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Abstract

In this work, we propose a two-stage sign lan-
guage production (SLP) paradigm that first en-
codes sign language sequences into discrete
codes and then autoregressively generates sign
language from text based on the learned code-
book. However, existing vector quantization
(VQ) methods are fixed-length encodings, over-
looking the uneven information density in sign
language, which leads to under-encoding of
important regions and over-encoding of unim-
portant regions. To address this issue, we
propose a novel dynamic vector quantization
(DVA-VAE) model that can dynamically ad-
just the encoding length based on the infor-
mation density in sign language to achieve ac-
curate and compact encoding. Then, a GPT-
like model learns to generate code sequences
and their corresponding durations from spo-
ken language text. Extensive experiments con-
ducted on the PHOENIX14T dataset demon-
strate the effectiveness of our proposed method.
To promote sign language research, we pro-
pose a new large German sign language dataset,
PHOENIX-News, which contains 486 hours of
sign language videos, audio, and transcription
texts. Experimental analysis on PHOENIX-
News shows that the performance of our model
can be further improved by increasing the size
of the training data. Our project homepage is
https://t2sgpt-demo.yinaoxiong.cn.

1 Introduction

Sign language is a visual language with complex
grammatical structures and is the primary means
of communication for nearly 70 million deaf peo-
ple worldwide 1. Research on sign language pro-
duction (Baltatzis et al., 2023a; Fang et al., 2023;
Huang et al., 2021; Hwang et al., 2021, 2022;
Saunders et al., 2020a) and sign language trans-
lation (Camgoz et al., 2018a; Zhang et al., 2023a;

*Corresponding author.
1According to World Federation of the Deaf https://

wfdeaf.org/our-work/
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Figure 1: Comparison of fixed-length encoding and
variable-length encoding.

Zhou et al., 2021; Yin et al., 2021, 2023) has at-
tracted widespread attention. Sign language pro-
duction (SLP) is a challenging problem that aims
to automatically translate spoken language descrip-
tions into corresponding continuous sign sequences.
SLP can help deaf people better access information
and communicate with others, thereby facilitating
their lives, which has important social significance.

SLP models are expected to learn precise map-
ping from the spoken language space to the sign
language space. Early work used 2D or 3D skele-
ton poses to represent sign language (Huang et al.,
2021; Saunders et al., 2021b, 2020b), while recent
work has suggested using 3D human models, such
as SMPL-x(Pavlakos et al., 2019), to represent sign
language, as it introduces human priors and can bet-
ter animate (Baltatzis et al., 2023b). To learn the
mapping between these two different modal spaces,
some work uses autoregressive models (Saunders
et al., 2021a,b, 2020b), non-autoregressive models
(Huang et al., 2021; Hwang et al., 2021, 2022), or
diffusion models (Baltatzis et al., 2023b) to learn
the direct mapping from spoken language text to
sign language skeleton poses. (Xie et al., 2023)
proposed to learn the discrete representation of
sign language through VQ-VAE (van den Oord
et al., 2017) and then learn the mapping from text
to discrete representation through a discrete diffu-
sion model. However, we found that existing sign
language discrete representation methods are fixed-
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length encodings, as shown in Figure 1, which
overlooks the uneven information density in sign
language. In addition, many existing works rely on
expert-annotated intermediate representations, i.e.
glosses, which limit the scalability of the model.

In this work, we are inspired by recent advances
from learning the discrete representation for gen-
eration (Huang et al., 2023; Zhang et al., 2023b;
Williams et al., 2020; van den Oord et al., 2017;
Ao et al., 2022). Specifically, we investigate a two-
stage framework based on Dynamic Vector Quan-
tized Variational Autoencoders (DVQ-VAE) and
Generative Pre-trained Transformer (GPT) (Rad-
ford et al., 2018) for text-to-sign language pro-
duction. In the first stage, as shown in Figure 1,
DVQ-VAE will learn the weights of each frame and
the boundaries of the basic semantic units. Then,
the weighted latent vectors are mapped to discrete
code indices. Further quantitative analysis of the
uneven information density in sign language is pro-
vided in section 3. To encourage models to perform
variable-length encoding and compress sequence
lengths, we propose a novel budget loss. Addition-
ally, to preserve the semantic information of the
reconstructed sign language sequences, we also in-
troduce a translation auxiliary loss. In the second
stage, a GPT-like model is learned to to generate
code index sequences from spoken language text.
Furthermore, since the duration of quantized code
in a sequence can also vary dynamically, we further
propose a duration transformer to predict the dura-
tion of the next code based on the previous code’s
duration and the current code.

The experimental results on the widely used
SLP dataset PHOENIX14T (Camgoz et al., 2018b)
demonstrate that our proposed method achieves
superior back translation performance compared
to previous approaches. Furthermore, throughout
the entire development process of image genera-
tion and text generation, the scale of the dataset
has played a crucial role. A large amount of high-
quality corpus is also very important for SLP tasks.
In this paper, we present the largest known German
Sign Language dataset, PHOENIX-News, which
consists of 486 hours of sign language videos, au-
dio, and transcription texts. The native expression,
clear hand details, and extensive coverage of our
large-scale dataset make it suitable for a variety of
sign language research tasks, such as sign language
translation and sign language production. Based
on this dataset, we further explore the impact of
training data size on SLP tasks. Empirical analy-

sis shows that the performance of our model can
be further improved by increasing the size of the
training data.

Our main contributions are summarized as fol-
lows:

• We analyse the uneven information density in
sign language. Additionally,we propose for
the first time an information density based
variable length coding method suitable for
sign language.

• We propose a two-stage SLP framework con-
sisting of two components: 1) DVQ-VAE to
dynamically assign variable-length codes to
sequences based on their different information
densities through a novel adaptive downsam-
pling module and budget loss. 2) A novel
T2M-GPT model to predict variable-length
codes and their corresponding durations.

• Extensive experiments on the challenging
PHOENIX14T dataset show the effectiveness
of our proposed method.

• We propose the largest known German sign
language dataset, PHOENIX-News, which
can be used for a variety of sign language
research tasks.

2 Related Work

2.1 Sign Language Production

Sign language production (SLP) has been an active
area of research for nearly two decades(Cox et al.,
2002; McDonald et al., 2016). Early approaches fo-
cused on mapping text to glosses using neural mod-
els. (Stoll et al., 2020) proposed a seq2seq architec-
ture for SLP, which mapped text input to glosses.
To generate 2D joint locations, they utilized an
empirical lookup table paradigm. Then, (Saunders
et al., 2020b) proposed a progressive transformer to
directly learn the mapping between annotations and
skeleton pose sequences. (Saunders et al., 2020a)
proposed to improve the quality of skeleton pose
generation through adversarial training. In addition,
several approaches have been proposed to enhance
the generation quality through the utilization of
mixture density networks(Saunders et al., 2021a),
Mixture-of-Experts(Saunders et al., 2021b), dic-
tionary representations(Saunders et al., 2022), and
diffusion models(Baltatzis et al., 2023a). Several
studies have proposed the use of non-autoregressive
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Table 1: Summary statistics for different sign language datasets.

Dataset Language
Attribute Statitics

Source
Transcription Pose Speech Document-level Duration(h) Vocab Signers

BOBSL (Albanie et al., 2021) BSL ✓ ✓ ✓ ✓ 1447 77k 39 TV
How2Sign(Duarte et al., 2021) ASL ✓ ✓ ✓ ✗ 79 16k 11 Lab
OpenASL(Shi et al., 2022) ASL ✓ ✗ ✗ ✗ 288 33k 220 Web
YouTube-ASL(Uthus et al., 2023) ASL ✓ ✗ ✗ ✓ 984 60k >2519 Web
CSL-Daily(Zhou et al., 2021) CSL ✓ ✗ ✗ ✗ 23 2k 10 Lab
SWISSTXT(Camgöz et al., 2021) DSGS ✓ ✓ ✓ ✓ 88 - - TV
VRT-RAW(Camgöz et al., 2021) VGT ✓ ✓ ✓ ✓ 100 - - TV
KETI(Ko et al., 2019) KVK ✓ ✓ ✗ ✗ 29 419 14 Lab
SP-10(Yin et al., 2022) various ✓ ✓ ✗ ✗ 14 17k 79 Web
AfriSign(Gueuwou et al., 2023) various ✓ ✗ ✗ ✗ 152 20k - Web
PHOENIX2014T(Camgoz et al., 2018b) DGS ✓ ✗ ✗ ✗ 11 3k 9 TV
Public DGS Corpus(Hanke et al., 2020) DGS ✓ ✗ ✗ ✗ 50 - - TV
PHOENIX-News (ours) DGS ✓ ✓ ✓ ✓ 486 190k 11 TV

models to generate sign language, thereby improv-
ing generation speed (Huang et al., 2021; Hwang
et al., 2021, 2022). Additionally, researchers have
explored the generation of photo-realistic sign lan-
guage videos using Generative Adversarial Net-
works (GANs) (Saunders et al., 2022) or diffusion
models (Fang et al., 2023; Xie et al., 2024). Recent
studies have shown that using 3D human models,
such as SPML-x(Pavlakos et al., 2019), is a bet-
ter choice for sign language understanding (Lee
et al., 2023) and production tasks (Stoll et al., 2022).
(Inan et al., 2022) found that representing the in-
tensification level of glosses connected with the
duration of a sign.

2.2 Vector Quantization for SLP

Vector Quantized Variational Autoencoders (VQ-
VAE) proposed by (van den Oord et al., 2017) is
an autoencoder structure that aims to learn a dis-
crete representation of data. Recently, VQ-VAE
has been used for the SLP task, such as (Saun-
ders et al., 2021a) using a modified VQ-GAN for
isolated word sign language video generation. Re-
cently, VQ-VAE has been applied to the SLP task.
For instance, (Xie et al., 2024) utilized a modi-
fied VQ-GAN (Esser et al., 2021) to generate iso-
lated sign language videos. (Xie et al., 2023) em-
ployed VQ-VAE to generate sign pose sequences
from gloss sequences. However, existing meth-
ods rely on fixed-length encodings and overlook
the unequal distribution of information in sign lan-
guage. To address this issue, we propose a pioneer-
ing approach: a variable-length dynamic vector
quantization method specifically designed for sign
language.

2.3 Sign Language Dataset

High-quality sign language datasets are crucial for
the SLP task. Table 1 summarizes the publicly
available datasets used for sign language research.
The PHOENIX14T (Camgoz et al., 2018b) dataset
is the most commonly used dataset for SLP tasks,
but it has limited data. As an important supple-
ment, we propose PHOENIX-News, which con-
tains 486 hours of sign language data. To the best
of our knowledge, this is the largest German sign
language dataset to date.
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3 Analyzing Information Density in Sign
Language

The most commonly used discrete representation
for sign language is glosses, which are the basic se-
mantic units in sign language and are annotated by
sign language experts. We first counted the length
distribution of glosses in the PHOENIX14T dataset,
as shown in Figure 2a. It can be seen that the length
distribution of glosses is uneven, with most glosses
having a length between 0 and 50, but some glosses
have a length of more than 50. This indicates that
uneven information density does exist in sign lan-
guage. We then counted the length distribution of
the most frequently occurring glosses (REGEN)
in different contexts, as shown in Figure 2b. It
can be seen that even the same gloss has differ-
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ent lengths in different contexts. These analysis
results inspire us to design a dynamic vector quan-
tization method as described in subsection 4.2 and
a duration transformer to predict duration based on
context as described in subsection 4.3.

4 Method

Our overall two-stage framework is depicted in Fig-
ure 3, which consists of two stages: DVQ-VAE and
T2M-GPT. In the following, we will first briefly
revisit the formulation of VQ and then describe our
proposed method in detail.

4.1 Preliminary

Vector quantization (VQ) (van den Oord et al.,
2017) represents a technique for learning a code-
book to encode sign language sequences into dis-
crete code representations. Given a sign language
sequence X = [x1, x2, . . . , xT ] with xt ∈ Rd,
where T is the number of frames and d is the
dimension of the sign language, we aim to re-
cover the sign language sequence through an au-
toencoder and a learnable codebook containing K
codes C = {ck}Kk=1 with ck ∈ Rdc , where dc is
the dimension of codes. The sign language se-
quence X is first encoded by the encoder E into a
sequence of latent vectors Z =

[
z1, z2, . . . , zT/l

]
,

and zt ∈ Rdc , where l represents the temporal
downsampling rate of the encoder E. For fixed-
length encoding, l is fixed, while for variable-
length encoding, l is dynamically changing. For
i-th latent feature zi, the quantization through C is
to find the most similar element in C, which can
be properly written as:

ẑi = arg
ck∈C

min ∥zi − ck∥2 (1)

4.2 Stage 1: Dynamic Vector Quantization
VAE (DVQ-VAE)

Existing methods employ a fixed downsampling
rate l for fixed-length encoding, neglecting the un-
even information density in sign language. This
oversight introduces redundancy in the learned
codebook, leading to a decrease in both genera-
tion quality and speed. To address this issue, we
propose DVQ-VAE, which consists of a dynamic
encoder and a dynamic decoder.

Dynamic Encoder. As shown in Figure 3, the
sign language sequence X first passes through a
sign language embedding layer. Then, after adding

positional encoding information, it is input into
a Transformer Encoder to obtain a sequence of
latent vectors H = [h1, h2, . . . , hT ], with ht ∈
Rdh , where dh is the dimension of the latent vectors.
We formulate these operations as:

X ′
t =relu(LN(W1Xt +B1)) + fpos(t)

H =TransformerEncoder(X ′)
(2)

where LN denotes Layer Normalization (Ba et al.,
2016), fpos denotes the positional encoding func-
tion, and W1 ∈ Rdh×d and B1 ∈ Rdh are learnable
parameters.

The dynamic encoder then contains an
information-based adaptive downsampling
module, which adaptively adjusts the downsam-
pling rate by considering the information weight
of each frame. Specifically, we input the latent
vector sequence H into a multi-layer perceptron
(MLP) to obtain the information weight of each
frame I = [i1, i2, . . . , iT ], where it ∈ [0, 1].
We then segment the latent vector sequence H
according to the information weight threshold
O (we set it to 1.0) for semantic unit, and then
perform weighted averaging within the segment
to obtain the downsampled latent vector sequence
Z =

[
z1, z2, . . . , zT/l

]
. The downsampling

process of the entire module can be formulated as:

I = σ(W3(relu(W2H +B2) +H) +B3) (3)

S = cumsum(I)//O (4)

Zt =

T∑

j=1

Hj · Ij · Fj , Dt =

T∑

j=1

·Fj

where Fj =

{
1, if Sj = t− 1

0, otherwise

(5)

Equation 3 represents the operation of the MLP,
where σ denotes the sigmoid activation function.
Equation 4 represents the process of segment-
ing the latent vector sequence H according to
the information weight threshold O, where S =
[s1, s2, . . . , sT ] and st ∈ [0, sum(I)//O], rep-
resenting the position markers of the segments.
cumsum denotes the cumulative sum function,
and // denotes the integer division. Equation 5
represents the process of weighted downsampling,
where Zt denotes the downsampled latent vector
and Dt denotes the duration of the current latent
vector.
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Figure 3: The overview of our proposed two-stage framework.

Dynamic Decoder. The goal of the dynamic
decoder is to reconstruct the original sign lan-
guage sequence X based on the quantized latent
vector sequence Ẑ and the duration information
D =

[
d1, d2, . . . , dT/l

]
. We use a length regu-

lator module to address the issue of mismatched
lengths between the vector sequence Ẑ and the
original sign language sequence X during dynamic
decoding.

X̂ = LR(Ẑ,D) (6)

where X̂ denotes the extended sequence, and LR
denotes the length regulator module. For example,
if Ẑ = [ẑ1, ẑ2, ẑ3] and D = [1, 2, 3], then X̂ =
[ẑ1, ẑ2, ẑ2, ẑ3, ẑ3, ẑ3]. We then input the extended
sequence X̂ into a Transformer-based decoder to
obtain the reconstructed sign language sequence
Xre.

Training of DVQ-VAE. The optimization goal
of the original VQ-VAE (van den Oord et al., 2017)
Lvq contains three components: a reconstruction
loss Lre , an embedding loss Lembed , and a commit-
ment loss Lcommit .

Lvq = Lre + ∥Z − sg[Ẑ]∥2︸ ︷︷ ︸
Lembed

+λ1 ∥sg[Z]− Ẑ∥2︸ ︷︷ ︸
Lcommit

(7)

where λ1 is a hyper-parameter for the commitment
loss and sg is the stop-gradient operator. In our
work, the calculation formula for the reconstruction
loss is as follows:

Lre = Lsmooth
1 (X,Xre )+Lsmooth

1 (V (X), V (Xre ))
(8)

where V (·) denotes the calculation of velocity,
for example, V (X) = [v1, v2, . . . , vT−1], where
vi = xi+1 − xi. In addition to the original opti-
mization goal, we introduce two new loss functions:
budget loss Lbudget and sign language translation
auxiliary loss Lslt. Without using the budget loss,
the model tends to use more codes to represent
the sign language sequence, resulting in longer se-
quence lengths. To encourage the model to use a
higher downsampling rate l, we define the budget
loss as:

Lbudget = E[max(0, (sum(I)− T/R))] (9)

Since the length of the downsampled sequence is
sum(I)//O, the budget loss can be interpreted as
the expectation of the length of the downsampled
sequence. Where T denotes the length of the orig-
inal sign language sequence, and R denotes the
expected downsampling rate. The goal of the sign
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Figure 4: Distribution of text length and video duration in the PHOENIX-News dataset.

language translation auxiliary loss is to preserve
the semantic information of the reconstructed sign
language sequence, and its calculation formula is
as follows:

Lslt = E[−logP (Y |Xre)] (10)

where Y denotes the spoken language text corre-
sponding to the sign language sequence. The final
loss for DVQ-VAE is defined as:

L = Lvq + λ2Lbudget + λ3Lslt (11)

We also use two common training recipes (Razavi
et al., 2019), exponential moving average (EMA)
and code book restart, to improve the utilization of
the codebook.

4.3 Stage 2: Text-to-Sign GPT (T2S-GPT)
Code-Transformer. With a learned DVQ-VAE,
a sign language sequence X can be mapped to a
sequence of indices S =

[
s1, s2, . . . , sT/l, End

]
,

which are indices from the learned codebook. Note
that a special End token is added to indicate the
stop of the sign language code sequence. By pro-
jecting S back to their corresponding codebook
entries, we obtain Ẑ =

[
ẑ1, ẑ2, . . . , ẑT/l

]
, where

ẑi = csi . The generation of the sign language code
sequence S can be formalized as an autoregressive
next index prediction problem: given the previous
i − 1 indices, i.e., S<i, and the text condition Y ,
our goal is to predict the distribution of the possible
next index p (Si | Y, S<i), which can be solved by
a transformer, as shown in Figure 3. The negative
log-likelihood (NLL) loss for code autoregressive
training is:

Lcode = E[− log p (Si | Y, S<i, D<i)] (12)

We introduce a duration embedding layer to embed
the duration information D into the transformer.

Duration-Transformer. As mentioned in subsec-
tion 4.2 and Equation 6, to decode Xre, we need not
only Ẑ, but also the duration information D. There-
fore, we design a duration-transformer to predict
the duration of the next code based on the previous
code’s duration and the current codes. As shown
in Figure 3, the duration-transformer takes the sum
of Code-Transformer’s output hidden vector Hcode

and an extra code embedding as input:

Hdur =Hcode[Ny : Ny + l − 1]

+ fcode(S[≤ l])
(13)

where Hdur denotes the input of the duration-
transformer, and Ny denotes the length of the con-
dition text. The design idea behind this is that
when predicting the next code’s duration, the model
should not only be aware of previous steps’codes
and their duration information but also should be
aware of current code information. The optimiza-
tion goal of the duration-transformer is to minimize
the difference between the predicted duration and
the real duration. The calculation formula is as
follows:

Ldur = E[∥Di − D̂i∥2] (14)

In inference, we round the output of the duration-
transformer to obtain the duration. The final opti-
mization goal is:

L = Lcode + Ldur (15)

5 The Proposed PHOENIX-News Dataset

As shown in Table 1, PHOENIX-News aims to
provide the community with a new large-scale
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Table 2: Quantitative results for text to sign language task on PHOENIX14T test set.

Methods ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

GT 39.17 37.75 24.92 18.25 14.34

PT(Saunders et al., 2020b) 20.58 17.47 7.76 5.50 4.38
NAT-EA(Huang et al., 2021) 26.81 27.00 14.12 9.20 6.67

T2M-GPT (Zhang et al., 2023b) 29.19 28.32 16.05 10.77 8.01
MDM (Tevet et al., 2022) 30.37 27.59 15.83 10.29 7.55

T2S-GPT (ours) 34.65 33.16 21.09 15.26 11.87

document-level sign language dataset, which con-
tains 486 hours of sign language videos, audio, and
transcription texts. We collected daily news pro-
grams in German Sign Language from the German
public television station PHOENIX from 2013 to
2023. We then used whisper (Radford et al., 2023)
to transcribe the program’s speech into text. Fi-
nally, we performed preprocessing steps such as
domain cropping, sign language pose estimation,
and sign language text alignment to obtain the final
dataset. Since there are new sign language news
programs every day, PHOENIX-News will be a
continuously updated project. Therefore, we did
not divide the dataset into training and test sets, but
used the existing dataset for testing. Each video in
the dataset has an average duration of 4.7 seconds,
and the average text length is 11 words. We show
the distribution of video duration and text length in
Figure 4a and Figure 4b.

6 Experiments

6.1 Experimental Setup

We will introduce our experimental setup in this
section, including the dataset and evaluation met-
rics. We will provide the implementation details of
the model in the Appendix C.

Dataset and Evaluation Metrics. We eval-
uate our proposed T2S-GPT model on the
PHOENIX14T (Camgoz et al., 2018b) dataset,
which is the most commonly used dataset for SLP
tasks and has been used as a benchmark in many
previous SLP works (Huang et al., 2021; Saun-
ders et al., 2021a, 2020b; Xie et al., 2023). The
PHOENIX14T dataset contains 7,096 training sam-
ples (with 2,887 words in German spoken language
translations), 519 validation samples, and 642 test
samples. We use the pose parameter θ in the SMPL-
X model to represent the sign language pose, and
the rotation 6D representation (Zhou et al., 2019) is
used to represent the rotation in the pose. Follow-

ing the most widely used setting in SLP (Saunders
et al., 2020b), we use the back translation met-
ric to evaluate the generation quality. Since previ-
ous works did not publicly release the weights of
their SLT models used to calculate the back trans-
lation metric, following the previous setting, we
train an SLT model using the code from (Camgoz
et al., 2020). We provide the details of the sign
language representation in the Appendix B. We
provide the training details of the SLT model in the
Appendix D.

6.2 Comparisons with State-of-the-Art
Methods

We compare our T2S-GPT model with several
other models, including the state-of-the-art text-to-
sign model and the state-of-the-art text-to-motion
model.

Comparison methods. 1) Progression Trans-
former (PT) (Saunders et al., 2020b) directly pre-
dicts the sign language pose sequence in an autore-
gressive manner. 2) NAT-EA (Huang et al., 2021)
generates the sign language pose sequence in a non-
autoregressive manner. 3) T2M-GPT (Zhang et al.,
2023b) is a state-of-the-art autoregressive text-to-
motion model, and its prediction target is the dis-
crete representation of sign language processed by
VQ-VAE. 4) MDM (Tevet et al., 2022) uses a dif-
fusion model to generate motion sequences based
on text in a non-autoregressive manner. Both T2M-
GPT and MDM use CLIP (Radford et al., 2021)
to extract text features as condition signals, but
the original CLIP does not support German well.
To make a fair comparison, we use a multilingual
CLIP model(Reimers and Gurevych, 2019)2.

Quantitative Comparison. We report the back
translation metrics (including BLEU (Papineni
et al., 2002) scores and ROUGE-L (Lin and

2https://huggingface.co/sentence-transformers/
clip-ViT-B-32-multilingual-v1
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degrees on the Upper Rhine

Figure 5: Qualitative results of our T2S-GPT model.

Och, 2004) scores) obtained by all models on the
PHOENIX14T dataset in Table 2. We only use the
PHOENIX14T dataset to train all models, and the
training settings are consistent with those in the
original papers. As shown in Table 2, our T2S-
GPT model achieves the best results on all met-
rics. Specifically, our T2S-GPT model achieves a
score of 11.87 on BLEU-4, which is 3.86 points
higher than the state-of-the-art T2M-GPT model.
On ROUGE-L, our T2S-GPT model achieves a
score of 34.65, which is 4.28 points higher than the
state-of-the-art MDM model. These results indi-
cate that our T2S-GPT model can generate higher-
quality sign language.

Qualitative Results. We qualitatively compare
our T2S-GPT method with other methods and
the ground truth sign language pose sequence
on the PHOENIX14T test set, as shown in Fig-
ure 5. As shown in Figure 5, compared with
other methods, the sign language generated by
our T2S-GPT method is closer to the ground truth.
Note that we provide a video demonstration of
our method on the anonymous project homepage
https://t2sgpt-demo.yinaoxiong.cn/, which
can better convey the temporal information.

Table 3: Results of ablation experiments on the
PHOENIX14T dataset.

Model R B1 B2 B3 B4

T2S-GPT 34.65 33.16 21.09 15.26 11.87
w/o DVQ-VAE 30.80 27.77 16.01 10.96 8.39
w/o Duration-Transformer 31.99 30.05 18.25 12.43 9.39

6.3 Ablation and Analysis

Analysis on DVQ-VAE. As shown in the second
row of Table 3, when we replace DVQ-VAE with
the VQ-VAE proposed by (Zhang et al., 2023b)
with a downsampling rate of 4, we find that the
back translation metrics of the SLP model have
decreased significantly. This indicates that our
DVQ-VAE model can obtain more compact and
higher-quality discrete representations of sign lan-
guage.

Analysis on Duration-Transformer. As shown
in the third row of Table 3, when we replace the
duration-transformer with a simple fully connected
layer, we find that the back translation metrics of
the SLP model have decreased significantly.

Impact of dataset size. To study whether our
proposed T2S-GPT model is scalable, we train the
T2S-GPT model by adding different proportions
of the PHOENIX-News dataset. The experimen-
tal results are shown in , where we find that as
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Figure 6: Impact of dataset size on the performance of
T2S-GPT.

the dataset size increases, the performance of the
T2S-GPT model also continues to improve. This
indicates that our T2S-GPT model is scalable.

7 Conclusion

In this work, we propose a two-stage text-to-sign
model T2S-GPT, which consists of a dynamic
vector quantization VAE (DVQ-VAE) and a GPT-
like autoregressive generation model. Our method
achieves better performance than the previous state-
of-the-art text-to-sign model. In addition, we have
collected a new large-scale document-level sign
language dataset PHOENIX-News, and the exper-
imental results show that a larger dataset can still
bring additional improvements to our method.

8 Limitations and Potential Risks

Although using a 3D human body model as the
sign language representation introduces prior in-
formation about human body shape, it does not
constrain the rotation motion of the joints them-
selves. The model’s predictions occasionally pro-
duce some abnormal cases that do not conform to
the human joint structure, which may make users
feel uncomfortable. At the same time, this is also a
manifestation of the model’s generation errors. To
address this issue, we plan to introduce more prior
information in future work, such as human motion
priors and physical constraints on human joint ro-
tation angles. SLP technology itself does not have
any obvious potential risks, but since the current
SLP technology is still in a relatively early stage, if
it is directly applied to practical scenarios, it may
mislead users. For example, in weather forecasts,
if the model generates sign language with incorrect
place names, it may mislead users.
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A Example Appendix

B Sign Language Representation

Inspired by the latest advances in sign language
processing (Lee et al., 2023; Stoll et al., 2020), to
better represent the complex body movements in
sign language, we propose to use the pose param-
eter θ⃗ =

[
ω⃗T
0 , . . . , ω⃗

T
K

]T of the SMPL-X human
body model (Pavlakos et al., 2019) as the sign lan-
guage representation, instead of the 3D joint coor-
dinates in Euclidean space used in previous works.
Where ω⃗k ∈ R3 denotes the axis-angle representa-
tion of the relative rotation of part k with respect to
its parent in the kinematic tree. However, since the
axis-angle form is not a continuous rotation repre-
sentation, which is not conducive to network learn-
ing, we further convert it to the rotation 6D repre-
sentation (Zhou et al., 2019) o⃗ =

[
r⃗T0 , . . . , r⃗

T
K

]T .
We ignore the lower body joints outside the visible
range. There are three advantages of using this
representation: 1) it has rotation and translation
invariance; 2) it separates the modeling of human
body shape and pose, and the semantics of sign
language should only be related to the pose and
independent of the shape; 3) the introduction of hu-
man body prior avoids generating abnormal results,
such as fingers longer than arms.

C Implementation Details

For DVQ-VAE, we set the dimension of the la-
tent vectors dh to 512, the dimension of the code-
book dc to 512, and the number of codes K to
1024. The number of transformer layers in the
encoder and decoder is set to 6, and the hidden
size, number of heads, and feed-forward dimen-
sion for each layer are set to 512, 8, and 2048,
respectively. The dropout rate is set to 0.1. We use
AdamW (Loshchilov and Hutter, 2018) optimizer
with [β1, β2] = [0.9, 0.99], batch size of 256 , and
exponential moving constant λ = 0.99. We train
for a total of 100K iterations, with an initial learn-
ing rate of 2e-4, and then use the cosine learning
rate decay strategy during training. λ1, λ2, and λ3

in the final loss are set to 1, 0.5, and 1.0, respec-
tively. The R in Lbudget is set to 12.

For T2S-GPT, the hidden size, number of heads,
and feed-forward dimension for each transformer
layer are set to 1024, 16, and 4096, respectively.
The dropout rate is set to 0.1. The number of trans-
former layers in the code-Transformer and duration-
Transformer is set to 18 and 6, respectively. We

use a batch size of 256 and train for 300K itera-
tions. We optimize the models with the AdamW
optimizer, warm up the learning rate for the first 4k
updates to a peak of 1e-4, and then linearly decay it
to 0. We use a 32GB NVIDIA V100 GPU to train
our model.

D Back Translation Model

To calculate the back translation metric, we train
a sign language translation (SLT) model that takes
sign language pose sequences as input and outputs
the corresponding spoken language text. The SLT
model adopts the architecture introduced by (Cam-
goz et al., 2020). Both the encoder and decoder
components of the model are built using transform-
ers. In particular, the hidden size, number of heads,
and feed-forward dimension for each layer are con-
figured as 512, 8, and 2048, respectively. Addi-
tionally, a dropout rate of 0.4 is applied within the
model. The number of transformer layers in the en-
coder and decoder is set to 3. The training settings
are consistent with those in the original paper.
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