PROLORA: Partial Rotation Empowers More Parameter-Efficient LoRA

Sheng Wang", Boyang Xue®, Jiacheng Ye, Jiyue Jiang®, Liheng Chen®,
Lingpeng Kong", Chuan Wu"
© The University of Hong Kong, ® The Chinese University of Hong Kong
u3009618@connect.hku.hk, byxue@se.cuhk.edu.hk, carsonye@connect.hku.hk,
jiangjy@link.cuhk.edu.hk, clh648@connect.hku.hk, {lpk, cwu}@cs.hku.hk

Abstract

With the rapid scaling of large language mod-
els (LLMs), serving numerous low-rank adap-
tations (LoRAs) concurrently has become in-
creasingly impractical, leading to unafford-
able costs and necessitating more parameter-
efficient finetuning methods. In this work, we
introduce Partially Rotation-enhanced Low-
Rank Adaptation (PRoLoRA), an intra-layer
sharing mechanism comprising four essential
components: broadcast reduction, rotation en-
hancement, partially-sharing refinement, and
rectified initialization strategy. As a superset
of LoRA, PRoLoRA retains its advantages,
and effectively circumvent the drawbacks of
peer parameter-sharing methods with superior
model capacity, practical feasibility, and broad
applicability. Empirical experiments demon-
strate the remarkably higher parameter effi-
ciency of PRoLoRA in both specific param-
eter budget and performance target scenarios,
and its scalability to larger LLMs. Notably,
with one time less trainable parameters, PRo-
LoRA still outperforms LoRA on multiple in-
struction tuning datasets. Subsequently, an ab-
lation study is conducted to validate the neces-
sity of individual components and highlight the
superiority of PROLoRA over three potential
variants. Hopefully, the conspicuously higher
parameter efficiency can establish PRoLoRA
as a resource-friendly alternative to LoRA.

1 Introduction

Finetuning large language models (LLMs), such
as LLaMA 2 (Touvron et al.,, 2023), GPT-
3.5 Turbo (OpenAl, 2023), and Gemini (Team
et al., 2023), for specific domains and functions
(e.g., model alignment (Wang et al., 2023b) and
instruction tuning (Zhang et al., 2023b)), have be-
come increasingly popular. To alleviate the high
costs associated with full finetuning, parameter-
efficient finetuning (PEFT), especially LoRA (Hu
et al., 2021), has emerged as a lightweight solution

Model LoRA
—— Rank
LLaMA2 Parameters Bytes
2 5.00M 19MB
7B 16 39.98M 153MB
64 159.91M 610MB
2 6.26M 24MB
13B 16 50.07"M 191MB
64 200.28M 764MB
2 11.27M 43MB
70B 16 90.18M 344MB
64 360.71M 1,376 MB

Table 1: Theoretical memory usage of LoRA weights
with different ranks for LLaMA?2-7/13/70B models.

by tuning a minority of parameters and freezing
the remaining ones (Houlsby et al., 2019; Liu et al.,
2022). However, with the rapid boost in the num-
ber of model’s parameters, the demand for further
enhanced parameter efficiency becomes progres-
sively more imperative, especially when multiple
LoRA are deployed simultaneously. As shown in
the Table 1, the configuration in Dettmers et al.
(2023) (i.e., applying LoRA with the rank of 64
to all linear layers) results in a significant number
of trainable parameters. For a single LLaMA2-7B
model, LoRA will have about 160 million parame-
ters to be tuned, occupying 610MB of disk storage
and GPU memory in inference. These numbers
quickly escalate to about 360 million and 1.4GB
for a LLaMA2-70B model. For multi-LoRA sce-
narios, such as personalization (Chen et al., 2023)
and multitasking (Huang et al., 2023), this issue
will dramatically exacerbate. Specifically, resource
consumption will increase linearly with personal-
ized customization, which will further experience
a quadratic growth when coupled with multitask-
ing. Hence, the high costs in multi-LoRA scenarios

2829

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2829-2841

August 11-16, 2024 ©2024 Association for Computational Linguistics

do spark a demand for further improved parameter
efficiency.

Focusing on the above target, parameter sharing
can serve as an effective approach. Although small
ranks could provide competitive performance in
specific tasks (Hu et al., 2021), models generally
perform better with higher ranks as listed in Table 2.
Besides, given a specific trainable parameter bud-
get, better performance means higher parameter
efficiency. Hence, enhancing parameter efficiency
can be transformed into appropriately increasing
the rank of LoRA with the same parameter count.
Although VeRA (Kopiczko et al., 2023) can be re-
garded as an attempt in this direction, its aggressive
freezing operations result in limited model capacity
and excessively high rank, leading to significant
inference latency in multi-LoRA scenarios where
LoRA modules are not merged into the pretrained
weights. Subsequently, Tied LoRA (Renduchintala
et al., 2023) alleviates these problems by allowing
the inter-layer shared matrices to be trainable. How-
ever, its tying mechanism restricts its applicability
to weights of different shapes, which are widely
present among self-attention and MLP modules.

To circumvent all the above drawbacks, we in-
troduce a new approach called Partially Rotation-
enhanced Low-Rank Adaptation (PRoLoRA). It
features a parameter-sharing mechanism within the
low-rank decomposition matrices, and consists of
four essential components: broadcast reduction, ro-
tation enhancement, partially-sharing refinement,
and rectified initialization strategy. Specifically, we
reparameterize the low-rank matrices with multiple
chunks along the hidden dimension, and broadcast
the first chunks to the others so that trainable pa-
rameters can be saved, or equivalently, the rank can
be increased multiple times. Then a nearly cost-
free rotation operation along the rank dimension
is performed to differentiate the identical chunks
for higher expressiveness. Besides, a minimal sub-
set of ranks is reserved without sharing for further
refined capacity. To ensure the same bounds for
initialization as unshared parameters, we also rec-
tify the vanilla Kaiming uniform distribution (He
et al., 2015) for shared ones. As a superset of
LoRA, PRoLoRA not only pertains the advantages
of LoRA, such as lightweight task switching and
optional merging to eliminate extra latency, but
also brings about better capacity, practical feasibil-
ity, and broader applicability than other parameter-
sharing methods. Empirical experiments on multi-
ple instruction tuning datasets validate the higher

parameter efficiency of PRoLoRA than baselines
via two alternative perspectives (i.e., a specific
trainable parameter budget and performance tar-
get). With half of tunable parameters, PRoLoRA
achieves 4/6 wins and better average performance
over LoRA. When scaling up to LLaMA2-13B,
PRoLoRA consistently outperforms LoRA with
the same trainable parameter count. Additionally,
comprehensive ablation studies demonstrate the
necessity of each component and the superiority
of PRoLoRA over three potential intra-layer shar-
ing variants. Overall, PROLoRA achieves signif-
icantly higher parameter efficiency, and thereby
remarkably alleviates the storage and GPU mem-
ory burden in multi-LoRA scenarios, establishing
PRoLoRA as a resource-friendly alternative for
LoRA.

In summary, our main contributions are as fol-
lows:

* We introduce a more parameter-efficient method
named PRoLoRA, featuring an intra-layer shar-
ing mechanism consisting of broadcast reduction,
rotation enhancement, partially-sharing refine-
ment and rectified initialization strategy.

* We compare PRoLoRA with LoRA and exist-
ing peer methods on multiple instruction tuning
datasets, and demonstrate its remarkably higher
parameter efficiency, hopefully establishing PRo-
LoRA as a resource-friendly alternative to LoRA.

* We perform an ablation study to demonstrate the
necessity of individual components and the supe-
riority of PRoLoRA over other potential variants.

2 Related work

LoRA Series. Inspired by the low intrinsic di-
mensions in over-parameterized models (Agha-
janyan et al., 2020), Hu et al. (2021) proposes
LoRA to reparameterize the weight update with
two trainable low-rank matrices, while freezing the
pretrained weights. With this lightweight decom-
position, LoRA reduces storage and task-switching
overhead by sharing the pretrained models across
multiple tasks. Theoretically, the linear design of
LoRA enables seamless merging of trainable ma-
trices with frozen weights, thereby avoiding extra
inference latency, albeit this operation is typically
not performed in multiple LoRA serving scenarios.

Subsequently, numerous efforts have been made
to further enhance the effectiveness and efficiency
of LoRA. Based on singular value decomposition,

2830

Adal.oRA (Zhang et al., 2023a) achieves the auto-
matic rank allocation by adaptively pruning less im-
portant parameters during finetuning, but the vary-
ing ranks among layers pose challenges on deploy-
ing multiple LoRAs. Inspired by random projec-
tions (Aghajanyan et al., 2020), VeRA (Kopiczko
et al., 2023) shares two frozen random matrices
across all layers, and updates disentangled com-
bination vectors for each layer. Although this ap-
proach reduces the number of parameters, it results
in performance degradation and several times the
additional computation associated with a very high
rank. In contrast, Tied LoRA (Renduchintala et al.,
2023) enhances parameter efficiency by sharing
trainable LoRA matrices across all layers, with
the down projection matrix further tied among the
query, key, and value modules. Additionally, it
incorporates scaling vectors to differentiate each
module. However, in addition to the high rank sim-
ilar to VeRA, this approach also necessitates the
shared matrices to have identical shapes, which fur-
ther restricts its expansion to other linear layers. In
contrast, our approach features an intra-layer shar-
ing mechanism to enhance parameter efficiency,
thereby circumventing the above drawbacks while
exhibiting potential for integration with them.

Parameter Sharing. Parameter sharing has been
adopted by prior studies to reduce model footprint.
Universal Transformer (Dehghani et al., 2018) pro-
poses to share all layers within a transformer model.
Systematically, Takase and Kiyono (2023) refines
this mechanism with three parameter-sharing strate-
gies across transformer layers, improving the com-
putational and parameter efficiency. Similarly, Reid
et al. (2021) compares several parameter reduc-
tion methods and introduces the Subformer model
with shared middle layers and embedding factor-
ization, significantly saving the parameters with-
out performance degradation. Subsequently, Dict-
Former (Lou et al., 2021) reparameterizes the orig-
inal weights with a shared dictionary, unshared
coefficients and indices, resulting in a more com-
pact transformer model and faster computations.
Targeting on-device deployment, EdgeFormer (Ge
et al., 2022) shares the attention and FFN modules,
and incorporates PEFT-based layer adaptation to
minimize the number of parameters. More recently,
Pires et al. (2023) removes the FFN on the decoder
layers and shares a single larger FFN across the
encoder, achieving substantial gains in both accu-
racy and latency. Differently, our study focuses

on multi-LoRA scenarios and seeks to enhance the
parameter efficiency of LoRA models instead of
transformer models.

3 Method

In this section, we introduce Partially Rotation-
enhanced Low-Rank Adaptation (PRoLoRA), a
more parameter-efficient method featuring an intra-
layer sharing mechanism. Briefly, we present four
essential components of PRoLoRA in Section 3.1
namely broadcast reduction, rotation enhancement,
partially-sharing refinement, and rectified initial-
ization strategy, followed by its advantage analysis
compared to existing peer methods in Section 3.2.

3.1 Mathematical Formulation

Based on the low-rank decomposition, LoRA (Hu
et al., 2021) updates the frozen pretrained weights
W, € Ro*" with two trainable matrices A €
R™" and B € R°*", where r denotes the rank
and satisfies r < min(h, o). This approximation
process can be formulated as follows:

W=W,+AW =W,+BA,! (1)

where W and AW refer to the updated weights
and weight differences with the dimensions of o x h,
respectively. Therefore, a higher parameter effi-
ciency can be converted into how to obtain simi-
lar expressiveness of AW with fewer parameters,
which inspires the introduction of PRoLoRA.

Broadcast Reduction. An intuitive approach to
optimizing the utilization efficiency of parameters
is to reuse them multiple times. As depicted in
Figure 1(a) and 1(b), in the first step of PRoLoRA,
we propose to partition the original A and B matri-
ces into chunks along the hidden dimensions h and
o correspondingly, and broadcast the first chunks’
parameters to the remaining ones, so that the ex-
panded matrices maintain the same shapes as the
original ones. Importantly, given the potential vari-
ations in the dimensions of A and B, we allocate
separate chunks to each matrix so that PRoLoRA
will not be restricted by different weight shapes
which is suffered by Tied LoRA. Formally, this
chunk-wise sharing process, referred to as CLoRA

"Here we omit the preset scaling factor < for clarity, but
will restore it in Section 4.

2831

(a) LoRA (b) CLoRA

(c) RoLoRA (d) PRoLoRA

Figure 1: Illustration of the original LoRA, our proposed PRoLoRA, and their intermediate states (i.e., CLoRA and
RoLoRA). Here we set the rank 7, unshared rank w, sharing rates m and n of the A and B matrices to be 4, 1, 2 and
3, respectively. Different shades of color in matrices A and B denote distinct ranks. The rotation arrows and center
numbers indicate rotation directions and base strides, while dotted lines and higher transparency denote replicated
or rotated weights, emphasizing that these weights do not contribute to the trainable parameters. Additionally, the
center numbers of each matrix block represent the relative displacement of the A; and B; chunks compared to those

of top-left block (i.e., Ag and By).

for simplicity, can be expressed as follows:
AW :(Bo ©y By Dy ... Dy Bo)

!)
(AQ Dy A() Dy, ... Dp Ao),

m

where Ay and By refer to the trainable chunks
shared m and n times in A and B, while the sym-
bols ¢y, and &, denote the concatenation of two
matrices horizontally and vertically, respectively.
In this way, trainable parameters in one module can
be reduced from the entire matrices A and B to two
much smaller chunks A and Bg, and the number
decreases from hr + roto hr/m+ro/n. When m
equals to n, this broadcast reduction results in m
times fewer trainable parameters, or equivalently,
m times higher rank with the same trainable pa-
rameter budget, which potentially achieves better
performance and parameter efficiency.

Rotation Enhancement. Despite the substantial
decrease in tunable parameters, chunk-wise broad-
cast reduction also entails a trade-off in terms of
the constrained expressiveness of the weight update.
As illustrated in Figure 1(b), when the matrices A
and B are partitioned into the same chunks, their
matrix product BA (i.e., AW) is also divided into
multiple identical blocks along the row and column
dimensions. This notable pattern implies additional
compression on the potential representational space
of the weight differences, which intuitively might
be detrimental to the performance.

To alleviate this issue, we further evolve CLoRA
into RoLoRA, another intermediate transition ap-
proach towards PRoLoRA. As depicted in Fig-

ure 1(c), RoLoRA differentiates the broadcast
chunks by rotating them with distinct times of a
base stride. Consequently, the computation of AW
can be transformed into the following form:

AW =(Bg @, B1 @y ... @y By_1)

(3)
(Ao ®p A1 @p .- Br A1),

where A; and B; are generated by applying the
roll operation Roll() along the rank dimension
to Ay and By, respectively, with a base stride
54 and sp multiplied by 7. Mathematically, this
can be expressed as A; = Roll(Ay,? - s4), and
B; = Roll(By,i - sg), where i ranges from 0 to
m — 1 and n — 1, correspondingly. For simplicity
and symmetry, we set 54 and sp to Max(|.-|,1)
and Max([], 1), respectively. Since the rotation
operation does not introduce any additional param-
eters, RoOLoRA cost-freely enhances the expressive-
ness of CLoRA while preserving the same analysis
of trainable parameters.

Partially-Sharing Refinement. Despite success-
fully avoiding simple replication, ROLORA remains
susceptible to a more subtle pattern. Specifically,
if two vectors simultaneously rotate in the same
direction with a specific stride, their inner prod-
uct keeps unchanged. The elements of AW are
computed from the inner product of correspond-
ing column and row vectors in the matrices A and
B. Therefore, two blocks can still be identical if
they are computed using chunk pairs with the same
relative displacement. For instance, as shown in
Figure 1(c), the bottom right block is obtained by
rotating both A(and B with a stride of 2, result-
ing in an identical matrix product to the top left

2832

block. From an alternative perspective, while each
block within a row/column is unique, blocks in
different rows/columns can be derived by rotating
the preceding row/column. Specially, if the base
stride for rows and columns remains consistent (i.e.,
sA = $p), the resulting AW exhibits a block-wise
anti-diagonal symmetry. Despite being more im-
plicit than that of CLoRA, this pattern still may
hamper the performance of RoLoRA.

To refine the expressiveness of AW, we further
introduce partially sharing on top of RoLoRA, lead-
ing to PRoLoRA. In detail, when partitioning the
initial matrices A and B into chunks, a specific
number of ranks, denoted as u, remain unshared.
By retaining independent hidden dimensions, these
rank vectors are not restricted by the above implicit
patterns, thereby allowing for refinements in the
weight difference matrix AW and an enriched rep-
resentational capacity of PRoLoRA. To summarize,
the whole scheme can be modeled as follows:

AW =(B, &, (Bo®y ... &y Bp-1))

(Au Doy (AO Dp...Dp Am—l))’ (4)
where A, € R**" and B, € R°** are the un-
shared parts of A and B, correspondingly. Dif-
ferent from the A; and B; in Eq. 3, the rank di-
mension of A; and B; here is » — uw. The intro-
duction of partially sharing mechanism changes
the trainable parameters, which now includes both
the unshared and shared parts. The total number
of trainable parameters in a module is given by
u(h+ o)+ h(r —u)/m+ o(r — u)/n. Due to the
sharing mechanism, with a given trainable parame-
ter count, PRoOLORA can still enjoy a higher rank,
better performance and therefore higher parameter
efficiency than LoRA.

Rectified Initialization Strategy. Following the
default configuration of LoRA in the Hugging-
face PEFT v0.6.2 library (Mangrulkar et al., 2022),
we apply the vanilla Kaiming uniform initializa-
tion (He et al., 2015) to the unshared part A,,. How-
ever, due to the distinct fan-in dimensions of A,
and A, Kaiming initialization inherently assigns
them different sampling bounds, even if they col-
lectively form the complete matrix A. Hence, we
utilize the rectified Kaiming uniform initialization,
as formulated in Eq. 5, for the shared chunk A to
ensure unified bounds. In contrast, the whole ma-
trix B is initialized to be zero so that AW = BA
is zero at the beginning of training, following the

typical practice of LoRA (Hu et al., 2021).

3 3
Ao ~U(—g x \/;,gx \/;), (5)

where U() denotes a uniform distribution, and g
means the gain determined by the non-linearity.
Importantly, the hidden dimension A of matrix A
instead of that of chunk A is used to ensure the
same bounds as the initialization of A,,.

3.2 Advantage Analysis

As an intra-layer sharing mechanism, PRoLoRA
would degrade to LoRA if the sharing mechanism
is canceled (i.e., w = 7). In other words, PRoLoRA
can be regarded as a superset of LoRA with the
same rank. Hence, PRoOLoRA reserves various ad-
vantages of LoRA. For example, PRoLoRA allows
low-cost switching among tasks by swapping only
the tunable weights instead of all the parameters on
the fly, which is crucial for efficiently serving mul-
tiple customized models simultaneously. Notably,
PRoLoRA keeps the linear property, and thereby
can also be optionally merged into the pretrained
weights in inference to eliminate extra inference
latency. Besides, PRoLoRA offers the following
additional benefits compared to LoRA and other
peer methods.

High Parameter Efficiency. As stated in Sec-
tion 4.2 and 4.3, PRoLoRA achieves better per-
formance than LoRA and others given a specific
parameter budget, indicating the apparently higher
parameter efficiency of PRoLoRA. In other words,
for a desired performance, PRoLoRA requires less
disk space during storage, and lower GPU memory
during inference, which significantly alleviates the
burden of serving multiple models.

High Representation Capacity. With the con-
tinuous increase of r, the performance of PRo-
LoRA can approximately converge to that of full
fine-tuning as does LoRA. This guarantees a large
model capacity, which is essential for challenging
tasks. In comparison, the inferior performance of
Tied LoRA and VeRA with the rank of 256 indi-
cates their extremely limited capacity, as well as
higher inference latency.

Broad Applicability. Different from Tied LoRA
and VeRA, which share matrices across layers,
PRoOLoORA is an intra-layer sharing mechanism,
thereby ensuring independence from the shape of
pretrained weights. Specifically, when accounting

2833

for weights with varying shapes in the self-attention
and MLP modules, VeRA requires initializing dis-
tinct shared matrix pairs for them, whereas the
tying mechanism of Tied LoRA is no longer appli-
cable. In contrast, PROLoRA enables decoupled
weight sharing across all modules and is unaffected
by different shapes, preserving the same level of
applicability as LoRA. It even permits distinct un-
shared ranks and sharing ratios across layers.

4 Experiments

4.1 General Setup

Overall, we focus on instruction-following tasks,
and adhere to the settings of Wang et al. (2023a).
In particular, we similarly employ a multi-faceted
assessment covering factual knowledge, reasoning,
multilinguality, and coding, but carefully select the
settings that yield positive effects based on the Ta-
ble 7 in Wang et al. (2023a). We also convert all the
datasets into a unified chatbot style, requiring mod-
els to learn both specific tasks and this interaction
format. The core settings are presented as follows,
while further details can be found in Appendix A.

Datasets. To assess the factual knowledge and
multilinguality abilities, we finetune models on
Super-Naturallnstructions (SuperNI (Wang et al.,
2022)) dataset and evaluate on Massive Multi-
task Language Understanding (MMLU (Hendrycks
et al., 2021)) and TyDi QA (Clark et al., 2020)
datasets, respectively. For the general and mathe-
matical reasoning, we retrain the foundation mod-
els on Flan V2 and its CoT split (Longpre et al.,
2023), and report the performance on Big-Bench-
Hard (BBH (Suzgun et al., 2022)) and the test split
of Grade School Math (GSM (Cobbe et al., 2021))
corpora, respectively. Moreover, we adopt Hu-
manEval (Chen et al., 2021) dataset to evaluate
models’ coding capability, targeting models fine-
tuned on CodeAlpaca (Chaudhary, 2023) dataset.

Baselines. We compare PRoLoRA with LoRA
and other existing parameter-sharing baselines.

¢ LoRA (Hu et al., 2021) adds trainable low-rank
matrix pairs in parallel to the pretrained weights,
as mentioned in Section 3.1. We apply LoRA to
all linear layers in transformer blocks, namely
query, key, value, output, up, gate, and down
projection weights. The scaling factor o and
dropout rate are set to 16 and 0.1, respectively.

* VeRA (Kopiczko et al., 2023) shares and freezes
two randomly initialized low-rank matrices, but
updates the decoupled scaling vectors. We also
apply it to all the linear layers, share frozen VeRA
weights of the same types across layers, but ini-
tialize weights of different types separately.

¢ Tied LoRA (Renduchintala et al., 2023) shares
the trainable low-rank matrices among all the
query, key, and value projection layers, further
ties their down projection matrices, and updates
the separate scaling vectors for differentiation.

4.2 Main Results

When comparing the parameter efficiency of multi-
ple methods, it is essential to answer two sequential
questions. The first question is whether one method
surpasses others in terms of parameter efficiency.
Subsequently, the magnitude of efficiency enhance-
ment needs to be measured. Both questions can be
respectively analyzed from two alternative perspec-
tives of parameter efficiency, as explained below.

Specific Parameter Budget. The first view in-
volves comparing the performance of different
methods with a fixed trainable parameter count,
where better performance signifies higher parame-
ter efficiency. To accentuate the disparities among
various methods and avoid the bias incurred by
parameter redundancy, we opt for a capacity-
constrained scenario, wherein a limited parame-
ter budget of about 5.00M is allowed. As shown
in Table 2, LoRA with the rank of 2 exhibits
an average performance of 34.98, outperforms
the vanilla model, but consistently underperforms
those with more trainable parameters, indicating
a compact model capacity without apparent re-
dundancy. Among these baselines, Tied LoRA
achieves slightly better average performance of
35.12, verifying its higher parameter efficiency
as stated in Renduchintala et al. (2023), whereas
VeRA does not 2. However, due to 128 times higher
ranks than LoRA, both of them result in much more
computation and latency, diminishing their feasibil-
ity for latency-sensitive applications. In contrast,
with the exactly same budget as LoRA, PRoLoRA
exihibits remarkably better performance both indi-
vidually and on average, when the rank, unshared

2Here we do not claim that VeRA has lower parameter ef-
ficiency than LoRA, considering that the inferior performance
may be attributed to fewer trainable parameters. However, in
our preliminary experiments on the MMLU dataset, increasing
the rank to 4096 does not yield noticeable improvements.

2834

MMLU BBH GSM TyDi QA HumanEval
Method Rank Param (factuality) (reasoning) (reasoning) (multilinguality) (coding) Ave.
EM EM EM F1 EM P@1
(0-shot) (3-shot, Direct) (8-shot, CoT) (1-shot, GP) (0-shot)

Vanilla (chat) - - 41.18 0.00 3.03 17.40 0.10 0.64 10.39

Vanilla (no-chat) - - 41.53 33.43 15.47 49.18 35.35 13.57 31.42

2 5.00M 44.77 36.22 26.28 48.67 35.70 18.24 34.98

LoRA 8 19.99M 46.55 36.92 31.11 50.50 36.89 19.37 36.89

16 40.98M 46.70 36.43 31.34 5097 37.64 18.73 36.97

VeRA 256 1.42M 42.51 35.10 22.69 48.39 36.38 18.90 34.00

. 256 4.60M 43.79 35.61 26.66 49.80 36.98 17.88 35.12
Tied LoRA

280 4.99M 44.36 35.76 25.47 50.16 37.15 18.68 35.26

CLoRA 16/32 19.99M 46.23 36.88 29.64 49.72 36.81 19.14 36.40

RoLoRA 16/32 19.99M 46.29 36.44 30.15 50.79 37.85 19.41 36.82

8 5.00M 45.85 36.45 27.14 4994 36.59 18.96 35.82

PRoLoRA 4/8 5.00M 45.85 36.45 27.57 4994 36.59 19.75 36.03

16/32 19.99M 46.65 37.33 30.86 51.55 37.90 20.91 37.53

PRoLoORA™ 16/32 19.99M 46.27 36.56 28.76 50.68 37.26 20.56 36.68

PRoLORA 16/32 19.99M 46.52 37.25 30.45 51.10 37.82 19.91 37.18

Table 2: Results of LLaMA2-7B with different methods on diverse instruction following datasets. “Param.” and
“Avg.” are the abbreviations of “Parameter Count” and “Average”, while the symbols ~" and ~* denote the ablation
of the rotation enhancement and rectified initialization strategy, respectively. “4/8” and “16/32” means raising
the rank to either 4 or 8, and 16 or 32, respectively. Underlined represents the optional higher ranks, while bold

indicates the best result for each benchmark.

rank and shared rates are set to 8, 1 and 7, respec-
tively. Besides, if we optimize these hyperparame-
ters for each task (i.e., optionally raising the rank
to 4 or 8), its average performance can be further
enhanced to 36.03, surpassing LoRA by over one
percent. This highlights that PRoLoRA achieves
higher parameter efficiency than LoRA, while keep-
ing better practical feasibility than other baselines.

Specified Performance Target. The other per-
spective is to achieve a desired performance with
fewer tunable parameters, thereby quantifying pa-
rameter savings. We increase the rank of LoRA
eightfold to 16, establishing a good performance
target across all the benchmarks without excessive
parameter redundancy. With the parameter count
as 19.99M (equivalent to that of LoRA with the
rank of 8), we raise the rank of PRoLLoRA to 16
or 32 optionally. The results in Table 2 show that
PRoLoORA achieves 4/6 wins over the target indi-
vidually and an average improvement from 36.97
to 37.53. This highlights that PRoLoRA accom-
plishes the performance target with half of trainable
parameters, exhibiting its twice as high parameter
efficiency. To illustrate this advantage explicitly,
assuming 20GB of GPU memory available for cus-

tomized parameters in inference, LoORA can serve
for about 512 objects (e.g., users), while PRoOLoRA
doubles this number to 1024 without performance
degradation. This is a remarkable benefit for ser-
vice providers in multi-LoRA scenarios.

4.3 Scalability Analysis

Method Rank MMLU BBH GSM Avg.
Vanilla (chat) - 50.05 0.00 2.12 17.39
Vanilla (no-chat) - 52.04 39.67 27.82 39.84
LoRA 2 5278 4250 3647 43.92
PRoLoRA 4/8 53.27 4312 38.72 45.04

Table 3: Results of LLaMA2-13B with different meth-
ods on three instruction following benchmarks.

We further verify the scalability of PROLoRA on
LLaMAZ2-13B models. Here we adopt a capacity-
constrained setting with the limited tunable param-
eter budget as 6.26M, which is equivalent to that
of LoRA with the rank of 2. As shown in Ta-
ble 3, the average performance of LoRA is 43.92,
whereas PRoLoRA achieves an improvement of 1.
by boosting the rank to 4 or 8 with the same budget,
reaching an average metric of 45.04. Impressively,
PRoLoRA also consistently outperforms LoRA for

2835

individual tasks. In summary, similar to LLaMA2-
7B, PRoLoRA exhibits better performance with
the same budget on LLaMA2-13B, validating its
higher parameter efficiency on larger LLMs.

4.4 Ablation Study

We conduct an ablation study to evaluate the im-
pact of each component of PRoLoRA, and explore
its potential variants. All subsequent experiments
adopt the LLaMA2-7B model with a fixed trainable
parameter budget of 19.99M on BBH benchmark.
The hyperparameters remain consistent with those
outlined in the preceding sections, except for those
specifically under investigation.

2e-41 3654 36.60 37.14 3668 3692 [37.25
£37.00

r36.75

1 36.64 3598 37.17 3722 37.08 36.61

w
?
IS

r36.50

r36.25

1 3628 3640 3696 36.73

IS
@
IS

Learning Rate

r36.00
r35.75

l35,50

Se-44 35.74 35.67 36.59

0 2 4 6
Unshared Rank

Figure 2: Performance of PRoLoRA with the rank of 32
with respect to unshared ranks and learning rates given
a specific parameter budget on the LLaMA2-7B model
and BBH benchmark. Specially, when the unshared
rank is 8, all the ranks are unshared (i.e., vanilla LoRA).

Unshared Rank. We first study the impact of
broadcast reduction and partially-sharing refine-
ment on the performance. In Figure 2, we report
the joint effects of unshared rank v and learning
rate. Specifically, with the unshared rank as 0, all
trainable parameters are shared chunk-wisely, nul-
lifying the partially-sharing mechanism. With the
increase of the unshared rank, fewer parameters
are shared, resulting in larger sharing ratios to keep
the same rank (i.e., 32). Once the unshared rank
reaches 8, all parameters are no longer shared, de-
grading PRoLoRA to vanilla LoRA. Clearly, as the
sharing ratios increase with the presence of broad-
cast reduction, the optimal learning rate gradually
increases as well. This implies that shared and un-
shared parameters may require different learning
rates, and setting them separately could further en-
hance PRoLoRA’s performance, which is left for
future work. However, despite the unified learning
rate, PRoOLORA consistently outperforms vanilla
LoRA (i.e., u = 8) with the unshared rank span-

Sharing / Rotation Hidden. Rank.
Hidden. 36.45 37.33
Rank. 36.35 37.07

Table 4: Comparison of potential variants on LLaMA2-
7B model and BBH benchmark. “Hidden.” and “Rank.”
denote broadcast reduction or rotation enhancement
along the hidden and rank dimensions, respectively.

ning from 4 to 7, demonstrating the superiority of
increased rank through intra-layer sharing and the
parameter robustness of PRoOLoRA to the unshared
rank. Besides, the inferior performance without
unshared parameters highlights the necessity of
partial sharing refinement in PRoLoRA.

Rotation Enhancement. We then investigate the
enhancing effect of rotation on the representation
capabilities of low-rank matrices. The results pre-
sented in Table 2 demonstrate the inferior perfor-
mance of PRoLoRA™" (i.e., PRoLoRA without
rotation enhancement) across all the benchmarks,
both individually and on average. This highlights
the detrimental effect of explicit matrix patterns,
resulting from simple duplication of chunks, on the
expressiveness of PRoOLoRA, as well as the nearly
cost-free improvement brought by rotation.

Initialization Strategy. We further examine the
necessity of rectified initialization strategy. As
listed at the end of Table 2, compared to PRoLoRA,
PRoLoRA %, denoting PRoLoRA initialized with
the vanilla Kaiming uniform distribution, consis-
tently demonstrates inferior performance across all
the tasks, resulting in an average performance drop
to 37.18. This suggests that initializing chunks di-
rectly, leading to larger sampling bounds, hinders
the subsequent parameter optimization, and under-
scores the significance of the bound rectification.

Other Sharing and Rotations. Finally, we reaf-
firm the superiority of PRoLoRA by comparing it
to three alternative intra-layer sharing mechanisms.
Specifically, PRoLoRA is not the only possible
approach that combines broadcast reduction and ro-
tation enhancement. Both of these techniques can
be applied along the hidden and rank dimensions,
respectively. This yields four distinct combinations,
in which PRoLoRA shares along the hidden dimen-
sion and rotates along the rank direction. Table 4
presents the performance comparison of these ap-
proaches. Clearly, rotation enhancement along the

2836

rank direction achieves much better results than
that along the hidden dimension, while broadcast
reduction along the hidden dimension slightly out-
performs that along the rank direction. PRoLoRA,
incorporating these two favorable designs, achieves
optimal performance, thereby establishing its supe-
riority over other sibling variants.

5 Conclusion

Targeting more lightweight serving in multi-LoRA
scenarios, we introduce PRoLoRA, a more efficient
method featuring an intra-layer sharing mechanism
consisting of broadcast reduction, rotation enhance-
ment, partially-sharing refinement and rectified ini-
tialization strategy. Empirically, we validate its
higher parameter efficiency, scalability, and supe-
riority over other methods, aiming to serve it as a
resource-friendly alternative to LoRA.

6 Limitation

The limitations of this work mainly stem from the
following two aspects:

* As an intra-layer sharing mechanism, PRoLoRA
may be potentially complemented by inter-layer
sharing mechanisms, which is not covered by
our current research. As shown in Table 2, Tied
LoRA, which leverages inter-layer sharing and
is orthogonal to PRoLoRA, can slightly improve
the parameter efficiency. This indicates that inte-
grating both mechanisms may yield further im-
provements. Notably, PRoLoRA can adjust the
hidden dimension of chunks as a common fac-
tor between the projection dimension of the self-
attention mechanism and the intermediate dimen-
sion of the MLP module, before sharing chunks
among them. This flexibility relieves the con-
straint of weight shape identity imposed by Tied
LoRA. Nonetheless, exploring the feasibility of
such integration necessitates a more comprehen-
sive study that surpasses the scope of this paper,
and is left for future work.

* As discussed in Section 4.4, setting separate
learning rates for shared and unshared param-
eters may further improve the performance of
PRoLoRA. However, we do not apply separate
learning rates in our implementation, despite the
potential additional benefits for PRoLoRA. As a
remedy, grouping parameters with different learn-
ing rates in the optimizer or adding independent

scalars, inspired by LoRA, to the unshared pa-
rameters hold promise for extra performance en-
hancement of PRoLoRA and warrant investiga-
tion in future studies.

* We claim that PRoLoRA requires lower GPU
memory during inference in Section 3.2, even
if our implementation of broadcasting allocates
new memory to store the copied chunks, thereby
negating any memory reduction for one mod-
ule. However, we argue that it does not imply
that overall memory usage cannot be reduced.
Specifically, there are lots of PRoLoRA matrices
in a model, and they are not computed simulta-
neously. When computing the preceding mod-
ules, the subsequent PRoLoRA matrices do not
need to be copied. Once the computation of the
preceding modules is completed, their occupied
memory can be released promptly. Compared to
the doubled parameter efficiency, we believe that
the memory occupied by temporary copies can
be negligible. In multi-user scenarios, only the
active PRoLoRA matrices for active users need
to be expanded, while other PRoLoRA matrices
can still save lots of memory. Besides, we also
call for the efficient implementation of PRoLoRA
with CUTLASS 3 and other relevant techniques.

7 Ethics Statement

We strictly follow the ACL Code of Ethics during
the research. To the best of our knowledge, there
are no foreseeable potential risks in the methods we
introduced. We report the computing infrastructure
for all computational experiments presented in the
paper. The transparent statistics on our results and
detailed configuration of our experimental setup, in-
cluding best-found hyperparameter values, are well
stated. Besides, we will also release the code upon
publication for publicly available reproducibility
with minimal effort. test (Brown et al., 2020)

8 Acknowledgement

This work was supported in part by Hong Kong
Innovation and Technology Support Programme
Platform Research Project fund (ITS/269/22FP),
the joint research scheme of the National Natural
Science Foundation of China (NSFC) and Hong
Kong Research Grants Council (RGC) (under grant
N_HKU714/21), and RGC grants 17204423 and
C7004-22G (CRF).

Shttps://github.com/NVIDIA/cutlass

2837

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yuxuan Chen, Rongpeng Li, Zhifeng Zhao, Chenghui
Peng, Jianjun Wu, Ekram Hossain, and Honggang
Zhang. 2023. Netgpt: A native-ai network archi-
tecture beyond provisioning personalized generative
services. arXiv preprint arXiv:2307.06148.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in ty po-
logically di verse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454—470.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and fukasz Kaiser. 2018. Universal
transformers. arXiv preprint arXiv:1807.03819.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Tao Ge, Si-Qing Chen, and Furu Wei. 2022. Edge-
former: A parameter-efficient transformer for
on-device seq2seq generation. arXiv preprint
arXiv:2202.07959.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026—-1034.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. arXiv preprint arXiv:2307.13269.

Dawid Jan Kopiczko, Tijmen Blankevoort, and
Yuki Markus Asano. 2023. Vera: Vector-
based random matrix adaptation. arXiv preprint
arXiv:2310.11454.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Qian Lou, Ting Hua, Yen-Chang Hsu, Yilin Shen, and
Hongxia Jin. 2021. Dictformer: Tiny transformer
with shared dictionary. In International Conference
on Learning Representations.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

OpenAl. 2023. Gpt-4 technical report.

Telmo Pessoa Pires, Anténio V Lopes, Yannick As-
sogba, and Hendra Setiawan. 2023. One wide
feedforward is all you need. arXiv preprint
arXiv:2309.01826.

2838

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://arxiv.org/abs/2303.08774

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers.
arXiv preprint arXiv:2101.00234.

Adithya Renduchintala, Tugrul Konuk, and Oleksii
Kuchaiev. 2023. Tied-lora: Enhacing parameter ef-
ficiency of lora with weight tying. arXiv preprint
arXiv:2311.09578.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adria Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Sho Takase and Shun Kiyono. 2023. Lessons on pa-
rameter sharing across layers in transformers. In
Proceedings of The Fourth Workshop on Simple and
Efficient Natural Language Processing (SustaiNLP),
pages 78-90, Toronto, Canada (Hybrid). Association
for Computational Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, et al. 2023a. How far can camels go?
exploring the state of instruction tuning on open re-
sources. arXiv preprint arXiv:2306.04751.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Super-naturalinstructions: Generalization via declar-
ative instructions on 1600+ nlp tasks. arXiv preprint
arXiv:2204.07705.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xing-
shan Zeng, Wenyong Huang, Lifeng Shang, Xin
Jiang, and Qun Liu. 2023b. Aligning large lan-
guage models with human: A survey. arXiv preprint
arXiv:2307.12966.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget allocation
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2303.10512.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023b. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

2839

https://doi.org/10.18653/v1/2023.sustainlp-1.5
https://doi.org/10.18653/v1/2023.sustainlp-1.5

A Experiment Details

In our experiment implementation, we concentrate
on instruction following tasks, and follow the set-
tings outlined by Wang et al. (2023a) as closely
as possible. Similarly, we adopt a multi-faceted
assessment, including factual knowledge, reason-
ing, multilinguality, and coding. Concurrently, we
carefully select the settings that have demonstrated
remarkably positive effects, as presented in Table 7
of Wang et al. (2023a). Further details are eluci-
dated below.

A.1 Dataset Details

To assess different aspects of models’ capabili-
ties, we conduct specific evaluations with vari-
ous datasets. Specifically, we finetune models
on the Super-Naturallnstructions (SuperNI (Wang
et al., 2022)) dataset, before reporting their per-
formance on the Multitask Language Understand-
ing (MMLU (Hendrycks et al., 2021)) for factual
knowledge evaluation and on the TyDi QA (Clark
et al., 2020) dataset for multilingual ability. To eval-
uate general and mathematical reasoning, we re-
train the foundation models on the Flan V2 dataset
and its CoT split (Longpre et al., 2023), respec-
tively. We then present their corresponding per-
formance on the Big-Bench-Hard (BBH (Suzgun
et al., 2022)) and the test split of Grade School
Math (GSM (Cobbe et al., 2021)) corpus. Addi-
tionally, we employ the HumanEval (Chen et al.,
2021) benchmark to evaluate models’ coding capa-
bility, targeting models finetuned on the CodeAl-
paca (Chaudhary, 2023) dataset.

In order to unify the diverse styles and formats,
all the instruction tuning datasets are standardized
to a chatbot-style schema. This involves the ad-
dition of two special tokens, namely <luserl> and
<lassistantl>, preceding user utterances and assis-
tant (i.e., language model) responses, respectively.
Besides, another special token </s> is added to
mark the end of each utterance or response. During
training, only the sequences after the <lassistant/>
token and before the subsequent <luserl> token
are utilized for loss computation. Please refer to
Figure 1 of Wang et al. (2023a) for an illustrative
example.

Finetuning Datasets. All the finetuning datasets
used in our work are described as follows:

* SuperNI (Wang et al., 2022) corpora encom-
passes a wide range of NLP tasks associated with

instructions, and adheres to the Apache-2.0 li-
cense.

* Flan V2 (Longpre et al., 2023) dataset consol-
idates multiple pre-existing NLP datasets and
enriches them with diverse data augmentations
following Chung et al. (2022). The resulting
mixture is made available under the Apache-2.0
license.

* CoT (Longpre et al., 2023) incorporates the an-
notation of chain-of-thoughts (Wei et al., 2022).
In accordance with Wang et al. (2023a), we uti-
lize the CoT mixture extracted from the Flan V2
dataset.

* CodeAlpaca (Chaudhary, 2023) dataset is specif-
ically designed for code generation, which is cre-
ated with the Alpaca method and released under
the Apache-2.0 license.

Evaluation Datasets. Five multi-faceted evalua-
tion benchmarks and their metrics deployed in our
work are elucidated below.

* MMLU (Hendrycks et al., 2021) is a benchmark
designed to measure the factual knowledge ca-
pability of models. It comprises a collection of
multiple-choice questions covering 57 subjects
across STEM, humanities, social sciences, and
more. The difficulty levels of these questions
range from elementary to professional. In our
evaluation, we employ the zero-shot setting and
report the exact match (EM) score on it.

* GSM (Cobbe et al., 2021) corpora aims to assess
the multi-step mathematical reasoning ability. It
consists of 8.5K high-quality grade school math
problems, including 1K for test, meticulously
crafted by human writers. These problems in-
volve a series of elementary arithmetic operations
and require 2 to 8 steps to solve. We evaluate
models on the test set of GSM with 8-shot ex-
amples and chain-of-thoughts (CoT), and report
the EM score of the last number in the models’
responses.

* BBH (Suzgun et al., 2022) is a suite of 23 chal-
lenging tasks taken from BIG-Bench (Srivas-
tava et al., 2022), designed to test the general
multi-step reasoning abilities of language mod-
els. These tasks are specifically selected based on
previous evaluations, where prior language mod-
els failed to surpass the average human-rater. Our

2840

evaluation utilizes 3 official few-shot examples
without chain-of-thought (Direct), and reports
the EM score accordingly.

* TyDi QA (Clark et al., 2020) is a multilingual
question-answering dataset that includes 204K
question-answer pairs in 11 topologically diverse
languages and are collected directly in each lan-
guage without any translation. It serves as a
benchmark for evaluating models’ multilingual-
ity performance. We adopt the gold passage (GP)
setting where a gold passage containing the the
correct answer is given as a reference, employ
one-shot prompting and report both EM and F1
scores.

¢ HumanEval (Chen et al., 2021) is a dataset con-
taining 164 handwritten programming problems,
each including a function signature, docstring,
body, and several unit tests. It serves as a bench-
mark for evaluating models’ coding capabilities
by measuring the functional correctness for syn-
thesizing programs from docstrings. Following
the original paper, we report the pass@1 metric
with zero-shot prompting and a sampling temper-
ature of 0.1.

A.2 Hyperparameter Configurations

We deploy LLaMA2-7B and 13B (Touvron et al.,
2023) as the foundation models, and conduct all
the experiments on a single NVIDIA A100-40G
GPU. Besides, all the settings are repeated three
times with random seeds 1, 2, and 3, respectively,
before the average performance is reported. Spe-
cific details for finetuning and evaluation are further
explained below, respectively.

Finetuning Setup. To reduce the memory usage
during finetuning, we follow QLoRA (Dettmers
et al., 2023) to load all the pretrained models in 4-
bit NormalFloat format and adopt a Paged AdamW
Optimizer. We then apply LoRA, VeRA, or PRo-
LoRA to all the linear layers in transformer blocks,
including query, key, value, output, up, gate, and
down projection weights, while setting the scaling
factor o to 16 and the dropout rate to 0.1. For more
efficient finetuning, we group samples by length
with a batch size of 16, and set the maximum se-
quence length to 512, which truncates samples if
necessary. We also disable weight decay and set the
maximum gradient norm to 0.3 for better training
stability. Each model is finetuned for 10k steps with
a linear learning rate scheduler and a warmup ratio

of 3%. Besides, we search for the optimal learning
rate for each task. In detail, with the LoRA rank
as 64, we search for the best learning rate among
{1e-5, 2e-5, 5e-5, le-4, 2e-4, Se-4, and 1e-3}, be-
fore the optimal values are fixed for both LoRA
and PRoLORA, unless otherwise stated . Our pre-
experiments demonstrate that Se-5 performs the
best on the HumanEval benchmark, while 2e-4 out-
performs the others on the remaining benchmarks.
To ensure a fair comparison, we further search for
the optimal learning rates for VeRA and Tied LoRA
with an extended range of {2e-3, Se-3, le-2, 2e-2,
and Se-2}, to exhibit their best performance.

Evaluation Setup. During inference, we employ
vLLM (Kwon et al., 2023), which extremely ac-
celerates the generation process with negligible
impact on performance, and greedy decoding with
a maximum length of 512. For the MMLU bench-
mark, as an exception, we load the models in an
8-bit format and set the evaluation batch size to 16.

* Apparently, the learning rates optimized for LoRA may
introduce slight unfairness to PRoLoRA. Even so, PROLoRA
still exhibits higher parameter efficiency, as presented in Sec-
tion 4.2.

2841

