved/Recent Utterance 2>
Speaker 1: <Utterance 1>

Speaker 2:

3549

https://github.com/FlagOpen/FlagEmbedding
https://github.com/FlagOpen/FlagEmbedding
https://doi.org/10.48550/ARXIV.2310.03025
https://doi.org/10.48550/ARXIV.2310.03025
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1043
https://doi.org/10.18653/v1/p19-1043
https://doi.org/10.18653/v1/p19-1043
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.18653/v1/n19-1131

Dataset Average Length
Books3 101010
Arxiv 26735
CodeParrot 217364
PG19 90447

Table 5: Average lengths of long-range language model-
ing datasets.

Prompt A.5: In-Context Learning

<Example 1 Input><Example 1 Ouptut>
<Example 2 Input><Example 2 Ouptut>
<Example 8 Input><Example 8 Ouptut>

<Input>

\ J

B Dataset Details

The detailed information of in-context learning
datasets is reported in Table 6. The statistics of
all training and evaluation datasets are reported in
Table 7. The average lengths of long-range lan-
guage modeling datasets are reported in Table 5.

C Implementation Details

C.1 Instructions

The instructions used for each retrieval task are
shown in Table 8.

C.2 Training Settings

The hyper parameter settings for training LLM-
Embedder are reported in Table 9.

D Impact of LLM-Embedder on
Different LLLMs

We evaluate the impact of LLM-Embedder when
augmenting different LLMs to validate its gener-
alization ability. Specifically, we utilize Aquila-
7B-Chat (Aqu, 2023), Qwen-7B-Chat (Bai et al.,
2023a), Baichuan2-7B-Chat (Baichuan, 2023), and
Llama-2-13B-Chat (Touvron et al., 2023). The re-
sults are shown in Table 10. We report the average
accuracy for MMLU, accuracy for PopQA, the av-
erage score for in-context learning, and perplexity
for both Multi-Session Chat and Arxiv. Note that
we do not replicate the evaluation of tool learn-
ing and conversational search because their perfor-
mances are directly measured by retrieval metrics.

We can observe that our conclusions in Sec-
tion 4.2 still hold. First of all, retrieval from the ex-
ternal world benefits LLM’s performance in all four
scenarios, since the performance of the plain LLM
(i.e. None) underperforms retrieval-augmented one
(BGE and LLM-Embedder). Besides, our proposed
LLM-Embedder is able to generalize well to other
LLMs and maintain its superiority over BGE on
most datasets (PopQA and ICL in particular). This
observation highlights the practical effectiveness
and versatility of LLM-Embedder.

3550

‘sjosejep SUIuIes] 1x)uU0d-Uul JO UOHBULIOJUI pa[rela(9 9[qe],

e eu MLLI A16S e (pardures) 1elof,

eu e MLLI INE'9 e B0,
uoneIauAn T-4900Y 0€L SOV ¥0°C azLEUIUING (210T “1e 30 sojodeN) promesin
POOYIYI'T £semooy 009°L 000°0ZT ozLEWIWING (S10T e 30 SueyZ) SMONDY
uoneIauan 1-A4900Y 0SLT 181°¢1 ozLEWIWING (610T “Nneanay, pue ueyz) HISAY
POOYI[NI] Ademndoy S8z'ce (o prey) 96061 uawInueg (020T “Te 32 Suep) djox
pooyIyI] Aoemooy TL8 67€°L9 JuawInuAg (€10T “[& 10 19420S) T1SS
pooyIayry Koemooy 65¢ 000°009°1 RUCIIIEN (L10T “[e 19 1ugeg) Of [JUSWNUSG
uoneIaudn UOJBIN 10BXH 0LS°01 665°L8 “dwio) Surpeay (9107 “1e 30 rexpmdley) 14 QvnOS
pooyIayIy Ksemooy 00S LS6Y “dwo) Surpeay (810T “Ie 10 AO[ABUIA) VO YoogquadQ
pooyIYI] 14 878y EVT'LT “dwo) Surpeay (810T “I¥ 10 1qeyseys)) DYDINA
POOYI[NI] Ademooy 0LT'E LTH'6 “dwio)) Surpeay (610€ T8 32 YIe[D) Olood
PooyIaNI] Ademooy 0Er0F 918°€9¢ oserydereq (L10T “Te 32 Areuepered) JOO
pooyIayry Koemooy 000°8 10¥°6% aserydereq (610¢ “Te 10 Sueyz) SMVd
pooyIyI'] £semooy 801 899°¢ aserydereq (S00¢ ‘mayoo1g pue uejoq) DdAN
PooyIaNI] £semaoy £9t'S (no preY) €L ¥01 "IN (8107 “1e 30 rexundley) IINO
pooyIYI] Ksemooy 728°6 L9E'6YS I'IN (S10T “Te 10 ueWIMOg) TINS
POOYINI'T Asemooy LLT 06+°C I'IN (600€ “'T& 39 1[SoAnueg) ALY
pooyIayIy Koemooy €86 T0L'T6E I'IN (810¢ “I& 30 SWerIA) (W) [ININ
pooyIayry Koemooy S18'6 T0LT6E I'IN (810T “[e 30 swrerip) (wn) IININ
uoneIuan T-4DN0Y LY8'T gTsee 1xa1-01-e3R(J (610T T 30 Yosn@) H'IN d¢d
uoneIauan 1-4900% 89L°C 65979 1x9)-0)-e1R(q (120T e 30 UBN) TMVA
UONEIOUSD) 1-4900% 810 68€°L9 1Xa1-01-ejeq (0TOT “'[& 19 UI]) USHUOUWIO)
pooyI[ayI] Ademooy €LT (no prey) o 90U219J310) (110¢ ‘onbsoaa) £/7DSM
pooyIayIry Koemooy ¥01 1499 90URIRJRI0)) (110g ‘onbsoaa) DSM
pooyIayIry Koemooy L9TT 86£°01 90URIRJRI0)) (1T0T “Te 10 1yon3ees) dpuerSourpm
POOYIYI'T £semooy 8€8'T (no pey) ¢11°91 | QsudsuouIioy (0T0T T2 30 ¥s1d) VOId
pooyIYI] Ksemooy 001 S06°6€ 9SUQSUOUIIO) (610T e 10 SI9[[97) Semge[[oH
pooyIyI] Ksemooy 001 00% 9SUQSUOUILIOD (110T “'[& 10 o[oUIIA0Y) VdOD
uoneIaun UOJBIN 10BXH 019°¢ ST6°'L8 VO 250[) (610T “[& 10 DismoyIeIms) ON
pooyIayry Koemooy §9€T 1C'T VO 950D (1T0T ‘T8 10 weesjeAeyyeyg) Aseq DYV
pooyIayIy Koemooy S91°1 LITT VO 950D (120T “'Te 10 weesjeAeyeyg) ASUd[[EYD DAV

£33jen§ uoneneAy] JUPN Jrdwreg 1S # Jpdwreg ureay# £103318) Jwieu jaseje(q

3551

Scenario ‘ Dataset Corpus Size | #Training Samples | #Testing Samples
MSMARCO 8841823 400870 -
. NQ 21051324 58622 -
Knowledge Retrieval MMLU 2841823 B 14042
PopQA 21051324 - 14267
QReCC 54573064 29596 8209
MSC - 48925 2763
Books3 - 10000 1000
Memory Retrieval Arxiv - 10000 757
CodeParrot - 10000 1000
PG19 - - 1000
Example Retrieval | Misc. | 6283120 | 591359 | 177230
Tool Retrieval | ToolBench | 10439 | 87322 | 100
Total | - | - | 1333911 | -
Table 7: Statistics of all training and evaluation datasets.
Scenario ‘ Task ‘ Input ‘ Instruction
Encode this query and context for
Query searching relevant passages:
Conversational Search & passages:
‘ ‘ Key ‘ Encode this passage for retrieval:
Knowledge Retrieval Query Represent this query for retrieving
relevant documents:
Others Represent this document for
Key .
retrieval:
Embed this dialogue to find useful
Query historical dialogues:
Long-Context gues:
Conversation Ke Embed this historical dialogue for
. y retrieval:
Memory Retrieval
Embed this text chunk for finding
Query L
useful historical chunks:
Long-Range Language
Modeling Ke Embed this historical text chunk for
y retrieval:
Quer Convert this example into a vector
y to look for useful examples:
Example Retrieval In-Context Learning ‘e Convert this example into vector for
y retrieval:
Transform this user request for
Query . .
fetching helpful tool descriptions:
Tool Retrieval Tool Retrieval Ke Transform this tool description for
y retrieval:

Table 8: Instructions for each task.

3552

#GPU

#Hard Negative (M)
#Sampled Outputs (V)
Batch Size Per GPU (B)
Optimizer

Learning Rate ()
Learning Rate Checkpoint Step
Weight Decay
Scheduler

Max Steps

Gradient Checkpointing

8xA100 (40G)
7
10
100
AdamW
Se-5
1000
0.01
Linear with warm-up of 0.2
10000
v

Table 9: Hyper parameter settings for fine-tuning.

Embedder MMLU PopQA ICL MSC Arxiv
None 0.460 0.206 0.465 19.350 3.765
Llama-2-7B-Chat BGE 0.490 0.449 0.597 14.294 3.291
LLM-Embedder | 0.490 0.505 0.627 13.483 3.232
None 0.450 0.203 0.515 16.011 3.120
Aquila-7B-Chat BGE 0.483 0.398 0.573 14.184 2.791
LLM-Embedder | 0.485 0440 0.590 14.184 2.735
None 0.556 0.239 0.535 21.047 2.789
Qwen-7B-Chat BGE 0.579 0445 0.633 16.206 2.517
LLM-Embedder | 0.576 0478 0.646 15.452 2.482
None 0.523 0.236 0491 18.971 2.751
Baichuan2-7B-Chat | BGE 0.553 0.441 0596 16.076 2.444
LLM-Embedder | 0.551 0.485 0.618 15.589 2.413
None 0.539 0.289 0.461 14.733 3.236
Llama-2-13B-Chat | BGE 0.560 0460 0.620 11.688 2.904
LLM-Embedder | 0.558 0.503 0.644 11.538 2.854

Table 10: The impact of LLM-Embedder on different LLMs.

3553

