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Abstract

We explore and enhance the ability of neu-
ral language models to generate novel scien-
tific directions grounded in literature. Work
on literature-based hypothesis generation has
traditionally focused on binary link prediction—
severely limiting the expressivity of hypothe-
ses. This line of work also does not focus on
optimizing novelty. We take a dramatic depar-
ture with a novel setting in which models use
as input background contexts (e.g., problems,
experimental settings, goals), and output natu-
ral language ideas grounded in literature. We
present SCIMON, a modeling framework that
uses retrieval of “inspirations” from past scien-
tific papers, and explicitly optimizes for novelty
by iteratively comparing to prior papers and up-
dating idea suggestions until sufficient novelty
is achieved. Comprehensive evaluations reveal
that GPT-4 tends to generate ideas with over-
all low technical depth and novelty, while our
methods partially mitigate this issue. Our work
represents a first step toward evaluating and
developing language models that generate new
ideas derived from the scientific literature'.

1 Introduction

Can machines mine scientific papers and learn to
suggest new directions? The idea that information
from the literature can be used for automatically
generating hypotheses has been around for decades
(Swanson, 1986). To date, the focus has been on a
specific setting: hypothesizing links between pairs
of concepts (often in drug discovery applications
(Henry and Mclnnes, 2017), e.g., new drug-disease
links), where concepts are obtained from papers or
knowledge bases previously derived from papers
(Sybrandt et al., 2020; Nadkarni et al., 2021).

This common setting has fundamental draw-
backs. Reducing the “language of scientific ideas”
(Hope et al., 2023) to this simplistic form limits

!'Code, data, and resources are publicly available for re-
search purposes: https://github.com/eaglew/clbd.
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Figure 1: SCIMON takes background context and gen-
erates ideas grounded in literature inspirations, optimiz-
ing novelty by iteratively comparing to related work.

the expressivity of the hypotheses we can hope to
generate, and does not capture nuanced contexts
that scientists consider: target application settings,
requirements and constraints, motivations and chal-
lenges. In light of the strong progress recently
made with large language models (LLMs), in this
paper we explore a dramatically different setting:
models that take descriptions of problem contexts—
and return natural language suggestions of novel
scientific directions that are grounded in literature.

We develop a framework named SCIMON (Sci-
entific Inspiration Machines with Optimization for
Novelty), named after Nobel laureate and Al pi-
oneer Herbert Simon who authored early foun-
dational work on automated scientific discovery
(Newell and Simon, 1956; Simon, 1973). We first
present an automated data collection methodology
that collects examples of past problems and pro-
posed ideas from scientific papers. We then use this
data for both fine-tuning and in-context training
of LLMs—training them to take problem descrip-
tions and output proposed ideas to address them.
We observe that state-of-art LLMs (e.g., GPT-4
(OpenAl, 2023)) struggle with generating novel
scientific ideas, and contribute a new modeling
framework for generating hypotheses that makes
progress in improving the hypothesis generation
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ability of LLMs (Figure 1). Given a background
problem description, models first dynamically re-
trieve inspirations from past literature in the form
of related problems and their solutions along with
contexts from a scientific knowledge graph. These
retrieved inspirations serve to ground the generated
ideas in existing literature. We then endow models
with the ability to iteratively boost the novelty of
generated ideas. Given an idea Z generated by the
LLM at step ¢, the model compares Z with existing
research in the literature; if it finds strongly overlap-
ping research, the model is tasked with updating its
idea to be more novel relative to prior work (much
like a good researcher would do). We also intro-
duce an in-context contrastive model which encour-
ages novelty with respect to background context.
We perform the first comprehensive evaluation
of language models for generating scientific ideas
in our new generative, contextual setting. We fo-
cus on AI/NLP ideas to facilitate analysis by Al
researchers themselves, and also demonstrate gen-
eralization to the biomedical domain. We design
extensive evaluation experiments using human an-
notators with domain expertise to assess relevance,
utility, novelty, and technical depth. Our methods
substantially improve the ability of LLMs in our
task; however, analyses show that ideas still fall far
behind scientific papers in terms of novelty, depth
and utility—raising fundamental challenges toward
building models that generate scientific ideas.

2 Background and New Setting

We begin with a brief description of related work
and background. We then present our novel setting.

Literature-based discovery Nearly four decades
have passed since Don Swanson pioneered
Literature-Based Discovery (LBD), based on the
premise that the literature can be used for gen-
erating hypotheses (Swanson, 1986). LBD has
been focused on a very specific, narrow type of
hypothesis: links between pairs of concepts (often
drugs/diseases). The classic formalization of LBD
goes back to Swanson (1986) who proposed the
“ABC” model where two concepts (terms) A and
C are hypothesized as linked if they both co-occur
with some intermediate concept B in papers. More
recent work has used word vectors (Tshitoyan et al.,
2019) or link prediction models (Wang et al., 2019;
Sybrandt et al., 2020; Xu et al., 2023) to discover
scientific hypotheses as pairwise links between con-
cepts. A tightly related body of research focuses

on scientific knowledge graph link prediction (Nad-
karni et al., 2021), where predicted links may cor-
respond to new hypotheses, and knowledge bases
are reflections of existing scientific knowledge in
specific domains, derived from literature. A fun-
damental gap in this line of work is in the lack of
approaches for modeling nuanced contexts (Sosa
and Altman, 2022) (e.g., the specific settings in
which a drug may be relevant for a disease) for gen-
erating ideas in open-ended problem settings with
unbounded hypothesis spaces, and for optimizing
novelty. Our setting can be viewed as a radical
departure addressing the limitations in existing set-
tings.

LLMs for Scientific Innovation Large language
models (LLMs) have made remarkable progress in
interpreting and producing natural language con-
tent and handling knowledge-intensive tasks such
as in the medical domain (Nori et al., 2023). Very
recent work (Boiko et al., 2023) has explored the
use of LLMs in a robotic chemistry lab setting,
planning chemical syntheses of known compounds
and executing experiments. Robotic lab settings
are inherently limited to narrow sub-areas where
such experiments are possible and relevant. Other
very recent work (Huang et al., 2023) used LLMs
to produce code for machine learning tasks such as
Kaggle competitions, finding that a GPT-4 agent
achieved 0% accuracy on research challenges such
as BabyLM (Warstadt et al., 2023). GPT-4 has been
anecdotally reported as having “strengths less like
those of having a human co-author, and more like a
mathematician working with a calculator” (Carlini,
2023). Our goal is to conduct a non-anecdotal eval-
uation and enhancement of strong LLMs’ ability to
generate novel open-ended scientific ideas.

2.1 SCIMON Problem Setting

We are motivated by imagining an Al-based assis-
tant that suggests ideas in natural language. The
assistant takes as input background context B con-
sisting of (1) current problems, motivations, experi-
mental settings and constraints, denoted as M; and
optionally (2) a seed term v that should be a focus
point of the generated idea Z. The seed term is mo-
tivated by considering a user-provided cue for the
model to limit its hypothesis space. Importantly,
generated ideas should not merely paraphrase the
background—the output should be novel with re-
spect to 3 and the broader literature corpus. Fig-
ure 2 illustrates the setting, showing a background
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Figure 2: Architecture overview. Our models retrieve inspirations and then pass the background input and retrieved
inspirations to an LM-based generation module, which iteratively optimizes novelty. Input from Qin et al. (2022).
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Figure 3: We use IE to obtain literature data for our
approach: problems/motivations (background) and pro-
posed ideas (target), as well as salient seed terms.

text that describes problems with “pretrained lan-
guage models” in the lifelong integration of in-
formation sources, including computational costs.
The assistant aims to generate an idea for perform-
ing “knowledge acquisition” within this context.
Given this input, we aim to generate a full sentence
describing a novel idea.

2.2 Automated Training Data Collection

We obtain training data derived from papers with
scientific information extraction (IE) models—
extracting past examples of background sentences
and corresponding ideas (e.g., descriptions of meth-
ods used for specific problems in the background
sentences), along with salient entities as seed terms.
This data is used for training in both in-context
learning and fine-tuning setups.

We construct a corpus D from 67,408 ACL An-
thology papers from S20RC (Lo et al., 2020) (we
later also conduct an experiment with a biomedical
corpus §4.1). Given a title and the correspond-
ing abstract from a document d, to select prob-
lem/motivation sentences M we first perform sci-

entific sentence classification (Cohan et al., 2019)
to classify sentences from the abstract into one of
{Background, Method, Objective}, selecting sen-
tences with labels of Background and treating the
remaining sentences as target sentences 7 which
will serve as desired output examples (Figure 3).

For seed term selection, we apply a state-of-
the-art scientific IE system (Ye et al., 2022) to T
to extract entities corresponding to Task, Method,
Evaluation Metric, Material, and relations of
the form [method,used-for,task]—mentions
of methods and the tasks they are used for, ma-
terials used for tasks, etc. We treat the head (e.g.,
method) or tail (e.g., task) entity as the seed term,
and name the other entity (tail/head, respectively)
as a target term t € 7. Continuing our example
from Figure 2, Figure 3 shows how the seed and tar-
get terms (“knowledge acquisition” and “function
preserved model expansion™) are extracted from 7.
During training, each instance contains (B3,7) pairs;
during evaluation, target information is removed.

We use SciCo (Cattan et al., 2021) to obtain
coreference links for entity normalization, and use
ScispaCy (Neumann et al., 2019) to replace ab-
breviations with a more informative long form.
We also collect paper metadata, including the ci-
tation network G.. We split our dataset tempo-
rally (train/dev/test correspond to papers from years
<2021 /2021 / 2022 respectively). For our experi-
ments, we used model checkpoints trained on data
preceding 2022, avoiding the risk of data contami-
nation (§6). Table 1 shows data statistics.>

“More details are in Appendix C.
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Quality of IE Preprocessing During preprocess-
ing, we only keep high-confidence outputs from IE
models to reduce errors. We observe this removes
many of the noisy cases. To validate this, we man-
ually evaluate the precision of each preprocessing
step on a random sample of papers and observe
that all steps yield high precision (91%-100%) ex-
cept relation extraction (65%)j; in total, the rate of
instances passing all steps was 79.7%.>

Gold Test Set We create a high-quality, clean test
set. We remove test instances where models can
trivially use surface-level background information
to infer the ground truth to create a more chal-
lenging set, selecting instances with low similarity
between background and ground truth sentences.
We compute the cosine similarity between each
instance’s background and corresponding ground
truth sentence in the test set and take pairs with
similarity < 0.074, which amounts to the tenth per-
centile of pairs. We further annotate this subset
to create a gold subset. We manually exclude in-
stances with trivial overlap between ground truth
and background, remove cases with irrelevant back-
ground, and retain only instances where the tar-
get relation (from which the seed term is taken)
is salient to the target sentence. We also remove
test pairs that have unexplained terms in the back-
ground. We obtain a total of 194 instances.*

Split Forward Backward  Total
Train 55,884 58,426 114,310
Valid 7,938 8,257 16,195
Test 2,623 2,686 5,309

Table 1: Dataset statistics. Considering a relation of the
form [v used-for wu], we define [v used-for ?] as
forward, and [? used-for wu] as backward.

3 ScIMON Models

We present a new module to retrieve inspirations
as contextual input (§3.1). Then, we describe
another module to generate ideas given the con-
text+inspiration (§3.2). Finally, we introduce a
new iterative novelty optimization method to fur-
ther improve idea quality (§3.3).

3See Table 6 in Appendix.
*Full annotation details are in Appendix C.
>Training and hyperparameter details in Appendix B.

3.1 Inspiration Retrieval Module

We take broad inspiration from cognitive aspects of
innovation (Hope et al., 2023): when researchers
generate a new idea, they are grounded in a web
of existing concepts and papers bearing on the new
idea. We aim to enrich the context of each back-
ground by retrieving “inspirations”— pieces of in-
formation that can guide hypothesis generation. As
illustrated in Figure 2, for a given instance of the
SCIMON task, our retrieval augmentation can re-
trieve from three types of sources. Each source
uses a different form of query and output.

Semantic Neighbors For a given prob-
lem/motivation as input, ideas proposed for related
problems in the training set can serve as a guiding
reference for generating a new idea. Given the
background context B with a seed term v and
problem/motivation M, we construct a base
input b: a concatenation of M with a prompt P
belonging to one of two templates: “v is used
for p” or “v is done by using p”, where p is one
of Task/Method/Material/Metric. In short, b :=
P @ context: M. For example, in Figure 2, the
concatenation is “Knowledge acquisition is done
by using Method; Context:...requires plms to
integrate information...lifelong manner...”.

We then retrieve inputs from the training set that
are semantically related to a new base input b, and
obtain target sentences 1’ corresponding to each
retrieved training input. We extract the target term
t € 7T matching the seed term in b (§2.2) as in-
spiration for input b. Simply put, this means we
use as inspiration the salient aspect of the solution
proposed in T, which we found empirically to help
remove noisy/irrelevant information in 7. For ex-
ample, in Figure 2, we find “informative entities
are done by using Method context: in this work, we
aim at equipping pre-trained language models with
structured knowledge.” as similar to the input and
use t =“linked knowledge graph” as inspiration.

Technically, we first construct a fully connected
graph Gg based on the training set where each node
is a pair of input text b; and target term ¢;. We
define the weight between two nodes ¢ and j as
the cosine similarity between b; and b; based on
representations from SentenceBERT (Reimers and
Gurevych, 2019) (all-mpnet-base-v2). Given b,
we first insert it into Gg and compute the weights
of its connected edges. We then retrieve neighbors
input text {b1,..., b} from the training set with
the largest edge weight, where £ is the number of
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retrieved instances. We consider the corresponding
target terms {¢1,...,{;} as semantic inspirations.

KG Neighbors We also explore enriching the
context by linking it to a background KG with in-
formation on related methods and tasks. Using the
same IE process used to extract our training exam-
ples (§2.2), we create a global background KG Gp
which covers all papers in the corpus Dy, prior to a
given year ) (i.e., the nodes in G correspond to
tasks/methods/materials/metrics, and the edges are
used-for relations, extracted and normalized from
across the entire corpus as described earlier). Then,
given a seed term v at query time, we select ad-
jacent nodes {n1,ng, ...} from Gp as inspirations.
As an example, in Figure 2, the neighbor nodes of
“knowledge acquisition” include “collaborative web
text annotation editor”, “image matching”, etc.,
which we select as inspirations.

Citation Neighbors Another notion of contex-
tual relatedness we explore is via citation graph
links. Here, given as input background context B,
we assume access to the original source document
d from which B was extracted, and consider its
cited paper title set C,4 as potential candidates. This
can be seen as a stronger assumption on informa-
tion available to the model— assuming a researcher
using the model provides relevant candidate docu-
ments from which ideas could be pooled. Because
the training set only contains papers before year
Y, we only select papers Cqy C Cg4 prior to year ).
We then retrieve the top-k titles with the highest
cosine similarity to d from Cg4y based on their Sen-
tenceBERT embeddings as earlier. For instance,
in Figure 2, the paper ELLE (Qin et al., 2022)
cites the paper (de Masson d'Autume et al., 2019).
Therefore, we choose the title “episodic memory
in lifelong language learning” as inspiration infor-
mation.

3.2 Generation Module

The idea generation module is given retrieved inspi-
rations i1, . . ., iy, along with context M as input.

In-Context Learning We experiment
with recent state-of-the-art LLMs, GPT3.5
davinci-003 (Ouyang et al., 2022) and GPT4
gpt-4-0314 checkpoint (OpenAl, 2023). We first
ask the model to generate sentences based on the
seed term and the context in the zero-shot setting
without any in-context examples (GPT3.5ZS,
GPT4ZS). We then ask the model to generate

sentences in a few-shot setting by prompting
randomly chosen pairs of input and output from the
training set (GPT3.5FS, GPT4FS). Inspired by Liu
et al. (2022), we further employ a few-shot setting
using semantically similar examples. Instead of
random in-context examples, we use the top-k
examples from the training set with the highest
cosine similarity to the query (GPT3.5Retr). This
few-shot retrieval setting differs from the semantic
neighbor discussed above, in that we provide both
the input and output of each instance rather than
solely supplying target entities as additional input.

Fine Tuning We fine-tune T5 (Raffel et al., 2020)
(more recent models may be used too; see our
biomedical experiment §4.1 fine-tuning an LLM).
We observe that the generation models tend to copy
phrases from the background context. For example,
given the context “...hierarchical tables challenge
numerical reasoning ...”, the model will generate
“hierarchical table reasoning for question answering”
as the top prediction. For generating suggestions of
novel ideas, we wish to discourage overly copying
from the background context. We introduce a new
in-context contrastive objective, where negative ex-
amples are taken from the text in the input (e.g.,
in Figure 2, the in-context negatives are plms, pre-
training, etc). We compute an InfoNCE loss (Oord
et al., 2018) over the hidden states of the decoder,
aiming to maximize the probability of the ground
truth against those of in-context negatives:

y* = o(Avg(W,h' + b))
s = o(Avg(W,hi +b,))
exp (y*/7)
>k exp (yy /7) +exp (y+/7)

ey

£c1 =

where h™ and h, are decoder hidden states from
the positive and k-th negative samples, W, and b,,
are learnable parameters, o is a sigmoid function,
T is a temperature hyperparameter, and Avg(x)
denotes the average pooling function based on the
target sequence length. We optimize with both
contrastive loss L] and the cross-entropy loss.

3.3 [Iterative Novelty Boosting with Retrieval

We further improve the novelty of generated
ideas with a new iterative retrieve-compare-update
scheme. Conceptually, we consider a novelty-
inducing penalty ynov(Z, R) that penalizes ideas
7 that are too “close” to existing ideas in litera-
ture reference examples R. Ynov(Z, R) is included
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during in-context learning and inference, providing
numerical feedback in the form of a score reflecting
similarity to existing work. We wish to minimize
this score while ensuring Z remains relevant to the
background context B; we do so iteratively by (1)
retrieving related work from R, (2) measuring de-
gree of novelty, (3) instructing the model to update
7 to be more novel w.r.t R, conditioning on B.

Specifically, in our implementation, we construct
a reference corpus R based on all papers in the
training set. We then propose an iterative algorithm
that compares generated ideas against R. We start
with the initial idea Z( generated by the generation
module. At each time step ¢, we use the generated
idea Z; as a query to retrieve k nearest ideas from
the literature reference corpus R = {R1, ..., Ri}
based on SentenceBERT, with the top-£ highest
cosine similarity scores to Z; (we use k = 20).
For each retrieved ground truth literature idea R;,
we compare its cosine similarity score S; against
a threshold p (we use 0.6). We provide all the
retrieved ground truth ideas R that pass the thresh-
old as additional negative examples for the large
language models with the following instruction
prompt: “Your idea has similarities with existing
research as demonstrated by these j sentences: R
Make sure the idea you suggest is significantly dif-
ferent from the existing research mentioned in the
above sentences. Let’s give it another try.” We stop
the iteration once all S; are lower than . Figure 2
and Table 5 demonstrate novelty iterations.

4 Experiments

4.1 Human Evaluation

We present four human evaluation studies, explor-
ing different facets of our problem and approach.

4.1.1 Study I: Comparing Outputs across
Model Variants

We recruit six volunteer NLP experts with graduate-
level education to rate the system. Raters are told
to envision an Al assistant that suggests new pa-
per ideas. We randomly select 50 instances (back-
ground+seed) from the gold subset. Each annotator
receives ten instances, each paired with system out-
puts from different model variants (Table 2). We
ask raters to assess idea quality by considering each
output’s relevance to the context, novelty, clarity,
and whether the idea is reasonable (positive rat-
ings are dubbed “helpful” as shorthand, indicating
they pass the multiple considerations). We observe

moderately high rater agreement.® Raters are blind
to the condition, and system outputs are randomly
shuffled across instances.

We instruct annotators to only provide positive
ratings to ideas sufficiently different from the input
context. In Study I, we ask raters not to anticipate
groundbreaking novelty from the system but rather
a narrower expectation of quality and utility; in
Study II below, we enrich the analysis to examine
ranking between top models and also “raise the bar”
and compare to actual ideas from papers.’

In a preliminary experiment, we also col-
lected human ratings for GPT4-ZS (zero-shot) vs.
GPT4-FS (few-shot) using the same criteria, finding
GPT4-FS ranked higher in 65% of cases, with the
rest mostly tied; thus, zero-shot GPT-4 was left out
of the remainder of study I and subsequent studies
to reduce annotation effort and cost.

Results Overall, GPT4FS and GPT4FS+KG outper-
form other models by a wide margin (Table 2).
Apart from GPT4, T5+SN+CL performs best com-
pared to other baselines, given its stronger prior
knowledge of useful similar background hypothe-
ses. In general, GPT3.5 models performed worse
than fine-tuned TS5 and its variants, which echoes
results in other work in the scientific NLP domain
(Jimenez Gutierrez et al., 2022). GPT4 outputs
tended to be longer, which may partially explain
higher human preference.

Type 3FS 3Rt 3FS+CT 3FS+KG 4  4+KG T5 T5+SN

H 33 25 16 33 73 66 22 48
u 67 75 84 67 27 34 18 52

Table 2: Percent (%) of total votes each system output
receives from human raters. H denotes a helpful out-
put, while U denotes an unhelpful output. “3FS” refers
to the GPT3.5FS. “3Rt” refers to the GPT3.5Retr. “4”
refers to GPT4FS, and “4+KG” refers to the GPT4FS+KG.
“T5+SN” refers to the T5+SN+CL. GPT4FS and GPT4FS+KG
are rated much higher. While GPT4FS has a slightly
higher rating than the KG variant, a further human study
reveals that GPT4FS+KG often leads to more technical
depth (§4.1).

4.1.2 Study II: Comparing GPT4 Variants
against Real Papers

We conduct a follow-up human study of close com-
petitors GPT4FS and GPT4FS+KG with a subset of

®The agreement scores are in Table 13 Appendix C.
"Full evaluator guidelines are in Appendix C. The sample
annotations are in Table 11.
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the annotators to evaluate the incrementality and
novelty of the generated ideas. In this study, model
outputs are now ranked, unlike the binary classi-
fication of helpful/not in Study 1. Suggestions are
ranked according to the level of technical detail and
innovation in comparison to each other—i.e., rank-
ing which of GPT4FS and GPT4FS+KG had a higher
degree of technical detail and novelty, or whether
they are roughly the same (tied). Finally, outputs
are rated versus the ground truth idea, according to
whether or not the suggestions were roughly at the
same level of technical detail and innovation as the
original paper’s idea, or significantly lower.

Results Overall, GPT4FS+KG is found to have
higher technical detail in 48% of the compared
pairs, and found to be less incremental (more
novel) in 45% of the pairs. Among the remaining
52%/55% (respectively), the vast majority are ties,
indicating that whenever GPT4F S+KG is not favored,
it is of roughly the same quality as GPT4FS, but
not vice versa. However, the most crucial aspect is
comparing the results against the original ground
truth idea on the quality of innovation. Here, we
find that in 85% of comparisons, the ground truth
is considered to have significantly higher techni-
cal level and novelty; and in the remaining 15%,
the ground truth was ambiguous or lacking addi-
tional context from the paper abstract. This points
to a major challenge in obtaining high-quality idea
generations using existing state-of-the-art models.

4.1.3 Study III: Evaluation on Iterative
Novelty Boosting

We conduct a fine-grained evaluation of our nov-
elty mechanism with qualitative and quantitative
evaluation of novelty. Specifically, we ask five an-
notators to further compare the novelty-enhanced
results against the initially generated ideas. We ran-
domly select 70 instances (background+seed) from
the sentence generation gold subset. We ask anno-
tators to check whether the new ideas are different
than the initial ideas (e.g., adding new information
or approaches), and whether they are more novel
(i.e., a new idea can be different, but not necessarily
more novel). Since GPT4FS+SN outperforms other
models, for this model, we further instruct annota-
tors to compare the novelty of the second iteration
results against the first iteration results.

Results For SN, in the first iteration 88.9% of up-
dated ideas are substantially different from initial
ideas, and for 55.6% we are able to increase nov-

Type GPT4FS  +SN  +CT  +KG
Ist Novelty A (%) +54.4 +55.6 +47.8 +46.7
2nd Novelty A(%) - +57.8 - -

" Istnewterms A 4+23.1  422.8 4221 +219°
2nd new terms A - +21.5 - -

Table 3: Relative improvements of iterative novelty
boosting. Iterations are applied to the ideas for which
sufficiently similar related work is detected (§3.3). “1st
Novelty” is % of the 1st iteration ideas that gained
novelty over the initial idea, and “2nd Novelty” is the %
of gain over the 1st iteration. Our method substantially
increases novelty for ideas to which it is applied. To save
annotation resources, we only annotate second iteration
results for the best-performing method (SN). We report
the average number of new terms added, after filtering.

elty/creativity (meaning that, e.g., if 100 examples
were updated, we would gain 56 examples that are
more novel). The 2nd iteration, further increases
novelty for 57.8% of the ideas that continued to
another iteration. For ideas not considered more
novel after applying our method, we do not observe
a drop in novelty—the method either increases or
maintains novelty.

Ideas after novelty iterations are longer than ini-
tial ideas. We examine the new terms added af-
ter filtering 359 words, including stopwords, as
many generic words and terms are often added
(e.g., “novel model/method/approach’). While our
method helps boost novelty, overall the model of-
ten tends to suggest combinations between popular
concepts (§4.2). Novelty boosting seemed to often
focus on adding dynamic/adaptive modeling, graph
models and representations, the fusion of multi-
ple modalities and sources—and sometimes all at
once (e.g., “Dynamic Syntax-Aware Graph Fusion
Networks (DSAGFN)”), and to explicitly compare
against existing ideas from literature (Table 5).

Type Meditron +SN +CT +KG
Helpful(%) 35 80 60 50
Unhelpful(%) 65 20 40 50
vs. GT(%) 30 45 50 35

Table 4: Human evaluations results of each system out-
put for the idea sentence prediction task on Biomedical
Domain. “vs. GT” refers to percents which system
outputs are better than ground truth ideas.

4.1.4 Domain Generalization Case Study

Our domain-agnostic framework can be applied
to other domains by changing the IE system used
in the preprocessing procedure. To demonstrate
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Type

Content

Input (Dong
et al., 2022)

seed term: speech unit boundaries ; context (abridged): ... generate partial sentence translation given a
streaming speech input. existing approaches ... break the acoustic units in speech, as boundaries between
acoustic units in speech are not even. ...

A method that leverages acoustic and linguistic features to predict speech unit boundaries dynamically,
ensuring smooth transitions ... differs from the existing research as it combines both acoustic properties and
linguistic context ... adapting to variations in speaker characteristics, speaking styles, and languages.

A novel method called Adaptive Speech Unit Boundary Detection (ASUBD) ... a combination of attention
mechanisms to focus on relevant acoustic and linguistic features and reinforcement learning to guide the
system to make optimal predictions of unit boundaries based on previous decisions...

... an efficient monotonic segmentation module ... accumulate acoustic information incrementally and detect
proper speech unit boundaries.

Table 5: Example of iterative novelty iterations. Our novelty iteration method enhances ideas overall; however ideas
are often based on superficial recombinations of common concepts, far from the technical depth of scientific papers.

this, we conduct an additional initial experiment in
the biochemical domain. We follow a similar data
creation procedure as for NLP papers. We collect
a dataset from PubMed papers and use PubTator
3 (Islamaj et al., 2021; Wei et al., 2022; Luo et al.,
2023; Wei et al., 2023; Lai et al., 2023) as an IE
system to extract a KG from paper abstracts. We
use a sentence classifier trained on annotated ab-
stracts (Huang et al., 2020) to select background
context. We fine-tune a state-of-the-art biomedical
large language model (Chen et al., 2023) on our
data and evaluate on a test split past its pre-training
cutoff date.®> We ask two biochemical domain ex-
perts with graduate-level education to evaluate the
quality of the results as before, finding them to over-
all rate 80% of the generated directions positively.
Finally, in contrast to NLP-domain experiments,
evaluators were more satisfied with the generated
outputs than the ground truth regarding technical
detail. Detailed results are in Table 4. However,
this preliminary experiment was meant mainly to
demonstrate the generality of our approach, and a
more in-depth exploration of utility and quality is
left for future work.

4.2 Error Analysis

Models often made generic suggestions, woven to-
gether with specific details copied directly from the
context (e.g., “NLP with ML algorithms and senti-
ment analysis” for some problem X, or “data aug-
mentation and transfer learning” for Y, or “BERT
or RoBERTa” for 7). Our techniques reduced this
behavior but did not fully solve it. GPT4 models,
especially, seemed to generate generic descriptions
of common steps in NLP workflows (e.g., “Data
preprocessing: Clean the text data, remove unnec-

8More data and training details in Appendix A.2, B.2.3.

essary characters, perform tokenization...”). All
models often copied and rephrased directly from
the context. In certain cases, models applied sim-
ple logical modifications to the context; e.g., when
contexts described problems such as “high latency”
or “efficiency limitations”, the suggestions would
include phrases such as “low latency” or “highly
efficient”.

4.3 Automated Evaluation Analysis

In open-ended tasks such as ours, automatic evalua-
tions comparing system output to ground truth texts
may be limited. Nonetheless, automated metrics
such as ROUGE (Lin, 2004), BERTScore (Zhang*
et al., 2020) and BARTScore (Yuan et al., 2021),
that check the similarity between ground truth and
generated output, may surface interesting findings.
We find GPT-based models to be outperformed by
T5-based models; GPT4 outputs are much longer
than T5, explaining why they underperform in au-
tomatic metrics but outperform in human evalu-
ations (84.1). Generated sentences often follow
certain templates (e.g., “In this paper, we propose
a new ... for...”), which also helps explain why T5
fine-tuned on many examples scores higher superfi-
cially. At the same time, our in-context contrastive
examples which encourage novelty with respect to
background context, helped models perform better
than baseline fine-tuning by reducing reliance on
copying. See results in Table 9 (Appendix B.4).

5 Conclusions and Future Directions

We propose a new setting, model and comprehen-
sive evaluation for scientific hypothesis generation
with language models that are grounded in liter-
ature and optimized for novelty. We present a
new framework named SCIMON in which mod-
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els take background problem contexts and provide
suggestions that are novel while based on litera-
ture. Models retrieve inspirations from semantic
similarity graphs, knowledge graphs, and citation
networks. We introduce a new iterative novelty
boosting mechanism that helps large language mod-
els (LLMs) such as GPT-4 generate more novel
ideas by explicitly comparing ideas to prior work
and refining them. Our experiments demonstrate
that the task of generating natural language scien-
tific hypotheses is highly challenging. While our
methods improve upon baseline LLMs, generated
ideas tend to be incremental and with insufficient
detail. Generating novel and meaningful scientific
concepts and their compositions remains a funda-
mental problem (Hope et al., 2023). Evaluation in
this setting is also highly challenging, with a huge
space of potentially plausible hypotheses formu-
lated in natural language. One interesting direction
is to expand SCIMON with a multimodal analysis
of formulas, tables, and figures to provide a more
comprehensive background context.

6 Limitations

We discuss limitations extensively throughout the
paper, such as in terms of evaluation challenges
and data quality. Here we include additional details
on limitations.

6.1 Limitations of Data Collection

We crawled papers with Semantic Scholar Aca-
demic Graph API from 1952 to June 2022. The
number of available papers is limited by the data
we crawled from the Semantic Scholar Academic
Graph. We also crawled papers from PubMed 1988
to 2024/01. We remove papers that are not English.
We also remove papers where abstracts are not cor-
rectly parsed from paper PDFs. We will expand
our models to papers written in other languages
and other domains in the future.

6.2 Limitations of System Performance

Our dataset is based on state-of-the-art IE systems,
which may be noisy. For instance, the coreference
and SciSpacy abbreviation resolution models fail to
link A2LCTC to Action-to-Language Connectionist
Temporal Classification. The background context
detection may also have errors: e.g., the sentence
classification component fails to treat “For exam-
ple, the language models are overall more positive
towards the stock market, but there are significant

differences in preferences between a pair of indus-
try sectors, or even within a sector.” as background
context. In our human-vetted gold data subset, we
make sure to filter such cases, but they remain
in the training data. SentenceBert (Reimers and
Gurevych, 2019), and GPT3.5/4 are not finetuned
and might be biased towards pretraining datasets.
The idea novelty boosting method is limited by the
quality of retrieval models. Better retrieval models
may be explored in the future. Due to hardware
constraints, we mainly investigated models with up
to 7 billion parameters. Due to API change and
model randomness, our GPT3.5/4 results might not
be easily reproducible.

6.3 Limitations of Evaluation

We recruit annotators from Ph.D. students; their
opinions may differ from annotators who have dif-
ferent levels of domain knowledge. Our setting
uses a seed term taken from the ground truth as in-
put, to emulate a scenario where a human provides
guidance to an assistant model. Future work could
explore methods in the setting without a seed term,
an even harder task, or evaluate in an interactive
setting with user-provided seed terms. In addition,
while the seed is sampled from the ground truth, in
our human-annotated gold subset, we make sure
that in no case does the input context trivially leak
the output.

6.4 Memorization Check

Carlini et al. (2023) reports that LLMs tend to mem-
orize part of their training data, a well-known con-
cern in evaluating current LLMs. Therefore, we
examine the pretraining data of each model:

» T5: Raffel et al. (2020) shows that TS is pre-
trained on C4 which was crawled from web
prior to April 2019.

« GPT3.5: Based on the documentation,” GPT-
3.5 series is pretrained on a combination of
test and code from before Q4 2021.

* GPT4: OpenAl (2023) shows that the GPT-4
checkpoint we used utilizes most pertaining
data before September 2021. Despite this, the
pretraining and post-training data contain “a
small amount” of more recent data.!”

9platform.openai.com/docs/model—index—for—res
earchers

10See footnote 10, page 10 of OpenAl (2023).
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Because we evaluate our models on papers pub-
lished in 2022, the likelihood of test papers ap-
pearing in the pretraining corpora for the models is
substantially reduced. We additionally performed
a manual examination of GPT-4 memorization in
our gold set based on 2022 ACL Anthology papers,
by seeing if GPT-4 could complete information
such as method names or generate text that strongly
mimics the ground truth papers, and found no ev-
idence of this occurring. The Meditron-7b (Chen
et al., 2023) uses PubMed with a cut-off in August
2023, and our biochemical test set only includes
PubMed papers after 2023/08.
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A Dataset Collection

A.1 NLP Dataset Collection

We download ACL Anthology papers from 1952
to 2022 using Semantic Scholar Academic Graph
APL!'! We filter out papers without abstracts and
not written in English to obtain 67,408 papers. Our
dataset has 58,874 papers before 2021, 5,946 pa-
pers from 2021, and 2,588 from 2022. We first
use PL-Marker (Ye et al., 2022) pretrained on Sci-
ERC (Luan et al., 2018) to extract nodes belong-
ing to six types: Task, Method, Evaluation Met-
ric, Material, Other Scientific Terms, and Generic

yww. semanticscholar.org/product/api
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Terms. The model then predicts relations between
nodes belonging to seven relation types: Used-
for, Feature-of, Evaluate-for, Hyponym-of, Part-
of, Compare, and Conjunction. Because we want
to generate new ideas, we focus on used-for rela-
tions in papers. Next, we use SciCo (Cattan et al.,
2021) with checkpoint from Hugging Face'? to ob-
tain entity coreference to merge identical nodes.
Then, we use ScispaCy (Neumann et al., 2019)
to perform unsupervised abbreviation detection to
replace the abbreviation with a more informative
long form. Finally, we perform scientific sentence
classification (Cohan et al., 2019)3 to classify sen-
tences from the abstract into five categories includ-
ing Background, Method, Objective, Other, and
Result. We select sentences with labels of Back-
ground and Other as background context. During
preprocessing, we only keep high-confidence out-
puts from IE models. Figure 4 shows an example
of the IE systems pipeline.

A.2 Biochemical Dataset Collection

We collect PubMed papers from 1988 to 2024
using Entrez Programming Utilities API'* for
the following topics, including Yarrowia, Saccha-
romyces cerevisiae, Issatchenkia orientalis, and
Rhodosporidium toruloides. We use PubTator 3 (Is-
lamaj et al., 2021; Wei et al., 2022; Luo et al., 2023;
Wei et al., 2023; Lai et al., 2023). The PubTator
3 performs named entity recognition, relation ex-
traction, entity coreference and linking, and entity
normalization for the abstracts in the dataset. Pub-
Tator 3 identifies bio entities belonging to seven
types: gene, chemical, chromosome, cell line, vari-
ant, disease, and species] and relations belonging
to 13 types: associate, cause, compare, convert,
contract, drug interact, inhibit, interact, negative
correlate, positive correlate, prevent, stimulate,
and trear. Finally, we use a sentence classifier
trained on CODA-19 (Huang et al., 2020) to clas-
sify sentences in abstracts into background, pur-
pose, method, finding, and other. We select sen-
tences with labels of background as background
context and remove sentences with labels of other.
We treat the rest sentences that have at least one
entity as the target sentence. We only keep samples
with low similarity between background context

2huggingface.co/allenai/longformer-scico

13github.com/allenai/sequential_sentence_class
ification

“www. ncbi.nlm.nih.gov/books/NBK25501/

and corresponding ground truth sentences.'> Our
final dataset has 4,767 papers before 2023/02, 642
papers from 2023/02 to 2023/08, and 299 papers
after 2023/08.

B Finetuning and Automated Evaluation
details

B.1 Inspiration Retrieval Module

The statistics of each inspiration type are in Table 7.
Table 8 shows sample retrieved inspirations.

B.1.1 Semantic Neighbors

We use all-mpnet-base-v2 from SentenceBert
(Reimers and Gurevych, 2019), which performs
best in semantic search to retrieve similar nodes
from the training set based on query ¢ in §3.1. We
retrieve up to 20 relevant semantic neighbors R
from the training set for each instance. We treat the
target nodes from R as semantic neighbors.

B.1.2 KG Neighbors

We use one-hop connected neighbors from the
background KG G constructed on papers before
2021(.e., the papers in the training set). Because
of the scarcity of KG neighbors, we do not limit
the number of KG neighbors.

B.1.3 Citation Neighbors

Similar to semantic neighbors, we use
all —mpnet —base —v2 from  Sentence-
Bert (Reimers and Gurevych, 2019) to retrieve
cited paper titles similar to query q. We restrict
cited papers only before 2021. We retrieve up
to 5 relevant citation neighbors from the papers’
citation network.

B.2 Generation Module

Our T5 model and their variants are built based on
the Huggingface framework (Wolf et al., 2020).'6
We optimize those models by AdamW (Loshchilov
and Hutter, 2019) with the linear warmup sched-
uler.!” Those models are finetuned on 4 NVIDIA
A6000 48GB GPUs with distributed data parallel.'8
The training time for each model is about 10 hours.

5The similarity is calculated with all-mpnet-base-v2.

16gi thub. com/huggingface/transformers

17huggingface.co/docs/transformers/main_classes
/optimizer_schedules#transformers.get_linear_sch
edule_with_warmup

18pytorch.org/tutorials/intermediate/ddp_tutor
ial.html
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I Used-for v
Context-Aware Interaction Network for Question Matching

Used-for

Feature-of
semantic connections between two sentence representations.

Coref——ysed-fo

of contextual information.

N
Impressive| milestones have been achieved in text matching by adopting a cross-attention mechanism to capture pertinent

However, regular cross-attention focuses on word-level links between the two input sequences, neglecting the importance

Used-for

r R’
We propose a context-aware interaction network (COIN) to properly align two sequences and infer their semantic relationship.

Method Task

Other Scientific Terms

[] Background Sentence

Figure 4: Preprocessing result for Hu et al. (2021) in non-canonicalized KG Corpus

Stage PL-Maker PL-Maker SciCo Coreference  Scispacy Abbreviation Sentence
Entities Used-for Relations Detection Classification
Precision 91.3 65.4 97.2 100 100

Table 6: Human quality evaluation of preprocessing stages(%). Overall pass rate after all steps are applied is 79.7%.

Type Train Valid Test
SN 10.8 10.0 10.0
KG 8.3 8.0 8.1
CT 4.9 5.0 5.0

Table 7: Average of # of neighbors for each instance,
excluding those which do not have any neighbor

B.2.1 In-Context Learning

We choose GPT3.5 davinci-003!° (Brown et al.,
2020) as our out-of-the-box causal language mod-
eling baseline. We select 5 instances from the train-
ing set as examples for the few-shot setting. We
randomly select those examples for GPT3. 5FS. For
GPT3.5Retr, similar to semantic neighbors, we use
all-mpnet-base-v2 from SentenceBert (Reimers
and Gurevych, 2019), which performs best in se-
mantic search to retrieve similar instances from the
training set based on query ¢ in §3.1. The input
length is limited to 2048 tokens due to OpenAl
API limits. We choose gpt-4-0314 as our GPT4
model. Our input for GPT4 is similar to GPT3.5.
For each selected example from the training set
with forward relation, the template is “Consider
the following context: M In that context, which p
can be used for v, and why? T ”, where M is the
background context, p is the target node type, v is
the seed term, and 7 is the target idea sentence; for
backward relation, the template is “Consider the
following context: M In that context, which p do
we use v, and why? s”. For selected examples with

Yopenai.com/api/

additional retrieval inspirations, we concatenate
the following additional template to the M: “The
retrieval results are: i1,...,i;" ", where i1, ..., 1
are retrieved inspirations. For the final prompt, the
template is similar to the above example template.
However, the target sentence 7 will not be included.
We ask the model to generate 10 outputs. We will
select the best output and skip the empty output.

B.2.2 Fine Tuning

Given input without any inspirations, the input com-
bines the prompt P and context M as shown in
§3.1 (i.e., P | context: M). Given input with in-
spirations, the input is P | retrieve: i1,...,%; |
context: M, with iq,..., 4 as retrieved inspira-
tions. The input length is limited to 512 tokens.
For both tasks, we finetune our model based on
T5-large with a learning rate of 6 x 107¢ and
€ = 1 x 107°. The batch size is 8 for each GPU.
The maximum training epoch for all models is 10
with 4 patience. During decoding, we use beam-
search to generate results with a beam size of 5 and
a repetition penalty of 1.5.

In-context Contrastive Augmentation We ran-
domly select 2 sentences that appeared in the in-
put as in-context negatives. For example, in Fig-
ure 1, the in-context negatives could be “knowl-
edge acquisition is done by using Method”, “this
requires plms to integrate the information from all
the sources in a lifelong manner .”.
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B.2.3 Biochemical Case Study

Our Meditron-7b (Chen et al., 2023) and its
variants are built based on the Huggingface
framework (Wolf et al., 2020).2° We use its
epfl-11m/meditron-7b as the base model. We
finetune those models with a learning rate of
2 x 107% and € = 5 x 10~8. The maximum train-
ing epoch for all models is 5. All models are fine-
tuned on 4 NVIDIA A100 80 GB GPUs with Fully
Sharded Data Parallel.?! The training time for each
model is about 20 hours.

B.3 The Scale of Retrieval Set

We retrieve from a set of 59k papers with over
374k sentences in the NLP domain, the focus of
our experiments. Our background KG built on the
training set has more than 197k nodes and 261k re-
lations. Moreover, we collect 87k paper titles from
citation networks. This represents a large-scale and
diverse domain; retrieving inspirations from this set
is expected, in principle, to be more than enough
for generating novel ideas. Indeed, NLP papers
typically cite each other and build on each other as
inspirations to create new ideas - which motivates
our inspiration retrieval.

B.4 Automated Evaluation

We use BERTScore (Zhang* et al,
2020) with SciBERT checkpoint for both
tasks. The hash of the -checkpoint is
allenai/scibert_scivocab_uncased_L8
_no-idf_version=0.3.12(hug_trans=4.19.2).
The automated evaluation results are in Table 9.

C Human Annotation and Evaluation
Details

Gold Dataset Annotation Details The gold
dataset annotation interface is in Figure 5. The
quality of the instances in the test set is judged
given three criteria: (1) whether the ground truth
sentence trivially overlaps with background con-
text; (2) whether background context contains rele-
vant information for the target relation; (3) whether
the target relation (from which the seed term is
taken) is a salient aspect of the idea proposed in the
target paper.

Study I The instructions for human evaluation
can be found in Figure 6, while an example of the

github.com/huggingface/transformers
21https://huggingface.co/docs/accelerate/usage
_guides/fsdp

human evaluation interface is provided in Figure 7
and 8. Human annotators are required to evaluate
each system output based on the following crite-
ria: (1) Is the candidate relevant to the context +
seed term? (2) Does the candidate copy too much
from the context, or is it sufficiently novel/different
from the context? (3) Does the candidate’s sug-
gestion generally make sense to you scientifically?
(4) Is the language sufficiently clear and coher-
ent to understand the suggestion? The input for
sample human annotation is in Table 10 and the hu-
man labels are in Table 11. The human annotation
agreement is in Table 13.

Study IIT  We ask the following questions to hu-
man annotators to evaluate the quality of regen-
eration results: (1) Is the regenerated idea sub-
stantially different from the original? (2) Is the
regenerated idea more novel and creative than the
original idea? (3) Does the second iteration in-
crease novelty? The human annotation agreement
is in Table 14.

D Scientific Artifacts

We list the licenses of the scientific artifacts used
in this paper: Semantic Scholar Academic Graph
API (API license agreement??), Huggingface Trans-
formers (Apache License 2.0), SBERT (Apache-
2.0 license), BERTScore (MIT license), Meditron-
7b (Llama2), Entrez Programming Utilities API
(Copyright??), PubTator 3 (Data use policy?*), and
OpenAl (Terms of use®).

E Ethical Consideration

The SCIMON task and corresponding models we
have designed in this paper are limited to the nat-
ural language processing (NLP) and biochemical
domain, and might not apply to other scenarios.

E.1 Usage Requirement

This paper aims to provide investigative leads for
a scientific domain, specifically natural language
processing. The final results are not intended to be
used without human review. Accordingly, domain
experts might use this tool as a research writing
assistant to develop ideas. However, our system
does not do any fact-checking with external knowl-
edge. In addition, we train our models on the ACL

22api.semanticscholar.org/license/
23www.ncbi.nlm.nih.gov/books/about/copyright/
24www.ncbi.nlm.nih.gov/home/about/policies/
Bopenai.com/policies/terms-of-use
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Type

Content

Seed Term Prompt

data augmentation is used for Task

data augmentation is an effective solution to data scarcity in low - resource scenarios.
however, when applied to token-level tasks such as ner , data augmentation methods often
suffer from token-label misalignment, which leads to unsatsifactory performance.

st and automatic speech recognition (asr), low-resource tagging tasks, end-to-end
speech translation, neural online chats response selection, neural machine translation,
semi-supervised ner, entity and context learning, semi-supervised setting, dependency pars-
ing, low-resource machine translation, slot filling, dialog state tracking, visual question
answering, visual question answering (vqa), low-resource neural machine translation

nmt-based text normalization, task-oriented dialog systems, task-oriented dialogue system,
low-resource languages (Irl), end-to-end speech translation, visual question answering (vqa),
multiclass utterance classification, clinical semantic textual similarity, neural online chats
response selection, context-aware neural machine translation

Citation Neighbors

Contextual Augmentation: Data Augmentation by Words with Paradigmatic Re-
lations, An Analysis of Simple Data Augmentation for Named Entity Recognition,
Data  Augmentation for Low-Resource = Neural = Machine  Translation,
DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks,
EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification
Tasks

Ground Truth

ELM: Data Augmentation with Masked Entity Language Modeling for Low-Resource NER

Table 8: Example (from (Zhou et al., 2022)) of retrieved inspirations. Inspirations similar to ground truth are

underlined.
context contains Relation
relevant is a part
Is the IEis of information for of the
output  sufficient target relation main
trivally quality (Conservative filter idea
overlap (not -only flag cases propose
with the generic, where contextis d by the
input context entity output relation rel_sent context correct) highly irrelevant) paper
transformer - based
language models usually
treat texts as linear
sequences . however "
most texts also have an We propose a novel approach to
inherent hierarchical formulate , extract, encode and inject
structure , i.e. , parts of a hierarchical structure information
text can be identified explicitly into an extractive
using their position in summarization model based on a pre -
this hierarchy . in trained , encoder - only Transformer
extractive text addition , section titles language model ( HiStruct+ model ) ,
summarizatio usually indicate the which improves SOTA ROUGEs for
nis done by common topic of their extractive text extractive summarization on PubMed
using Metric  respective sentences .  summarization sota rouges used for and arXiv substantially .

Figure 5: Gold subset annotation interface

annotators involved in human evaluation are vol-

anthology and PubMed papers written in English,
which might alienate readers who have been his-
torically underrepresented in the NLP/biochemical
domains.

E.2 Data Collection

We collect 67,408 ACL Anthology papers from
1952 to 2022 using Semantic Scholar Academic
Graph APIL, under API license agreement’®. We
ensure our data collection procedure follows the
Terms of Use at https://allenai.org/terms.
According to the agreement, our dataset can only
be used for non-commercial purposes. As men-
tioned in §4, we perform the human evaluation. All

https://api.semanticscholar.org/license/

untary participants with a fair wage. We further
collect 5,708 PubMed papers from 1988 to 2024 us-
ing Entrez Programming Utilities API>’. We follow
their data usage guidelines®.

Zwww.ncbi.nlm.nih.gov/books/NBK25501/
Zywww.ncbi.nlm.nih.gov/books/about/copyright/
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Subset Challenging Gold
Model R-Lt BERTt R-Lt BERT}
GPT4ZS 0.120 0.581 0.130 0.583
GPT4FS 0.143 0.618 0.151 0.624
T5 0223  0.6721 0.246 0.685
T GPT4FS+SN ~ 0.144  ~ 0.620 =~ 0.149 ~ 0627
GPT4FS+KG  0.143 0.619 0.152 0.626
GPT4FS+CT  0.144 0.617 0.149 0.622
CTs+cL 02257 06717 02517 0.6867
T5+SN+CL 0.228" 06717 0.258"  0.686"
T5+KG+CL 0.223f 0.669 0248  0.681F
T5+CT+CL 02257 06717 02507  0.686

Table 9: Automatic evaluation results for the challeng-
ing and gold subsets. CL is a model with in-context
contrastive augmentation. SN is a model with seman-
tic inspirations. KG is a model with KG inspirations.
CT is a model with citation inspirations. R-L denotes
ROUGE-L. BERT denotes BERTscore with SCiIBERT
as its encoder. T indicates that differences between mod-
els are not statistically significant (p < 0.05) when
compared to each other but are still significant when

compared to the other models based on t-test.
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Type Content

Seed Term Prompt Irish language learning is done by using Method

Context Irish is a minority language which means that 12 learners have limited opportunities for exposure
to the language, and additionally, there are also limited (digital) learning resources available.

Table 10: Input for sample human annotation results

Model Output Label
GPT3.5FS The use of Social Media in Irish Language Learning: A Case Study helpful
" GPT3.5Retr One method that could be used for Irish language learning is computer assisted language  unhelpful ~
learning (CALL)
" GPT3.5FS+CT  In that context, the most appropriate task for precision grammar would be the development — unhelpful
of a part-of-speech tagger for Irish using finite-state morphology and constraint grammar
disambiguation.
" GPT3.5FS+KG ~  Cl6: An Irish Language Learning Platform - Leveraging Digital Resources and Human — unhelpful
Expertise
T GPT4FS We propose using a technology-enhanced approach, such as computer-assisted language ~  helpful

learning (CALL) or natural language processing (NLP) techniques, to create interactive

and engaging Irish language learning resources, as these methods can provide personal-

ized learning experiences and enhance learners’ exposure to the language despite limited

resources available.

" GPT4FS+KG ~ Exploiting Social Media for Irish Language Learning: An Analysis of Twitter Data. In~ helpful

this context, we use social media data, particularly from Twitter, as a method for Irish

language learning, because it provides a rich source of authentic and diverse language

examples that can be used to enhance learning opportunities for L2 learners in a minority

language setting.

T5+SN+CL A conversational virtual environment for Irish language learning helpful

Table 11: Sample human labels for idea-sentence generation results for seed term prompt “Irish language learning
is done by using Method”, with context “irish is a minority language ... limited digital learning resources available”.

Type Content
Seed Term ARO10
“Context ~ Huangjiu is known for its unique aroma, primarily attributed to its high concentration of b-
phenylethanol (ranging from 40 to 130 mg/L).
" Meditron =~ We then selected six key genes involved in the phenylalanine metabolism pathway and predicted
that their product flux may affect the synthesis of b-phenylethanol.
" Meditron+ CT ~~ We found that the key amino acid residue that controls the activity of Aro10p was not conserved in -

wine yeast strains, which may explain the lower b-phenylethanol production in wine fermentation
compared with that in Chinese huangjiu.

Meditron + KG Both target genes, SSA1 and ARO10, were deleted using the CRISPR-Cas9 genome editing
system.
" Meditron+ SN~~~ Herein, we report that the key barrier for b-phenylethanol production in Huangjiu is ARO10, the

only bi-functional amino acid decarboxylase in Saccharomyces cerevisiae.

Table 12: Input and idea-sentence generation results for seed gene “AR010” in the biochemical domain.

Annotator Pair 1-2 1-3 1-4 1-5
Agreement % 92.5 93.3 87.5 90.0

Annotator Pair 1-2 1-3 1-4 1-5 1-6
Agreement % 688 750 562 438 750

Table 14: Percent (%) of same labels from overlapped
20 human evaluation instances on each pair of annota-
tors for Study III. (1-3) has 60 shared questions. The
rest of the pairs each share 40 questions.

Table 13: Percent (%) of same labels from overlapped
10 human evaluation instances on each pair of annota-
tors for Study I.
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Rank scientific idea suggestions generated by an
Al paper-writing assistant

Your goal in this task is to rank idea suggestions written by an Al assistant. The Al assistant helps its users
write paper abstracts by writing sentences with proposals for new ideas or questions to consider.
You are first given:

1. A context which describes relevant background in a specific area of interest. e.g., background on
efficiency issues in large language model training.
2. A seed term that should be a focus of the generated scientific idea. see example below.

Then, you are given a list of 5 candidate suggestions — each generated by the Al assistant using different
approaches. Each candidate is written in the form of a sentence from a scientific paper abstract.

Your goal is to score the candidate suggestions with a helpful/unhelpful answer. Your scoring decision
should consider the overall quality of each candidate, using considerations that include:

1. Is the candidate relevant to the context + seed term?

2. Does the candidate copy too much from the context, or is it sufficiently novel/different from the context?
3. Does the candidate's suggestion generally make sense to you scientifically?

4. Is the language sufficiently clear and coherent for you to understand the suggestion?

The Al scientific assistant is a work in progress - don't expect it to generate highly-detailed ideas or
breakthrough discoveries! Use the three guideline metrics above to come up with your overall rating.
Read the following example that illustrates the task:

Context: the task of converting a natural language question into an executable sql query, known as text - to - sql,
is an important branch of semantic parsing . the state - of - the - art graph - based encoder has been successfully
used in this task but does not model the question syntax well .

Seed term: diverse relational edge embedding

System Outputs:

« We propose a novel technique, Diverse Relational Edge Embedding ( DREE ), to address this problem.

¢ We propose a novel graph-based encoder that uses a diverse relational edge embedding to model the
question syntax.

Diverse relational edge embedding is important for text-to-SQL parsing because it can help the parser to
better understand the question syntax.

In this paper, we propose a novel graph - based encoder for diverse relational edge embedding.

In this paper, we propose a novel graph - based encoder for text - to - sql ( ttsql ) that incorporates the
question syntax into diverse relational edge embedding.

Ranking:

unhelpful
helpful
helpful
unhelpful
helpful

Figure 6: Human evaluation instructions
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Your goal is to score the candidate suggestions with a helpful/unhelpful answer. *
Your scoring decision should consider the overall quality of each candidate,

using considerations that include:

Is the candidate relevant to the context + seed term?

Does the candidate copy too much from the context, or is it sufficiently
novel/different from the context?

Does the candidate's suggestion generally make sense to you scientifically?

Is the language sufficiently clear and coherent for you to understand the
suggestion?

Context: while pretrained language models achieve excellent performance on natural
language understanding benchmarks , they tend to rely on spurious correlations and
generalize poorly to out - of - distribution ( ood ) data . recent work has explored using
counterfactually - augmented data ( cad)-data generated by minimally perturbing examples
toflip the ground - truth label - to identify robust features that are invariant under distribution
shift.

Seed term: diverse perturbation of examples

unhelpful helpful

Diverse perturbation of

examples is used in order to

generate counterfactual data O O
that can help identify robust

features that are invariant

under distribution shift.

A counterfactual generator
for diverse perturbation of O O
examples.

We propose a method for
generating CAD by diverse O O
perturbation of examples.

In this paper, we propose a

counterfactually -

augmented data ( cad )

model that is robust to O O
diverse perturbation of

examples.

We use diverse perturbation

of examples to flip the

ground-truth label in order to

identify robust features that O O
are invariant under

distribution shift.

Figure 7: Human evaluation example for GPT3.5Rnd, GPT3.5Retr, GPT3.5Rnd+CT, T5, and T5+SN+CL
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Your goal is to score the candidate suggestions with a helpful/unhelpful answer. *
Your scoring decision should consider the overall quality of each candidate,

using considerations that include:

Is the candidate relevant to the context + seed term?

Does the candidate copy too much from the context, or is it sufficiently
novel/different from the context?

Does the candidate's suggestion generally make sense to you scientifically?

Is the language sufficiently clear and coherent for you to understand the
suggestion?

Context: while pretrained language models achieve excellent performance on natural
language understanding benchmarks , they tend to rely on spurious correlations and
generalize poorly to out - of - distribution ( ood ) data . recent work has explored using
counterfactually - augmented data ( cad)-data generated by minimally perturbing examples
toflip the ground - truth label - to identify robust features that are invariant under distribution
shift .

Seed term: diverse perturbation of examples

unhelpful helpful

In that context, we use
diverse perturbation of
examples to generate
counterfactually-augmented
data, which helps identify
robust features and improve
the model's generalization to
out-of-distribution data. This O O
approach minimizes the
model's reliance on spurious
correlations and enhances
its overall performance on
natural language
understanding tasks.

In that context, we use
diverse perturbation of
examples as a method
because it helps in
generating counterfactually-
augmented data (CAD),
which helps identify robust
features that are invariant O O
under distribution shift. By
focusing on robust features,
the model becomes less
reliant on spurious
correlations and can
generalize better to out-of-
distribution (OOD) data.

We propose a general

framework based on diverse

perturbation of examples

that can be used to learn

invariant features powerful

enough to detect 00D data O O
and reduce generalization

error while performing

natural language

understanding tasks.

Figure 8: Human evaluation example for GPT3. 5Rnd+KG, GPT4Rnd, and GPT4Rnd+KG
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