
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3052–3064
August 11-16, 2024 ©2024 Association for Computational Linguistics

MELoRA: Mini-Ensemble Low-Rank Adapters
for Parameter-Efficient Fine-Tuning

Pengjie Ren1∗ , Chengshun Shi1∗, Shiguang Wu1, Mengqi Zhang1, Zhaochun Ren2,
Maarten de Rijke3, Zhumin Chen1, Jiahuan Pei4†

1 Shandong University 2 Leiden University
3 University of Amsterdam 4 Centrum Wiskunde & Informatica

{shichengshun,shiguang.wu}@mail.sdu.edu.cn,
{renpengjie,mengqi.zhang,chenzhumin}@sdu.edu.cn,

z.ren@liacs.leidenuniv.nl, m.derijke@uva.nl, jiahuan.pei@cwi.nl

Abstract

Parameter-efficient fine-tuning (PEFT) is a pop-
ular method for tailoring pre-trained large lan-
guage models (LLMs), especially as the mod-
els’ scale and the diversity of tasks increase.
Low-rank adaptation (LoRA) is based on the
idea that the adaptation process is intrinsi-
cally low-dimensional, i.e., significant model
changes can be represented with relatively few
parameters. However, decreasing the rank
encounters challenges with generalization er-
rors for specific tasks when compared to full-
parameter fine-tuning. We present MELoRA,
a mini-ensemble low-rank adapters that uses
fewer trainable parameters while maintaining
a higher rank, thereby offering improved per-
formance potential. The core idea is to freeze
original pretrained weights and train a group
of mini LoRAs with only a small number of
parameters. This can capture a significant de-
gree of diversity among mini LoRAs, thus pro-
moting better generalization ability. We con-
duct a theoretical analysis and empirical studies
on various NLP tasks. Our experimental re-
sults show that, compared to LoRA, MELoRA
achieves better performance with 8 times fewer
trainable parameters on natural language under-
standing tasks and 36 times fewer trainable pa-
rameters on instruction following tasks, which
demonstrates the effectiveness of MELoRA.

1 Introduction

Large language models (LLMs) have emerged as
the default paradigm for natural language process-
ing (NLP) (Brown et al., 2020). Fine-tuning (FT)
is a prevailing way for tailoring LLMs for specific
downstream tasks (Ding et al., 2023b). However,
as the models’ scale and the diversity of the tasks
increase, fully FT becomes infeasible. Parameter-
efficient fine-tuning (PEFT) has been proposed to
alleviate memory demands by reducing trainable
parameters (Rebuffi et al., 2017; Li and Liang,

∗ Equal contribution.
†† Corresponding author.

Pretrained
 Weights

Figure 1: Comparison between LoRA (left) and the
proposed MELoRA (right). The core idea of MELoRA
is to freeze original pretrained weights and train a group
of mini LoRAs in parallel with only a small number of
parameters.

2021; Lester et al., 2021; Hu et al., 2022). Typ-
ically, the core idea of PEFT methods is to update
only a small fraction of the parameters, such as
adapter weights (Rebuffi et al., 2017; Hu et al.,
2022) and prompt weights (Li and Liang, 2021;
Lester et al., 2021).

Low-rank adaptation (LoRA) (Hu et al., 2022)
is widely being used due to its minimal additional
memory overhead and because it comes without
additional inference latency. As illustrated in Fig-
ure 1 (left), LoRA uses low-rank matrices (A,B)
to approximate the updates of pre-trained weights
(W). As the rank is smaller than the model’s hidden
dimension, the overall number of trainable parame-
ters of LoRA is much smaller than full FT. Despite
the significant computational advantage, low-rank
approximation may lead to a substantial perfor-
mance gap when compared to full FT (Hu et al.,
2022; Zi et al., 2023). Therefore, the following is a
critical challenge:

How to enable a higher rank variation
while preserving the computational ad-
vantage?

To increase the rank of LoRA without introducing
more trainable parameters, ReLoRA (Lialin et al.,
2023) and COLA (Xia et al., 2024) append multiple

3052

LoRAs to pre-trained weights. They progressively
merge old LoRA to pre-train weights and stack new
LoRAs during training. In essence, these methods
train multiple LoRAs in series. However, there may
be overlap between the series of LoRA modules.
Therefore, employing the direct sum of multiple
LoRA modules in these methods does not neces-
sarily guarantee an increase in rank. In this work,
we propose a simple yet effective method, called
mini-ensemble low-rank adapters (MELoRA), that
stacks multiple mini LoRAs in parallel, as shown in
Figure 1 (right). We demonstrate theoretically that
MELoRA ensures a higher rank without imposing
an additional parameter overhead. We concatenate
multiple mini LoRAs simultaneously along the di-
agonal to construct an equivalent block diagonal
LoRA matrix. Each mini LoRA is therefore inde-
pendent of the other and the final rank will be the
sum of the rank of each mini LoRA. Each mini
LoRA rank just learns the different dimensions of
the hidden state. The shape of the trainable weights
A and B in mini LoRA will be much thinner.

We conduct extensive experiments across di-
verse tasks and models to demonstrate the efficacy
of MELoRA. Evaluations are performed using
RoBERTa-base on natural language understand-
ing tasks and Llama-2-7B on instruction following
tasks. Results indicate that MELoRA achieves su-
perior performance while using significantly fewer
parameters. For instance, with 36 times fewer train-
able parameters of LoRA, MELoRA outperforms
LoRA on all instruction following datasets.

We summarize our contributions as follows:
• We propose a new method (MELoRA) on top of

LoRA that makes it achieve a higher rank and
better performance with fewer parameters.

• We theoretically demonstrate that MELoRA
maintains a higher and flexible rank, as well as
lower complexity, compared to LoRA.

• Extensive experiments show that MELoRA out-
performs LoRA in terms of parameter quantity
and performance.

2 Related Work

Full-parameter fine-tuning poses computational
challenges with growing model sizes and the prolif-
eration of downstream tasks. In response to these
challenges, parameter-efficient fine-tuning (PEFT) ,
modifying only a small portion of parameters while
leaving the majority of pre-trained model parame-
ters unchanged, has received increasing attention

from researchers. Numerous studies (Rebuffi et al.,
2017; Houlsby et al., 2019; Pfeiffer et al., 2021;
Rücklé et al., 2021; Li and Liang, 2021; Lester
et al., 2021; Hu et al., 2022) discuss key factors
such as reduced inference overhead, memory ef-
ficiency, and storage optimization. In particular,
LoRA (Hu et al., 2022) introduces trainable low-
rank matrices to approximate weight updates dur-
ing fine-tuning. Due to its simplicity in imple-
mentation without inducing any noticeable latency
during inference, it is widely used in many fields.

A number of advanced techniques have been pro-
posed that build on the basic principles of LoRA.
These extensions fall into two main categories:
adaptive rank and customized update strategies.

2.1 Adaptive Rank
Some studies (Zhang et al., 2022; Lawton et al.,
2023) argue that while the popular Low-Rank
Adaptation (LoRA) method is effective, it uses
a fixed intrinsic rank that may not always be op-
timal. They highlight the efficacy of employing
higher ranks for more important parameters. No-
tably, AdaLoRA (Zhang et al., 2022) adopts an
adaptive approach to singular value pruning, tailor-
ing rank selection based on the magnitude of indi-
vidual singular values. Consequently, this method
involves the use of different ranks across various
layers. Similarly, Ding et al. (2023a) use a gate
unit to facilitate the pruning of different ranks. In
contrast, Zhang et al. (2023a) propose IncreLoRA,
an incremental parameter allocation method that
adaptively adds trainable parameters during train-
ing based on the importance scores of each module.

2.2 Customized Update Strategies
Another way to improve LoRA is to change the
parameter update strategy. Some work is devoted
to reducing the number of trainable parameters.
Kopiczko et al. (2023) introduces a shared frozen
random LoRA module applicable to all pre-trained
weights and only trains scaling vectors between
LoRA B and A matrices to curtail the number of
trainable parameters. This approach reduces the
trainable parameter count by a factor of 10 com-
pared to conventional LoRA. Another approach by
(Zhang et al., 2023b) involve freezing the A matrix
within LoRA, effectively halving the count of train-
able parameters. But both of the these methods
incur a substantial drop in performance.

QLoRA (Dettmers et al., 2023) further leverages
4-bit quantization to effectively and efficiently fine-

3053

tune LLMs. LoRAMoE (Dou et al., 2023) uses
multiple LoRAs as adaptable experts and a router
to gate them in the feed-forward network layer
to address the problem that fine-tuning data can
disrupt the world knowledge stored in LLMs.

To perform model inference in different rank
settings, drawing inspiration from nested dropout
techniques, Valipour et al. (2023) propose a dy-
namic parameter update strategy, enabling a sin-
gle training process for multiple rank inferences.
Delta-LoRA (Zi et al., 2023) updates not only the
low-rank matrices A and B but also propagates the
learning to the pre-trained weights W using the
delta of the product of two low-rank matrices A
and B.

Despite the computational advantages, so far,
low rank approximation leads to a substantial
performance gap. To address this limitation,
ReLoRA (Lialin et al., 2023) and COLA (Xia
et al., 2024) append multiple LoRAs to pre-trained
weight to increase the rank of LoRA without intro-
ducing more trainable parameters. They progres-
sively merge old LoRA layers to pre-train weight
and stack new LoRA layers during training. How-
ever, there is no theoretical guarantee for the rank
lower bound in training.

Unlike previous work, our proposed method con-
catenates multiple mini LoRAs in parallel along
the diagonal to construct a block diagonal LoRA
matrix. It ensures that the final rank will be the
sum of the ranks of each mini LoRA.

3 Methodology

In this section, we introduce the proposed mini-
ensemble low-rank adapters (MELoRA), a novel
method that involves concatenating the outputs
from several mini LoRA modules, as illustrated
in Figure 1.

3.1 Preliminaries on Low-Rank Adapter
LoRA decomposes the weight update ∆W into a
low-rank product BA. During training, the pre-
trained weights W are frozen and do not receive
gradient updates, while A and B contain trainable
parameters as shown in Equation 1:

h = Wx+∆Wx = Wx+BAx, (1)

where W ∈ Rd×d, A ∈ Rr×d, B ∈ Rd×r, x ∈ Rd,
and r ≪ d. At the start of the training stage, A
is randomly initialized via Gaussian initialization,
and B is initialized to a zero matrix to make ensure
the incremental update BA = 0 at initialization.

3.2 Matrix Rank Theory
In linear algebra, several useful inequalities govern
the rank of matrices:

R(M1 +M2) ≤ R(M1) +R(M2), (2)

max(R(M1),R(M2))

≤ R(concat(M1,M2))

≤ R(M1) +R(M2),

(3)

R(diagni=0Mi) =
n∑

i=1

R(Mi), (4)

where R(·) denotes the operation to get the rank of
a matrix. Equation 2 demonstrates that there is no
lower bound when matrices undergo simple addi-
tion operations. Equation 3 indicates that the rank
does not increase by concatenation, as the column
vectors may exhibit linear correlations. However,
when matrices are concatenated diagonally, as per
Equation 4, the final rank becomes the sum of each
matrix’s rank.

3.3 Mini-Ensemble Low-Rank Adapter
In MELoRA, we employ n mini LoRAs on pre-
trained weights, as depicted on the right in Figure 1.
For the convenience of comparison with LoRA, we
set the rank of each mini LoRA to r

n . MELoRA is
defined as the concatenation of several mini LoRAs
across different hidden dimensions:

h = Wx+∆Wx

= Wx+ (concatni=0BiAixi)

= Wx+ (diagni=0BiAi)x

= Wx+ (diagni=0Bi) (diag
n
i=0Ai)x,

(5)

where Ai ∈ R
r
n
× d

n , Bi ∈ R
d
n
× r

n , x, h ∈ Rd , xi ∈
R

d
n is the feature split from x, and n represents how

many mini LoRA modules we use to concatenate.
As deduced in Equation 5, MELoRA may be

regarded as a form of sparse LoRA. Figure 2 illus-
trates the process of obtaining equivalent B and A
matrices by padding zeros to Bi and Ai along the
non-diagonal lines. According to Equation 4, the
rank of equivalent B, A is the sum of individual
ranks Bi and Ai. Because r

n ≪ d, each Bi and Ai

possesses the same rank r
n ; the resulting equivalent

rank is n× r
n = r.

We employ an identical initialization method to
that of LoRA, wherein each Ai undergoes random
Gaussian initialization and Bi is initialized to zero.

Compared to LoRA, MELoRA has the following
three advantages:

3054

0 0

0 0

0
0 0
0

0 0
00

Figure 2: An illustration of how in MELoRA adopt a
group of mini LoRA modules to obtain sparse equiv-
alent B, A. x ∈ Rd denote a representation with d
dimensions, Ai ∈ R r

n× d
n , Bi ∈ R d

n× r
n (r ≪ d), and 0

denotes zero metrics requiring no training.

(1) MELoRA maintains a higher rank with
fewer parameters. The capability of MELoRA
to achieve a higher rank with fewer parameters is
notable. As discussed in Section 3.2, the simple
summation or concatenation of matrices may not
inherently increase rank due to potential overlaps
between them. In MELoRA, the matrices Bi and
Ai are arranged in distinct columns and rows, en-
suring that the rank of diagni=0Bi and diagni=0Ai

is the sum of individual ranks Bi and Ai. Fig-
ure 2 illustrates that the number of trainable param-
eters in MELoRA is determined by the expression
n × (din

n × r
n + r

n × dout
n) = dout×r+r×din

n . When
achieving the same rank, the number of trainable
parameters is dout × r + r × din (Hu et al., 2022)
for LoRA. Importantly, the number of trainable pa-
rameters in MELoRA is proportionally reduced by
a factor of n compared to LoRA. This suggests the
potential for attaining a larger rank while utilizing
fewer parameters within the MELoRA framework.

(2) MELoRA has a more flexible rank. The
ability to alter the rank without necessitating
changes in parameter count is another advantage
of MELoRA. Recent studies (Hu et al., 2022;
Valipour et al., 2023) emphasize the significance of
rank variation across different datasets in influenc-
ing model performance. In MELoRA, we might
as well set the rank of each mini LoRA to r. So
individual mini LoRA modules denoted as A in
Rr× d

n and B in R
d
n
×r are configured, with a total

count of trainable parameters being 2× r × d and
the equivalent rank expressed as n× r. Adjusting
the hyperparameter n allows for modulation of the
equivalent rank without necessitating an increase
in the overall parameter count.

(3) MELoRA has lower complexity. We can
compare the complexity of LoRA and MELoRA
under equal rank conditions, where A ∈ Rr×d,
B ∈ Rd×r, Ai ∈ R

r
n
× d

n , Bi ∈ R
d
n
× r

n , and x ∈
Rd. The time complexity of LoRA is d2r + dr2,

while MELoRA is n((dn)
2 r
n + d

n(
r
n)

2) = d2r+dr2

n2 .
MELoRA exhibits n2 times fewer operations.

4 Experimental Setups

4.1 Baselines
We compare MELoRA with LoRA and a number
of state-of-the-art LoRA variants:
• LoRA (Hu et al., 2022) uses the multiplication

of two low-rank matrices to learn the incremental
updates with reduced GPU memory cost.

• DyLoRA (Valipour et al., 2023) randomly selects
a rank r for LoRA modules during learning.

• AdaLoRA (Zhang et al., 2022) focuses on deter-
mining the optimal rank for incremental updates.
It employs an adaptive approach to singular value
pruning, tailoring the rank selection to the mag-
nitude of each singular value. Consequently, dis-
tinct ranks are employed for different layers.

• Delta-LoRA (Zi et al., 2023) not only updates
the low-rank matrices A and B but also propa-
gates the learning to the pre-trained weights W
via updates using the delta of the product of two
low-rank matrices (A(t+1)B(t+1) − A(t)B(t)).
We follow their setups to reproduce NLU experi-
mental results for a fair comparison.

4.2 Datasets
We evaluate the performance on two groups of
datasets: GLUE (Wang et al., 2019) and IN-
STRUCTEVAL (Chia et al., 2023). The statistics
are shown in Table 1. The GLUE benchmark is
for NLU tasks (Wang et al., 2019) and includes
classification tasks, similarity and paraphrase tasks,
and natural language inference tasks:
• MRPC (Dolan and Brockett, 2005) is a corpus

of sentence pairs automatically extracted from
online news sources. The task is to determine
whether the sentences in a given pair are seman-
tically equivalent.

• RTE comes from a series of annual textual
entailment challenges, i.e., RTE1 (Bentivogli
et al., 2009), RTE2 (Bar-Haim et al., 2014), and
RTE3 (Giampiccolo et al., 2007). The task is
to predict whether the premise entails the entail-
ment or not.

• QQP is a collection of question pairs from the
community question-answering website Quora.1

The task is to determine whether a pair of ques-
tions are semantically equivalent.

1https://huggingface.co/datasets/glue/viewer/
qqp

3055

https://huggingface.co/datasets/glue/viewer/qqp
https://huggingface.co/datasets/glue/viewer/qqp

• CoLA (Warstadt et al., 2019) consists of English
acceptability judgments drawn from books and
journal articles on linguistic theory. The task is
to predict whether it is a grammatically correct
English sentence.

• STSB (Cer et al., 2017) is a collection of sen-
tence pairs drawn from news headlines, video
and image captions, and natural language infer-
ence data. Each pair is human-annotated with a
similarity score from 1 to 5. The task is to predict
these scores.

• SST-2 (Socher et al., 2013) consists of sentences
from movie reviews and human annotations of
their sentiment. The task is to predict the senti-
ment of a given sentence.

• QNLI (Rajpurkar et al., 2016) is a question-
answering dataset consisting of question-
paragraph pairs. GLUE converts the task into
sentence pair classification by forming a pair be-
tween each question and each sentence in the
corresponding context. The task is to determine
whether the context sentence contains the answer
to the question.

• MNLI (Williams et al., 2018) is a crowdsourced
collection of sentence pairs with textual entail-
ment annotations. Given a premise sentence
and a hypothesis sentence, the task is to predict
whether the premise entails the hypothesis (entail-
ment), contradicts the hypothesis (contradiction),
or neither (neutral).

We train our model on the cleaned Alpaca dataset2

and evaluate the performance on INSTRUCTE-
VAL, an instruction following benchmark (Chia
et al., 2023):
• MMLU (Hendrycks et al., 2020) is designed to

measure world knowledge and problem-solving
ability in multiple subjects. It evaluates mod-
els in zero-shot and few-shot settings, making
it more challenging and closer to how humans
are evaluated. The benchmark covers 57 subjects
across STEM, humanities, social sciences, and
other areas, ranging in difficulty from elementary
to advanced professional levels. Each sample has
4 choices. Given the instruction, the task is to
predict the correct answer.

• BBH (Srivastava et al., 2023) is a subset of 23
challenging tasks from the BIG-Bench bench-
mark, which focuses on tasks believed to be be-
yond the capabilities of current language models.

2https://huggingface.co/datasets/yahma/
alpaca-cleaned

BM Corpus #Train #Dev #Test

G
L

U
E

MRPC 3.7k 408 1.7k
RTE 2.5k 276 3k
CoLA 8.5k 1k 1k
STS-B 7k 1.5k 1.4k
SST2 67k 872 1.8k
QQP 364k 40k 391k
QNLI 108k 5.7k 5.7k
MNLI 393k 20k 20k

IN
ST

R
U

C
T

E
VA

L

MMLU 99.8k 1.8k 14k
BBH 0 0 6.5k
DROP 77.4k 0 9.5k
HEval 0 0 164

Table 1: Dataset statistics. “BM” is short for “Bench-
mark”. Only the test sets of INSTRUCTEVAL are used.
We train the models on the cleaned Alpaca dataset.

It requires models to follow challenging instruc-
tions such as navigation, logical deduction, and
fallacy detection.

• DROP (Dua et al., 2019) is a math-based read-
ing comprehension task that requires a system
to perform discrete reasoning over passages ex-
tracted from Wikipedia articles. To perform well
on DROP, a system must resolve references in a
question to suitable parts of the given passage,
and perform discrete operations such as addition,
counting, or sorting.

• HumanEval (HEval) (Chen et al., 2021) is a
problem-solving benchmark used for evaluating
large language models trained on code. It con-
sists of 164 original programming problems that
assess language comprehension, algorithms, and
simple mathematics, with some problems com-
parable to simple software interview questions.

4.3 Implementation Details

For all experiments, we only fine-tune WQ and
WV (Zhang et al., 2022). All models and datasets
are downloaded from Huggingface.3 All models
are fine-tuned on NVIDIA A800 GPUs. The results
are averaged with 5 different random seeds.

On the GLUE benchmark, we use RoBERTa-
base with as the backbone LLM. For fair com-
parison, the training configurations are selected
according to Zi et al. (2023). We set the rank of
LoRA and its variants to 8. For MELoRA, we per-
formed experiments with two settings. First, we
set the rank of each mini LoRA to 8 in MELoRA

3https://huggingface.co

3056

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co

Method #Params MRPC RTE CoLA STS-B SST-2 QQP QNLI MNLI Avg.

FT∗ 125.0M 88.23 84.11 64.57 90.56 94.26 91.96 92.73 87.51 86.74

DyLoRA∗ 295k 89.46 84.47 61.12 91.06 94.26 90.17 92.22 86.33 86.14
AdaLora∗ 295k 90.19 85.19 61.64 91.16 94.49 90.14 93.08 87.34 86.65
DeltaLoRA∗ 295k 90.19 87.00 63.82 91.57 95.06 90.87 93.09 87.50 87.38

LoRA 295k 89.92 85.92 62.43 91.36 94.38 90.78 92.64 86.91 86.79
MELoRA 37k 90.69 86.28 64.07 91.08 94.95 89.26 92.70 86.21 86.91
MELoRA 295k 90.93 86.64 64.09 91.93 95.41 90.77 93.17 87.20 87.52

Table 2: Results on GLUE for natural language understanding tasks. We report the overall (matched and mismatched)
accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks.
Higher is better for all metrics. We also report the number of trainable parameters (#Params) for each method. ∗
indicates the numbers published in (Zi et al., 2023). We use the same hyper-parameters as Zi et al. (2023). Boldface
indicates the best results in terms of the corresponding metrics; the second-best results are underlined.

to get the same number of trainable parameters.
Second, to assess performance with fewer trainable
parameters, we conduct experiments with a rank of
1 for each mini LoRA. As the number of trainable
parameters of MELoRA remains constant regard-
less of the number of mini LoRAs when the rank
of mini LoRA is fixed, we explore the parameter
n from the set {2, 4, 8} and report the best per-
formance. And we also analyze the effect of n in
Section 6.2.

On the INSTRUCTEVAL benchmark, we use
LLaMA-2-7B as the backbone LLM, Alpaca
dataset as train set, randomly select 2k samples
as the development set. Following INSTRUCTE-
VAL (Chia et al., 2023), we use 5-shot direct
prompting for MMLU, 3-shot direct prompting for
BBH, 3-shot direct prompting for DROP (dev), and
0-shot direct prompting for HEval. During training,
we use AdamW as the optimizer and train the mod-
els for 3 epochs. For fair comparison, we keep the
number of epochs consistent with the baselines. A
linear learning rate schedule is applied with initial
learning rate 3 × 10−4. The batch size is set to
128. We explore the rank of LoRA from the set {8,
16, 32, 64, 128, 256} and report the optimal per-
formance. For our method, MELoRA, we set the
rank r to 1, explore the number of mini LoRAs n
from the set {8, 16, 32, 64}, and report the optimal
performance. More implementation details can be
found in Appendix A.

5 Results

5.1 Performance on GLUE

The results of all methods on GLUE are shown in
Table 2.

We can see that MELoRA outperforms LoRA

on 7 out of 8 GLUE datasets under the same param-
eter setting. Even using 8 times fewer parameters,
MELoRA still achieves better performance on 5
out of 8 datasets, underscoring the enhanced ex-
pressiveness and higher rank of MELoRA. It is
worth noting that large improvements are achieved
on MRPC, RTE, CoLA, and SST-2, which have
limited training data. We think the reason is that
MELoRA concatenates several mini LoRAs, which
makes it more robust and has better generalization
capability. MELoRA also achieves decent perfor-
mance on the remaining datasets, including MNLI,
QNLI and STS-B, which proves that MELoRA is
stable and reliable across different settings.

5.2 Performance on INSTRUCTEVAL

The results of all methods on INSTRUCTEVAL
are shown in Table 3.

Method #Params MMLU DROP HEval BBH

w/o FT - 45.96 31.55 12.20 32.04
FT 7B 47.30 29.12 12.80 32.72

LoRA 33.6M 45.64 32.46 15.09 32.40
QLoRA 33.6M 45.40 28.97 15.24 32.81
AdaLoRA 33.6M 45.96 31.94 14.02 32.85
MELoRA 0.5M 46.46 32.65 16.16 33.01

Table 3: Results on INSTRUCTEVAL for instruction-
following tasks. We report the exact match for MMLU,
DROP and BBH, pass@1 for HumanEval. Higher is
better for all metrics. The boldface indicates the best
results in terms of the corresponding metrics.

We can see that MELoRA consistently outper-
forms all baselines across all tasks while utiliz-
ing more than 36 times fewer trainable parameters.
This highlights the effectiveness and efficiency of
our proposed approach in instruction following

3057

tasks. As shown in Section 3.3, we believe the
reason is that MELoRA can achieve a higher rank
with fewer parameters.

6 Analysis

In this section, we analyze two key hyper-
parameters in MELoRA: the number of mini Lo-
RAs n and the rank of each mini LoRA r. Accord-
ing to Equation 5, the equivalent rank of MELoRA
is denoted as n× r. We investigate the effect of the
equivalent rank in Section 6.1, and analyze n and
r separately in Section 6.2 and 6.3.

6.1 Analysis of Equivalent Rank

In this section, we delve into the effect of the equiv-
alent rank. We conduct experiments across differ-
ent equivalent ranks, specifically 4, 8, and 16 on
GLUE, and 16, 32, and 64 on INSTRUCTEVAL.
The results are shown in Table 4 and 5, respectively.

We have two observations from the results. First,
MELoRA consistently achieves superior or com-
parable performance across all equivalent rank set-
tings. In Table 4 and Table 5, MELoRA achieves
the best performance on most datasets with more
than 2 times fewer trainable parameters. This indi-
cates that equivalent rank is more important than
the number of trainable parameters. Ideally, we
should search the best equivalent rank settings on
different datasets, but setting n to 2 is a good choice
in most cases. Second, the optimal equivalent ranks
vary across datasets and tasks. On GLUE, the opti-
mal performance is generally achieved with n = 2.
In contrast, on INSTRUCTEVAL, a higher value of
n such as 4 or 8 is a more effective choice. We think
that model sizes and task complexity are the main
factors. For instance, the RoBERTa model, with
only 125M parameters, is considerably smaller
than Llama-2-7B. According to scaling laws (Ka-
plan et al., 2020), Llama-2-7B is more powerful.
Consequently, larger models like Llama-2-7B may
not necessitate a significant increase in trainable pa-
rameters to adapt, suggesting that MELoRA plays
a more pivotal role in larger models.

To ascertain whether MELoRA performs a
higher rank update than LoRA, we analyze the
number of singular values exceeding 0.1 for both
LoRA and MELoRA to estimate the real rank. As
shown in Figure 3, MELoRA exhibits a signifi-
cantly higher count of singular values compared to
LoRA in the n × r setting. This observation sug-
gests that MELoRA indeed achieves a high-rank

update by performing multiple low-rank updates.

COLA STSB RTE QNLI
0

50

100

150

200

250

300

350
LoRA r=4
MELoRA r=4 n=2
MELoRA r=4 n=4

Figure 3: The sum of singular values > 0.1 of B × A
in LoRA and equivalent B ×A in MELoRA.

92.4

92.5

92.6

QNLI

94.0

94.2

94.4

94.6

SST-2
r=2
r=4

1 2 4 8 16
Number of mini LoRAs

61

62

CoLA

1 2 4 8 16
Number of mini LoRAs

90.2

90.4

90.6

STS-B

Figure 4: Performance with different number of mini
LoRAs n and fixed rank r on different datasets. We
report the same metrics as Table 2. More results can be
found in Appendix C.

6.2 Analysis of the Number of Mini LoRAs
As discussed in Section 3.3, maintaining a fixed
rank for each mini LoRA results in an unaltered pa-
rameter count. Consequently, the ability to modify
the equivalent rank by adjusting n does not necessi-
tate an increase in the overall number of parameters.
To analyze the effect of n, we conduct experiments
by varying n while keeping r fixed at 2 and 4 on
four datasets. The results are shown in Figure 4.

We have three observations from the results.
First, the optimal n varies across datasets and some-
times differs for different values of r even on the
same dataset. For instance, when r is set to 4,
the optimal n for QNLI and SST-2 is 4, while for
ColA and STSB, it is 2. This observation suggests
that the specific task exerts an important influence
on the behavior of the model. Second, the perfor-
mance of MELoRA exhibits a pattern of initially
increasing with n and then decreasing, regardless
of the values of r. At first, increasing n results in
a higher equivalent rank, which is beneficial to the

3058

Method r × n #Param. RTE CoLA STS-B SST-2 QNLI Avg.

LoRA 8× 1 295k 75.63 62.34 90.71 94.50 92.55 83.14
MELoRA 4× 2 147k 76.39 62.70 90.71 94.33 92.52 83.33
MELoRA 2× 4 73k 75.09 61.84 90.60 94.11 92.47 82.82

LoRA 16× 1 590k 75.45 63.28 90.81 94.70 92.50 83.35
MELoRA 8× 2 295k 75.93 63.10 90.82 94.61 92.61 83.42
MELoRA 4× 4 147k 74.37 61.72 90.63 94.54 92.67 82.79
MELoRA 2× 8 73k 73.65 61.36 90.41 94.18 92.41 82.40

Table 4: Performance on GLUE for natural language understanding tasks with different numbers of equivalent ranks
(r × n), with the same metrics as in Table 2. Boldface indicates best results in terms of the corresponding metrics.

Method r × n #Param. MMLU DROP BBH Avg.

LoRA 16× 1 8.4M 45.52 32.14 32.67 36.78
MELoRA 8× 2 4.2M 45.63 32.97 32.61 37.07
MELoRA 4× 4 2.0M 45.23 32.43 32.70 36.79
MELoRA 2× 8 1.0M 46.53 32.97 33.06 37.52
MELoRA 1× 16 0.5M 45.38 31.52 33.29 36.73

LoRA 32× 1 16.8M 45.30 32.33 32.42 36.68
MELoRA 16× 2 8.4M 45.92 32.60 32.78 37.10
MELoRA 8× 4 4.2M 46.05 32.16 33.09 37.10
MELoRA 4× 8 2.0M 46.20 33.30 33.11 37.54
MELoRA 2× 16 1.0M 45.66 31.84 32.36 36.62
MELoRA 1× 32 0.5M 45.60 31.55 33.35 36.83

LoRA 64× 1 33.6M 45.66 32.46 32.43 36.85
MELoRA 32× 2 16.8M 46.03 32.76 32.58 37.12
MELoRA 16× 4 8.4M 46.15 32.68 33.11 37.31
MELoRA 8× 8 4.2M 46.43 32.57 32.55 37.18
MELoRA 4× 16 2.0M 46.26 32.57 32.67 37.17
MELoRA 2× 32 1.0M 45.43 32.41 32.93 36.92
MELoRA 1× 64 0.5M 46.20 31.66 32.45 36.77

Table 5: Performance on INSTRUCTEVAL for instruc-
tion following tasks with different equivalent ranks
(r × n), with the same metrics as in Table 3. Bold-
face indicates best results in terms of the corresponding
metrics. More results can be found in Appendix B.

performance. However, note that excessively high
equivalent ranks pose a risk of overfitting. That
is why when n is too big, the performance drops.
Third, the optimal n tends to be larger for datasets
with more training samples or smaller values of
r. As to training samples, for instance, QNLI and
SST-2 have more training samples compared to
other datasets, thus leading to an optimal n of 4,
while for the others, it is 2. This phenomenon can
be attributed to the need to allocate a higher equiv-
alent rank to effectively leverage the abundance
of training samples. As to rank r, on SST-2 and
CoLA, the optimal n for r = 2 is greater than that
for r = 4. That is because the equivalent rank of
MELoRA is denoted as n×r. To achieve a specific
equivalent rank, the smaller the value of r is, the
larger the value of n should be.

6.3 Analysis of the Rank of Mini LoRAs

To analyze the effect of r, we conduct experiments
with varying r while keeping n fixed at 1 and 2
on four datasets. When setting n to 1, MELoRA
degrades into LoRA. The results are shown in Fig-
ure 5. As r increases, the performance first im-
proves and then stabilizes. This observation im-
plies that a higher rank and a large number of
trainable parameters are always favored in terms
of performance when there is enough training data.
However, a higher rank and a large number of train-
able parameters usually mean higher training costs.
Second, MELoRA consistently outperforms LoRA
across all rank settings. That proves that MELoRA
is more powerful with the same number of trainable
parameters.

92.0

92.2

92.4

92.6

QNLI

94.00

94.25

94.50

94.75

SST-2

LoRA
MELoRA n=2

1 2 4 8 16 32 64
Rank r

61

62

63

64

CoLA

1 2 4 8 16 32 64
Rank r

90.6

90.8

STS-B

Figure 5: Performance of LoRA and MELoRA with
different rank r and fixed n on different datasets. More
results can be found in Appendix D.

7 Conclusion

In this paper, we have proposed a new parameter-
efficient fine-tuning method, MELoRA, that stacks
multiple mini LoRAs in parallel, with each mini
LoRA rank learning the different dimensions of a
hidden state. We have theoretically demonstrated

3059

that MELoRA maintains a higher and flexible rank,
as well as lower complexity. We have also shown
empirically that MELoRA achieves a higher rank
and better performance with fewer trainable param-
eters on multiple datasets.

Reproducibility

We release the source code to reproduce the
results in this paper at https://github.com/
ChasonShi/MELoRA.

Limitations

This work has the following limitations. First, we
introduce a new hyper-parameter n, which indi-
cates the number of mini-LoRAs. The best n is
varied with different datasets. We need more tun-
ing parameters to get a good performance. In future
work, we plan to address these issues by applying
hyper-parameter search methods like Bayesian op-
timization.

Ethical Considerations

We realize that there are risks in developing large
language models, so it is necessary to pay attention
to the ethical issues. We have used the public pre-
trained LLMs, e.g., LLaMA2-7B, RoBERTa-base,
and public datasets, i.e., GLUE and INSTRUCTE-
VAL, to conduct the experiments. All models and
datasets are carefully processed by their publishers
to ensure that there are no ethical problems.

Acknowledgements

This work was supported by the Natural Sci-
ence Foundation of China (62102234, 62372275,
62272274, 62202271, T2293773, 62072279), the
National Key R&D Program of China with grant
No.2022YFC3303004, the Natural Science Foun-
dation of Shandong Province (ZR2021QF129), and
by the Dutch Research Council (NWO), under
project numbers 024.004.022, NWA.1389.20.183,
and KICH3.LTP.20.006, and the European Union’s
Horizon Europe program under grant agreement
No 101070212. All content represents the opin-
ion of the authors, which is not necessarily shared
or endorsed by their respective employers and/or
sponsors.

References
Roy Bar-Haim, Ido Dagan, and Idan Szpektor. 2014.

Benchmarking applied semantic inference: The PAS-

CAL recognising textual entailment challenges. In
Language, Culture, Computation. Computing - The-
ory and Technology, volume 8001 of Lecture Notes
in Computer Science, pages 409–424. Springer.

Luisa Bentivogli, Bernardo Magnini, Ido Dagan,
Hoa Trang Dang, and Danilo Giampiccolo. 2009.
The fifth PASCAL recognizing textual entailment
challenge. In TAC. NIST.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity - multilin-
gual and cross-lingual focused evaluation. CoRR,
abs/1708.00055.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. INSTRUCTEVAL: Towards holis-
tic evaluation of instruction-tuned large language
models. CoRR, abs/2306.04757.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized llms. CoRR, abs/2305.14314.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen,
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023a.
Sparse low-rank adaptation of pre-trained language
models. In EMNLP, pages 4133–4145, Singapore.
Association for Computational Linguistics.

3060

https://github.com/ChasonShi/MELoRA
https://github.com/ChasonShi/MELoRA
https://doi.org/10.1007/978-3-642-45321-2_19
https://doi.org/10.1007/978-3-642-45321-2_19
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/1708.00055
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2306.04757
https://doi.org/10.48550/ARXIV.2306.04757
https://doi.org/10.48550/ARXIV.2306.04757
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.18653/v1/2023.emnlp-main.252
https://doi.org/10.18653/v1/2023.emnlp-main.252

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023b.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220–235.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In IJCNLP-IWP. Asian Federation of Natural Lan-
guage Processing.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun
Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi, Xiao
Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui
Zheng, Tao Gui, Qi Zhang, and Xuanjing Huang.
2023. LoRAMoE: Revolutionizing mixture of ex-
perts for maintaining world knowledge in language
model alignment. CoRR, abs/2312.09979.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In NAACL.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In ACL-PASCAL,
pages 1–9, Prague. Association for Computational
Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In ICLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
ICML, volume 97 of Proceedings of Machine Learn-
ing Research, pages 2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In ICLR. OpenReview.net.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-based ran-
dom matrix adaptation. CoRR, abs/2310.11454.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram Gal-
styan, and Greg Ver Steeg. 2023. Neural architecture
search for parameter-efficient fine-tuning of large
pre-trained language models. In Findings of ACL,
pages 8506–8515, Toronto, Canada. Association for
Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP, pages 3045–3059. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL-IJCNLP, pages 4582–4597. Association for
Computational Linguistics.

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023. Stack more layers
differently: High-rank training through low-rank up-
dates. CoRR, abs/2307.05695.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In EACL, pages 487–503. Associa-
tion for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, pages
2383–2392. The Association for Computational Lin-
guistics.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In NeurIPS, pages 506–516.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. In EMNLP, pages 7930–
7946. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642. ACL.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. DyLoRA:
Parameter-efficient tuning of pre-trained models us-
ing dynamic search-free low-rank adaptation. In
EACL, pages 3266–3279. Association for Compu-
tational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.
OpenReview.net.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Trans. Assoc. Comput. Linguistics, 7:625–641.

3061

https://aclanthology.org/I05-5002/
https://aclanthology.org/I05-5002/
https://doi.org/10.48550/ARXIV.2312.09979
https://doi.org/10.48550/ARXIV.2312.09979
https://doi.org/10.48550/ARXIV.2312.09979
https://aclanthology.org/W07-1401
https://aclanthology.org/W07-1401
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2001.08361
https://doi.org/10.48550/ARXIV.2310.11454
https://doi.org/10.48550/ARXIV.2310.11454
https://doi.org/10.18653/v1/2023.findings-acl.539
https://doi.org/10.18653/v1/2023.findings-acl.539
https://doi.org/10.18653/v1/2023.findings-acl.539
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.48550/ARXIV.2307.05695
https://doi.org/10.48550/ARXIV.2307.05695
https://doi.org/10.48550/ARXIV.2307.05695
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.18653/V1/2021.EACL-MAIN.39
https://doi.org/10.18653/V1/D16-1264
https://doi.org/10.18653/V1/D16-1264
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/e7b24b112a44fdd9ee93bdf998c6ca0e-Abstract.html
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.626
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.626
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/2023.eacl-main.239
https://aclanthology.org/2023.eacl-main.239
https://aclanthology.org/2023.eacl-main.239
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1162/TACL_A_00290

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT, pages 1112–1122. Association for
Computational Linguistics.

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024.
Chain of LoRA: Efficient fine-tuning of language
models via residual learning. CoRR, abs/2401.04151.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang
Jiang, Bowen Wang, and Yiming Qian. 2023a.
IncreLoRA: Incremental parameter allocation
method for parameter-efficient fine-tuning. CoRR,
abs/2308.12043.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023b. LoRA-FA: Memory-efficient
low-rank adaptation for large language models fine-
tuning. CoRR, abs/2308.03303.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2022. Adaptive budget allocation for
parameter-efficient fine-tuning. In ICLR.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang,
Kam-Fai Wong, and Lei Zhang. 2023. Delta-LoRA:
Fine-tuning high-rank parameters with the delta of
low-rank matrices.

3062

https://doi.org/10.18653/V1/N18-1101
https://doi.org/10.18653/V1/N18-1101
https://doi.org/10.48550/ARXIV.2401.04151
https://doi.org/10.48550/ARXIV.2401.04151
https://doi.org/10.48550/ARXIV.2308.12043
https://doi.org/10.48550/ARXIV.2308.12043
https://doi.org/10.48550/ARXIV.2308.03303
https://doi.org/10.48550/ARXIV.2308.03303
https://doi.org/10.48550/ARXIV.2308.03303
http://arxiv.org/abs/2309.02411
http://arxiv.org/abs/2309.02411
http://arxiv.org/abs/2309.02411

A Hyper-parameters

The detailed hyper-parameter settings on the IN-
STRUCTEVAL and GLUE datasets are listed in
Table 6 and 7, respectively.

Hyper-Parameter

Learning rate η 3e-4
Batch size 128
Number of epochs 3
Max sequence length 256
Rank r 4
LoRA dropout 0.05
LoRA alpha α 16
Trainable matrices WQ, WV

LR scheduler Linear
Warmup steps 100

Table 6: The hyper-parameter settings for INSTRUCTE-
VAL. We use the same settings as Chia et al. (2023)

B Analysis of Equivalent Rank

We further conduct experiments with equivalent
ranks 128, 256 and 4096 on INSTRUCTEVAL.
The results are listed in Table 8. MELoRA still
achieves the best performance on all equivalent
rank settings. We have similar observations as in
Table 5.

C Analysis of the Number of mini LoRAs

We report more results with different numbers of
mini LoRAs in Figure 6 and 7. The performance
of MELoRA still exhibits a pattern of initially in-
creasing with n and then decreasing, regardless of
the values of r on the QQP and RTE datasets. But
on the MRPC and MNLI datasets, the optimal n is
1. That is because those two datasets prefer lower
ranks. In that case, MELoRA degrade to LoRA
when n = 1. On INSTRUCTEVAL, the perfor-
mance is consistent with that in Figure 4. The best
equivalent ranks of MMLU and BBH are 64 and
32, respectively. To achieve a specific equivalent
rank, smaller the value of r is, larger the value of n
should be. That is consistent with Figure 4 as well.

D Analysis of the Rank of mini LoRAs

We report the results of different ranks of mini
LoRAs on the rest datasets of GLUE in Figure 8.
MELoRA outperforms LoRA, and the performance
first improves and then stabilizes as r increases,
which is consistent with Figure 5. Because QQP

89.0

89.2

89.4
QQP

88.6

88.8

89.0

MRPC
r=2

1 2 4 8
Number of mini LoRAs

86.2

86.3

86.4

MNLI

1 2 4 8
Number of mini LoRAs

74.0

74.5

75.0

RTE

Figure 6: Performance of LoRA and MELoRA with dif-
ferent number of mini LoRAs n and fixed r on GLUE.

2 4 8 16 32
Rank r

45.2

45.4

45.6

45.8

46.0

46.2

46.4

MMLU

MELoRA r=4
MELoRA r=8

2 4 8 16 32
Rank r

32.4

32.6

32.8

33.0

BBH

Figure 7: Performance of LoRA and MELoRA with
different rank n and fixed r on MMLU and BBH.

and MNLI have more training samples, the optical
rank is higher. That also proves that MELoRA is
more powerful with the same number of trainable
parameters.

89.0

89.5

90.0

QQP

88.8

89.0

MRPC

LoRA
MELoRA n=2

1 2 4 8
Rank r

86.0

86.5

87.0

MNLI

1 2 4 8
Rank r

74.5

75.0

75.5

76.0

RTE

Figure 8: Performance of LoRA and MELoRA with
different rank r and fixed n on GLUE.

3063

Hyper-Parameter MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Learning Rate η 5e-4 5e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Batch Size 128 128 128 64 128 128 128 128
Number of Epochs 30 60 30 80 25 25 80 40
Weight Decay β 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Sequence Length 256 256 256 256 256 256 512 256
Start Steps K 2000 400 10 100 800 400 200 200
Update Ratio λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Rank r 8 8 8 8 8 8 8 8
Alpha α 16 16 16 16 16 16 16 16
LR Scheduler Linear Linear Linear Linear Linear Linear Linear Linear
Trainable Matrices WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV WQ,WV

Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Evaluation Metrics Accuracy Accuracy Accuracy
Matthews

Accuracy Accuracy Accuracy Pearson
Correlation

Table 7: The hyper-parameter settings for GLUE. For fair comparison, we use the same settings as Zi et al. (2023).

Method r × n #Param. MMLU DROP HEval BBH Avg.

LoRA 128× 1 67.1M 45.36 32.52 14.63 32.32 31.20
MELoRA 64× 2 33.6M 46.05 32.59 15.85 32.54 31.76
MELoRA 32× 4 16.8M 46.05 32.78 15.24 33.18 31.81
MELoRA 16× 8 8.4M 46.40 32.49 16.46 32.85 32.05
MELoRA 8× 16 4.2M 46.08 32.57 15.24 32.40 31.57
MELoRA 4× 32 2.0M 45.82 32.38 15.85 32.37 31.61
MELoRA 2× 64 1.0M 45.54 31.49 12.80 32.78 30.65
MELoRA 1× 128 0.5M 45.71 31.69 14.02 32.20 30.91

LoRA 256× 1 134.2M 45.27 32.28 16.46 31.86 31.47
MELoRA 128× 2 67.1M 45.95 32.73 16.46 32.51 31.91
MELoRA 64× 4 33.6M 45.94 32.95 15.85 33.25 32.00
MELoRA 32× 8 16.8M 46.33 32.98 15.24 32.98 31.88
MELoRA 16× 16 8.4M 46.26 32.73 14.02 32.30 31.33
MELoRA 8× 32 4.2M 46.12 32.44 14.63 32.79 31.50
MELoRA 4× 64 2.0M 46.28 31.31 12.80 32.46 30.71
MELoRA 2× 128 1.0M 45.40 32.04 14.63 31.74 30.95
MELoRA 1× 256 0.5M 45.25 31.60 14.02 32.65 30.88

MELoRA 2048× 2 1073.7M 45.76 32.76 17.07 32.62 32.05
MELoRA 1024× 4 536.9M 45.80 32.82 18.29 32.93 32.46
MELoRA 512× 8 268.4M 46.35 32.89 15.24 32.82 31.83
MELoRA 256× 16 134.2M 46.11 32.51 15.85 32.52 31.75
MELoRA 128× 32 67.1M 46.10 32.60 13.41 32.91 31.26
MELoRA 64× 64 33.6M 45.96 32.04 15.85 32.14 31.49
MELoRA 32× 128 16.8M 46.33 31.85 12.80 32.55 30.88
MELoRA 16× 256 8.4M 46.45 32.30 13.41 32.79 31.24
MELoRA 8× 512 4.2M 46.40 32.09 14.63 32.97 31.52
MELoRA 4× 1024 2.1M 46.45 32.12 14.02 32.87 31.37
MELoRA 2× 2048 1.0M 45.99 32.33 13.41 32.41 31.04

Table 8: Performance on INSTRUCTEVAL for instruction following tasks with different equivalent ranks (r × n),
with the same metrics as in Table 3. Boldface indicates best results in terms of the corresponding metrics.

3064

