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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in various nat-
ural language processing tasks. Despite this,
their application to information retrieval (IR)
tasks is still challenging due to the infrequent
occurrence of many IR-specific concepts in
natural language. While prompt-based meth-
ods can provide task descriptions to LLMs,
they often fall short in facilitating a compre-
hensive understanding and execution of IR
tasks, thereby limiting LLMs’ applicability.
To address this gap, in this work, we explore
the potential of instruction tuning to enhance
LLMs’ proficiency in IR tasks. We introduce
a novel instruction tuning dataset, INTERS, en-
compassing 20 tasks across three fundamen-
tal IR categories: query understanding, docu-
ment understanding, and query-document re-
lationship understanding. The data are de-
rived from 43 distinct datasets with manually
written templates. Our empirical results re-
veal that INTERS significantly boosts the per-
formance of various publicly available LLMs,
such as LLaMA, Mistral, and Falcon, in IR
tasks. Furthermore, we conduct extensive ex-
periments to analyze the effects of instruction
design, template diversity, few-shot demon-
strations, and the volume of instructions on
performance. We make our dataset and the
fine-tuned models publicly accessible at https:
//github.com/DaoD/INTERS.

1 Introduction

Large language models (LLMs) have shown re-
markable capabilities across various natural lan-
guage processing (NLP) tasks. While these models
have learned vast knowledge from large text cor-
pora, their (pre-)training objective is not aligned
with human’s objective: the latter requires models
to “follow human instructions and perform tasks”
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Figure 1: Compared with existing datasets, INTERS is
designed specifically for search tasks.

rather than “predict the next token”. To address
this mismatch, instruction tuning is proposed, serv-
ing as an effective technique to align LLMs with
human tasks and preferences (Ouyang et al., 2022;
Wei et al., 2022; Chung et al., 2022; Mishra et al.,
2022; Wang et al., 2022, 2023b). After instruction
tuning, LLMs can better understand users’ intent
and show impressive generalization to new tasks.

In the area of information retrieval (IR), the in-
troduction of LLMs has also led to notable develop-
ments (Wang et al., 2023a; Tang et al., 2023; Sun
et al., 2023; Ma et al., 2023). Due to the high cost of
fine-tuning, many existing studies leverage prompt-
ing methods to apply LLMs in IR tasks. However,
some of them have reported that LLMs cannot con-
sistently outperform fine-tuned smaller models in
this manner (Sun et al., 2023; Gao et al., 2023).
For example, RankGPT (Sun et al., 2023) based on
gpt-3.5-turbo underperforms monoBERT with
340M parameters on passage ranking tasks. This
discrepancy may stem from the complexity of IR-
specific concepts like queries, relevance, and search
intent, which are infrequently encountered in pre-
training corpora and are inherently challenging to
comprehend.

To fill the gap, in this work, we build a novel
INstruction Tuning datasEt foR Search (INTERS).1

1This paper will use the terms “search-related tasks” and
information retrieval tasks” interchangeably.
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This dataset is designed to specifically enhance the
search capabilities of LLMs. Since the search pro-
cess involves various tasks, we choose to focus on
three pivotal aspects: query understanding, docu-
ment understanding, and the understanding of the
relationship between queries and documents. We
collect 43 datasets covering 20 distinct tasks, ensur-
ing the dataset’s comprehensive coverage and rich-
ness. In order to improve diversity and broaden ap-
plicability, we manually craft 12 unique templates
for each dataset and consider both zero-shot and
few-shot examples in data generation. To further
improve the models’ generalizability, we also man-
ually write a detailed task description for each task,
which serves as a bridge to connect each dataset
under the same task. Finally, we plan to release all
data, templates, model checkpoints, experimental
results, and source codes. We wish the openness of
our dataset could support more future research and
development in this field.

We conduct experiments by fine-tuning several
open-sourced LLMs using the INTERS dataset. Ex-
perimental results show that INTERS consistently
enhances the performance of LLMs of different
sizes across a spectrum of search tasks. Notably,
this improvement is observed not only in tasks that
are directly learned in the training data (in-domain)
but also in tasks that are unseen in the training
set (out-of-domain). Our further experiments high-
light several key insights: (1) customized templates
and task descriptions effectively improve model
performance; (2) the diversity of templates can en-
hance model generalizability; (3) instruction tuning
specifically tailored for search tasks addresses the
existing gap of NLP instructions for such tasks; (4)
combining instruction tuning and few-shot prompt-
ing can further improve performance; and (5) the
substantial data volume can benefit the efficacy of
instruction tuning.

2 Related Work

Large Language Models for Information Re-
trieval LLMs possess a remarkable capacity for
language understanding, enabling them to be highly
valuable in comprehending user queries and docu-
ments. Therefore, many researchers have explored
applying LLMs to IR tasks (Zhu et al., 2023). Ex-
isting studies can be roughly categorized into two
groups. The first group of studies treats LLMs as
search agents to accomplish search tasks (Nakano
et al., 2021; Qin et al., 2023a; Liu et al., 2023). A

typical method is WebGPT (Nakano et al., 2021),
which employs imitation learning to teach an LLM
(i.e., GPT-3) to use search engines and answer ques-
tions like a human. The other group of studies
mainly focuses on applying LLMs to specific IR
tasks, such as query reformulation (Wang et al.,
2023a; Srinivasan et al., 2022; Tang et al., 2023;
Mao et al., 2023) and document ranking (Sun et al.,
2023; Zhang et al., 2023b; Ma et al., 2023; Zhuang
et al., 2023). Most of these studies rely on prompt-
ing LLMs in a zero-shot or few-shot manner. How-
ever, due to the inherent complexity of the IR task
and the relative scarcity of IR-related concepts in
natural language texts, LLMs often cannot achieve
superior performance to fine-tuned smaller models
in IR tasks (Sun et al., 2023; Gao et al., 2023).

Different from existing studies, our research fo-
cuses on using instruction tuning to improve the
overall performance of LLMs on various search
tasks. This involves enhancing the models’ abili-
ties to interpret and respond to search-related in-
structions more effectively, thereby improving their
utility in complex IR scenarios.

Instruction Tuning for LLMs Instruction tun-
ing (IT) aims at fine-tuning pre-trained LLMs on a
collection of formatted instances in the form of nat-
ural language (Wei et al., 2022; Mishra et al., 2022;
Wang et al., 2022, 2023b). After IT, LLMs can
better follow instructions and perform human tasks.
This approach bears a close resemblance to super-
vised fine-tuning (Ouyang et al., 2022) and multi-
task prompt training (Sanh et al., 2022). Instruction
tuning’s efficacy lies in its ability to not only en-
hance LLMs’ performance on tasks they have been
directly trained on but also to equip them with the
ability to generalize to new, unseen tasks (Sanh
et al., 2022; Wei et al., 2022).

In this work, we leverage IT to specifically en-
hance LLMs’ performance on search-related tasks.
Our dataset is designed with a deep understanding
of the task characteristics. Experiments will show
that IT is also an effective way to improve LLMs’
overall performance on search tasks.

3 Instruction Tuning for Search

Instruction tuning has proven to be effective for
LLMs in responding to instructions. This method
essentially involves training LLMs through super-
vised learning to execute particular tasks based on
provided instructions. A notable benefit of this ap-
proach is that, after fine-tuning, LLMs can compre-
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Figure 2: Categories, tasks, and datasets used in INTERS. Different colors indicate different task categories.

hend and execute instructions not only for similar
tasks but also for tasks they have not learned be-
fore. However, it is important to note that search
tasks, which are the focus of our study, differ sig-
nificantly from typical NLP tasks in terms of their
objectives and structures. Search tasks primarily
revolve around two key elements: queries and doc-
uments. Therefore, as shown in Figure 2, we con-
sider collecting tasks and datasets in three cate-
gories: query understanding, document understand-
ing, and query-document relationship understand-
ing. We consider that tasks within these categories
are instrumental in refining LLMs’ abilities to in-
terpret queries, comprehend documents, and under-
stand their relationships. Below, we introduce the
tasks, datasets, and data construction process.

3.1 Tasks & Datasets

Developing a comprehensive instruction-tuning
dataset covering a wide range of tasks is very
resource-intensive. To address this, we follow the
previous studies (Wei et al., 2022; Chung et al.,
2022) and choose to convert existing datasets from
the IR research community into an instructional
format. We consider tasks under the categories
of query understanding, document understanding,
and query-document understanding. All tasks and
datasets we used are shown in Figure 2. Their
detailed descriptions, evaluation metrics, licenses,
and examples are provided in Appendix A and G.

Query Understanding In IR, a query is a user-
initiated request for information, typically com-
posed of keywords, phrases, or natural language
questions. It aims at retrieving relevant information
from a retrieval system (e.g., a search engine). The
effectiveness of a query is measured by its ability to
accurately reflect the user’s intent and retrieve the
most relevant documents. During the retrieval pro-
cess, query understanding is a critical component
in determining the efficiency and user satisfaction
of the IR systems. Therefore, we collect a group
of tasks (eight in total) that require models to un-
derstand the semantics of queries and capture the
underlying user search intent.

Document Understanding In IR, a document
refers to any piece of information that can be re-
trieved in response to a query, such as web pages in
search engines. Document understanding is the pro-
cess by which an IR system interprets and compre-
hends the content of these documents. Enhanced
document understanding leads to better search re-
sults and an overall more efficient and user-friendly
retrieval process. In INTERS, we collect datasets
for four tasks that require a deep understanding of
documents.

Query-document Relationship Understanding
Query-document relationship understanding is the
process of determining how well the content of a
document matches or satisfies the intent behind a
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user’s query. This involves interpreting the query’s
semantics, context, and purpose, and then assessing
the relevance of documents based on how closely
they correspond to these aspects. It is the core
task of information retrieval. We collect eight tasks
specifically designed to enhance models’ capability
of determining various query-document relation-
ships, e.g., the question answering task involves un-
derstanding the relationship between questions and
supporting evidences. It is important to recognize
the variety of architectures available for modeling
the query-document relationship. In this research,
we focus on the reranking architecture, which is
the most straightforward way to apply LLMs. The
candidate documents for reranking are retrieved by
BM25 (Robertson and Zaragoza, 2009).

3.2 INTERS Construction
After determining the tasks and datasets we plan to
use, we start to construct INTERS. The construction
process is illustrated in Figure 3, which can be
divided into four steps.

(1) Preprocessing. We download all datasets
from publicly available resources, filter out unnec-
essary attributes and invalid data samples, and then
convert them into the JSONL format for further
processing.

(2) Template collection. We manually craft
12 distinct templates for each dataset to ensure
the diversity and richness of the generated data.
These templates use natural language instructions
to describe the specific task associated with each
dataset (two example templates are shown in the
second part of Figure 3). To further improve the
diversity of the templates, following the design of
FLAN (Wei et al., 2022), we integrate up to two
“inverse” templates per dataset. For example, for
the query expansion task, we include templates that
prompt for simplifying a query. In particular, for
query-document relationship understanding tasks,
there are three typical methods (Zhu et al., 2023;
Qin et al., 2023b), i.e., pointwise, pairwise, and
listwise. We consider all of them when writing
templates (i.e., four for each type) to support a
wider range of application scenarios (related dis-
cussion is presented in Section 4.4.5). Additionally,
to enhance the LLMs’ task comprehension, we
provide detailed descriptions for each task. These
task descriptions serve a dual purpose: offering
a granular understanding of the task’s objectives
and establishing a linkage among datasets under
the same task. The efficacy of this design will be

demonstrated through our experiments presented
in Section 4.4.1.

(3) Example generation. For each sample in
the preprocessed data, we use the corresponding
task description and a randomly selected template
to generate n-shot examples (where n ∈ [0, 5] in
our experiments). The third part of Figure 3 shows
a zero-shot example generated from the CANARD
dataset. For few-shot examples (where n ≥ 1), we
insert the n examples between the task description
and the input, where the examples are separated
by special tokens (i.e., “\n\n”). All few-shot exam-
ples are randomly selected from the training set.
Moreover, to ensure that the few-shot examples
are within the learnable scope of LLMs, we apply
a length filter to exclude examples that exceed a
predefined length threshold (2,048 tokens in our
experiments).

(4) Example mixture. To compile INTERS, we
randomly select examples from our entire collec-
tion until we accumulate a total of 200k examples.2

To balance the different sizes of datasets, we apply
an examples-proportional mixing strategy (Raffel
et al., 2020) with a mixing rate maximum of 5k.
Under this scheme, any dataset contributing more
than 5k examples does not receive extra weight-
ing for the additional samples, thus preventing the
dominant influence from larger datasets.

4 Experiments

We fine-tune several open-sourced LLMs on our
INTERS, and evaluate their performance in differ-
ent settings. Our experiments will investigate the
following research questions: (1) Can the model
obtain the capability to solve search tasks through
instruction tuning on INTERS? (§4.2) (2) Is this
capability generalizable? (§4.3) (3) Is our instruc-
tion design effective? (§4.4.1) (4) Are there any
advantages compared to existing instruction sets?
(§4.4.2) (5) Is the model still effective with few-
shot demonstrations? (§4.4.3) (6) What is the im-
pact of data volume? (§4.4.4) (7) What are the
effects of different ranking strategies? (§4.4.5)

4.1 Backbone Models

We consider four LLMs in different sizes, ranging
from 1B parameters to 7B parameters: Falcon-RW-
1B (Penedo et al., 2023), Minima-2-3B (Zhang
et al., 2023a), Mistral-7B (Jiang et al., 2023), and

2This number is determined to strike a balance between
efficacy and training costs.
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LLaMA-2-7B (Touvron et al., 2023). These mod-
els are publicly available and widely used in many
studies. Their detailed introduction and implemen-
tation details are provided in Appendix D.

4.2 In-domain Evaluation

We first perform an in-domain evaluation to val-
idate the effectiveness of instruction tuning with
INTERS on search tasks. In this experiment, we
split all data into training, validation, and test sets
(details are presented in Appendix B). The models
are fine-tuned on the training set and evaluated on
the test set. As all tasks and datasets are exposed
during training, we call it an in-domain evaluation.

The experimental results are shown in Figure 4.
Generally, after fine-tuning on INTERS, all models
of varying sizes can achieve significantly better
performance, demonstrating the effectiveness and
broad applicability of instruction tuning in enhanc-
ing LLMs’ search performance. Besides, we have
the following observations.

(1) On most datasets, larger models tend to
perform better than smaller ones. For instance,
LLaMA (7B) and Mistral (7B) show superior per-
formance compared to Minima (3B) and Falcon
(1B). Intriguingly, in query-document relationship
understanding tasks, larger models without fine-
tuning can even outperform the smaller models
after fine-tuning (e.g., LLaMA-Chat > INTERS-
Falcon). This confirms the inherent advantages of
larger-scale parameters in model performance. (2)
We notice that INTERS-Falcon exhibits inferior
performance compared to untuned Falcon in tasks
related to understanding the query-document rela-
tionship. We attribute this to the complex nature
of these tasks. (3) Notably, in document under-
standing tasks, INTERS-Minima (3B) outperforms
INTERS-Mistral (7B), suggesting that fine-tuning

Category No FT INTERS w/o Q w/o D w/o Q-D

Q 10.68 44.06 15.35 43.11 43.76
D 20.87 51.30 51.05 21.09 51.11
Q-D 10.30 46.77 47.40 45.99 29.36
Avg. 13.18 46.42 33.20 37.58 41.75

Table 1: Average performance of removing different
task categories. “Q”, “D”, and “Q-D” denote query
understanding, document understanding, and query-
document relationship understanding, respectively.

Task No FT INTERS w/o QIC w/o FV w/o CP

QIC 20.32 53.92 38.55 50.72 50.08
QR 7.82 69.39 68.69 69.69 68.77
FV 48.75 76.29 75.09 49.08 76.10
Summ. 11.11 20.98 20.27 21.30 21.37
CP 2.90 16.71 18.02 18.66 16.03
PR 2.92 29.85 30.58 31.14 27.72

Table 2: Performance of removing different tasks. “QIC”
denotes query intent classification, “QR” denotes query
reformulation, “FV” denotes fact verification, “Summ.”
denotes summarization, “CP” denotes citation predic-
tion, and “PR” denotes passage ranking.

smaller models could serve as a cost-effective ap-
proach for particular tasks. (4) Before fine-tuning,
LLaMA-Chat, which has already been optimized
for dialogue scenarios, exhibits superior perfor-
mance compared to LLaMA-Base. This advantage
is attributed to LLaMA-Chat’s better capability of
understanding instructions and performing tasks.
However, after instruction tuning with INTERS, the
performance gap diminishes. This shows the broad
generality of our instruction tuning for various
types of LLMs.

4.3 Out-of-domain Evaluation

Instruction fine-tuned LLMs have demonstrated
a remarkable zero-shot performance on unseen
tasks (Wei et al., 2022; Chung et al., 2022). We also
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Dataset No FT INTERS w/o Ds

QReCC (RM) 14.31 80.65 75.02
CANARD 7.83 83.42 83.33
XSum (RM) 10.39 28.66 12.31
MultiNews 6.70 11.20 12.17
Quora (RM) 4.06 84.26 77.68
MS MARCO 2.92 29.85 29.34

Table 3: Performance of removing several datasets,
including TREC-Robust, QReCC, MIMICS-Duo,
Climate-FEVER, XSum, Quora, and NQ. Models
trained with the ablated dataset is denoted as “w/o Ds”.
“RM” indicates the dataset is removed from the training
set and becomes unseen during test.

investigate the generalizability of the models after
fine-tuned on INTERS. Specifically, we consider the
following three scenarios.
• Category-level generalizability: In this scenario,
we exclude an entire category of tasks (e.g., query
understanding) from INTERS. Then, we fine-tune
the models on the remaining data and test them on
all datasets. This experiment can help us under-
stand how distinct categories of tasks relate to each
other and contribute to overall model performance.
• Task-level generalizability: In this scenario, we
remove specific tasks (e.g., query intent classifica-
tion) from INTERS. Similarly, we fine-tune the mod-
els on the remaining data and evaluate them on all
datasets. The goal is to assess whether fine-tuned
models can generalize to unseen tasks effectively.
• Dataset-level generalizability: In this scenario,
due to the large number of datasets in INTERS, we
exclude several datasets at once (including TREC-
Robust, QReCC, MIMICS-Duo, Climate-FEVER,
XSum, Quora, and NQ) from INTERS. Then, we
fine-tune the models on the remaining data and
test them on all datasets. This experiment aims to
evaluate the fine-tuned models’ ability to generalize
to unseen datasets within the scope of learned tasks.

We analyze the experimental result as follows:

(1) In the category-level ablation study (Table 1),
the models fine-tuned with the full INTERS outper-
form those trained on ablated versions, verifying
the efficacy of comprehensive fine-tuning in im-
proving search task performance. We can also see
that models trained on a subset of tasks still surpass
the performance of the untrained models. For ex-
ample, the performance of “w/o Q” is higher than
the untuned model “(No FT)” on query understand-
ing tasks. This result indicates that the different
task categories are effectively complementary.

(2) Table 2 shows that the models exhibit task-
level generalization. For instance, models fine-
tuned without the query intent classification (QIC)
task still outperform the untrained ones in this task.
This implies that knowledge learned from other
search tasks helps understand query intent. Fur-
thermore, the query reformulation (QR) task’s per-
formance also drops when the query intent clas-
sification task is removed, further supporting the
interdependence of these tasks. Overall, task-level
generalization indicates that LLMs fine-tuned on
INTERS can be better applied to other search tasks.

(3) Some results of the third scenario is illus-
trated in Table 3 (full results in Appendix F). Com-
pared to the previous two scenarios, this scenario
is much easier for the fine-tuned model as all
tasks have been learned during training. Generally,
the models exhibit good generalizability among
datasets, as evidenced by the superior performance
of “w/o Ds” compared to the untuned model (“No
FT”) across all datasets. We also notice that re-
moving XSum from training leads to improved per-
formance on MultiNews, highlighting the complex
relationship between different datasets and suggest-
ing a need for further exploration into the optimal
dataset combinations for instruction tuning.
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Task Min Max Avg.±Std. Random Unseen

QD 26.49 29.27 28.55± 0.87 29.90 29.20
QE 36.37 40.03 38.10± 1.08 37.84 38.33
QR 69.32 70.50 69.93± 0.42 69.39 64.58
QC 23.44 24.42 23.97± 0.27 23.66 21.38
QSG 10.76 13.08 11.59± 0.85 10.76 12.67
QS 42.57 55.87 53.48± 3.93 50.24 54.78
QM 83.17 86.22 84.62± 0.95 85.54 85.92
QIC 47.45 58.30 54.72± 3.49 53.92 55.18

Avg. 42.61 45.40 44.39± 0.84 43.25 44.06

Table 4: Result of using various templates for evaluation.
All tasks are from query understanding, and their names
are represented by the abbreviations, e.g., “QD” denotes
query description.

4.4 Further Analysis

We also conduct a series of experiments to investi-
gate the impact of different settings in INTERS. All
the experiments are conducted based on fine-tuning
the LLaMA-2-Chat-7b model.

4.4.1 Impact of Task Description & Templates
INTERS includes a detailed description and 12 dis-
tinct templates for each task to enhance task com-
prehension and increase data diversity. We examine
their effectiveness by the following experiments.

The result shown in Figure 5 demonstrates that
the use of task descriptions significantly improves
model performance across most datasets. This
strongly supports our hypothesis that detailed task
descriptions aid in task understanding. Besides,
the task description appears to enhance the instruc-
tion tuning process, leading to substantial improve-
ments in some cases (e.g., a 51.8% performance
improvement on the MIMICS query clarification
dataset as shown in Appendix F). We speculate that
these task descriptions not only clarify individual
tasks but also facilitate more effective cross-dataset
knowledge transfer.

In the construction of INTERS, a key component
is the development of 12 distinct templates for each

Task No FT FLAN INTERS-T

Query Intent Classification 23.34 24.40 38.55
Fact Verification 48.43 57.67 49.08
Citation Prediction 2.90 4.79 16.03

Table 5: Performance comparison between INTERS and
FLAN on three search-related tasks.

dataset, aiming at guiding the models in task com-
prehension. It is also interesting to study the influ-
ence of these templates on model performance. At
first, we compare the performance when training
with or without these templates. For the no tem-
plate setup, we retain the keywords to indicate the
different parts of the input. For the example shown
in Figure 3, we keep only “Context: ... Query: ...”
as input. Besides, we follow FLAN and use the
INTERS instructions for zero-shot testing (because
if we use no template, the model cannot know what
task to perform). The results, shown in Figure 5,
reveal that omitting templates leads to suboptimal
performance, highlighting the instructional tem-
plates’ critical role in task learning.

Next, we study the impact of different templates.
By default, we use random templates for evaluation,
while in this experiment, we use each template to
build test samples for query-understanding tasks
and compare their performance differences. Be-
sides, to simulate the real application scenario, we
manually write a new unseen template for testing.
The results are shown in Table 4. We can see that
while the model can achieve significantly better per-
formance than the untuned model on any template,
template selection is still vital for some tasks, such
as query suggestion (maximum 55.87 vs. minimum
42.57). This reflects the importance of deliberate
template design. Remarkably, models tested on un-
seen templates can still show superior performance.
This demonstrates again that our instruction-tuned
models have good robustness and generalizability.

4.4.2 Comparison with FLAN
FLAN (Wei et al., 2022; Chung et al., 2022) is a
commonly used dataset for fine-tuning LLMs on
NLP tasks. We compare its effectiveness on search-
related tasks with that of our INTERS. Given the sig-
nificantly larger size of FLAN, we randomly sam-
ple 200k data examples from it for a fair compari-
son.3 Besides, to ensure fairness, as FLAN does not
include the search-related tasks tested in this exper-

3https://huggingface.co/datasets/Open-Orca/
FLAN
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iment, we also remove these tasks from INTERS for
comparison (denoted as INTERS-T). By this means,
both models trained on FLAN and INTERS are eval-
uated on tasks not seen during training. The results
are shown in Table 5.

We find that both FLAN and INTERS can en-
hance LLMs’ performance on the three tasks,
demonstrating again the effectiveness of instruc-
tion tuning in unlocking LLM potential for search
tasks. Notably, INTERS yields a more substan-
tial improvement in search tasks, particularly in
query-document relationship understanding. This
is consistent with our expectations, as INTERS is
specifically tailored for search tasks. Although the
tested tasks are unseen in training, other search-
related tasks can provide relevant knowledge for
these tasks. Finally, we can see training on FLAN
achieves better performance on fact verification.
The potential reason is that this task is very close
to other NLP tasks included in FLAN, enabling
effective knowledge transfer. Unfortunately, we
do not observe further improvement by combining
FLAN and INTERS, thus the results are omitted.

4.4.3 Zero-shot vs. Few-shot Demonstrations
LLMs have a strong ability of few-shot learning
(also known as in-context learning), which enables
them to quickly adapt to a wide range of tasks.
Given that INTERS comprises a mix of zero-shot
and few-shot, it is critical to examine the few-shot
performance of the LLMs fine-tuned on INTERS.
We choose datasets for few-shot (n = 5) test-
ing that fit within the models’ input length limit
(2,048 tokens in our case). The results are shown
on the left side of Figure 6. Generally, few-shot
demonstrations bring a consistent improvement in
performance across all datasets, compared to zero-
shot scenarios. Few-shot demonstrations are par-
ticularly beneficial in tasks with complex output
spaces, such as reading comprehension (BoolQ),
potentially because these examples help the model
better understand the task and output format.

4.4.4 Impact of Data Volumes
The quantity of training data plays a pivotal role in
the success of instruction tuning. To explore this,
we conduct experiments using 25%, 50%, and 75%
of the data sampled from INTERS for training. The
results on the right side of Figure 6 clearly demon-
strate that increasing the volume of instructional
data generally enhances model performance. How-
ever, the sensitivity to data volume varies across
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Figure 6: Performance of using few-shot demonstrations
(left) and different data volumes (right).

tasks. For instance, while the query understand-
ing task shows consistent performance across data
volumes, increasing data volume cannot effectively
improve the performance of query-document rela-
tionship understanding. This highlights the need
for further research to optimize the mix and volume
of instructional data for diverse tasks.

4.4.5 Impact of Ranking Strategy
In our data construction (Section 3.2), we consider
three typical methods for query-document under-
standing tasks, namely pointwise, pairwise, and
listwise. Consequently, we test fine-tuned models
across these different ranking strategies. Due to the
limited space, we report the findings directly: the
pointwise methods outperform the pairwise, which
in turn exceeds the listwise in effectiveness (so we
report pointwise performance in our previous ex-
periments). Moreover, models with 7B or fewer
parameters cannot handle the listwise evaluation.
This may be due to the fact that the listwise method
requires comparing multiple documents simulta-
neously and employs a sliding window method,
presenting a complexity beyond the capability of
such models. The comprehensive results are pre-
sented in Appendix C.

5 Conclusion

In this paper, we investigated the application of
instruction tuning to augment the capabilities of
LLMs in performing search tasks. Our instruction
tuning dataset INTERS demonstrated its effective-
ness in consistently enhancing the performance of
various open-sourced LLMs across both in-domain
and out-of-domain settings. Our extensive experi-
ments delved into several critical aspects, including
the structure and design of instructions, the effects
of few-shot learning, and the significance of data
volumes in instruction tuning. It is our aspiration
that this paper will serve as a catalyst for further
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research in the realm of LLMs, particularly in their
application to IR tasks, and will encourage contin-
ued exploration into the optimization of instruction-
based methods for enhancing the performance of
these models.

Limitation

In this study, we introduce a novel dataset specif-
ically designed for instruction tuning on search-
related tasks, along with models fine-tuned using
this dataset. We acknowledge several limitations
in our current work that offer avenues for future
research.

First, while our dataset encompasses 20 tasks
across 43 datasets, there are still many tasks and
datasets that have not been included. Our experi-
mental results suggest that incorporating more data
sources can improve the richness and diversity of
the dataset, potentially improving overall model
performance. Second, due to our limited resources,
we cannot conduct experiments with larger LLMs,
such as those with 13B, 30B, or even 70B param-
eters. It is interesting to investigate the influence
of instruction tuning on these models and compare
their search performance with close-sourced LLMs
such as GPT-4 if possible. Third, in the query-
document relationship understanding part, we only
consider the reranking architecture. It is valuable
to explore the application of LLMs to other archi-
tectures, such as retrieval.
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A Details about Tasks & Datasets

We introduce the tasks and datasets as follows.
Some examples of our generated data are shown in
Appendix G.

A.1 Query Understanding
In IR, a query is a user-initiated request for infor-
mation, typically composed of keywords, phrases,
or natural language questions. It aims at retrieving

2794

http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec13/papers/ROBUST.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec14/papers/ROBUST.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec14/papers/ROBUST.OVERVIEW.pdf
https://doi.org/10.1145/3451964.3451965
https://doi.org/10.1145/3451964.3451965
https://doi.org/10.18653/V1/P18-1023
https://doi.org/10.18653/V1/P18-1023
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.609
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.609
https://aclanthology.org/2023.emnlp-main.585
https://aclanthology.org/2023.emnlp-main.585
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2023.ACL-LONG.754
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.340
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.1145/3340531.3412772
https://doi.org/10.1145/3340531.3412772
https://doi.org/10.1145/3340531.3412772
https://doi.org/10.48550/ARXIV.2311.07052
https://doi.org/10.48550/ARXIV.2311.07052
https://doi.org/10.48550/ARXIV.2311.16720
https://doi.org/10.48550/ARXIV.2311.16720
https://doi.org/10.48550/ARXIV.2308.07107
https://doi.org/10.48550/ARXIV.2308.07107
https://aclanthology.org/2023.findings-emnlp.590
https://aclanthology.org/2023.findings-emnlp.590
https://aclanthology.org/2023.findings-emnlp.590


relevant information from a retrieval system (e.g., a
search engine). The effectiveness of a query is mea-
sured by its ability to accurately reflect the user’s
intent and retrieve the most relevant documents.
During the retrieval process, query understanding
is a critical component in determining the efficiency
and user satisfaction of the IR systems. Therefore,
we collect a group of tasks addressing aspects of
query understanding to enhance LLMs’ capabil-
ity of understanding the semantics of queries and
capturing the underlying user search intent. Specif-
ically, we consider the following eight tasks.
• Query description: The query description task
involves describing the documents potentially rel-
evant to a user-provided query. Queries typically
comprise keywords reflecting the user’s informa-
tion needs. The objective of the task is to articu-
late the characteristics and content of documents
that would be considered pertinent to these key-
words, aiding in the understanding and retrieval of
relevant information. We use the following four
datasets: GOV2,4 TREC-Robust (Voorhees, 2004,
2005), TREC-COVID (Voorhees et al., 2020), and
FIRE 08, 10-12.5 Taking the dataset GOV2 as an
example, the query and its description are directly
provided.
• Query expansion: The query expansion task
involves elaborating an original, brief query into
a longer, more detailed version while preserv-
ing the original search intent. This process en-
hances the search engine’s understanding of the
user’s needs, leading to more accurate and relevant
document retrieval. We use the following seven
datasets: GOV2, TREC-Robust, TREC-COVID,
FIRE, Query2Doc (Wang et al., 2023a), TREC-
CAsT (Dalton et al., 2020), and TREC-Web 09-
14.6 Taking the dataset GOV2 as an example, the
query and its expansion are directly provided.
• Query reformulation: The query reformulation
task enhances user-input queries to be more ex-
plicit and comprehensible for search engines. It ad-
dresses omissions typical of user queries, which of-
ten exclude common sense or contextually implied
information. The refined query, therefore, includes
all the necessary details to guide the search engine
towards retrieving the most relevant documents.
We use the following datasets: CODEC (Mackie
et al., 2022), QReCC (Anantha et al., 2021), CA-
NARD (Elgohary et al., 2019), TREC-CAsT, and

4https://ir-datasets.com/gov2.html#gov2
5https://www.isical.ac.in/~fire/data.html
6https://trec.nist.gov/data/webmain.html

GECOR (Quan et al., 2019). Taking the dataset
CODEC as an example, the queries and their re-
formulations are provided in two files, and we can
connect them by query IDs.
• Query intent classification: User queries can
have various search intents, such as informational
(seeking knowledge about a topic), transactional
(aiming to purchase a product), or navigational
(looking to find a specific website). The intents can
also be more specific in certain scenarios. Accu-
rately discerning the type of intent behind a query
is crucial for search engines to tailor and refine
their results effectively. We use the following three
datasets: ORCAS-I (Alexander et al., 2022), MAN-
tIS (Penha et al., 2019), and TREC-Web 09-14.
Taking the dataset ORCAS-I as an example, each
query is associated with an attribute “query type”,
which indicates the query’s intent.
• Query clarification: The query clarification task
addresses unclear or ambiguous user queries by
asking for further details or providing clarification
options. This process helps refine the query, result-
ing in clearer and more precise search terms for im-
proved search engine results. We use the following
datasets: MIMICS (Zamani et al., 2020), MIMICS-
Duo (Tavakoli et al., 2022), ClariQ-FKw (Sekulic
et al., 2021), and RaoCQ (Rao and III, 2018). Tak-
ing the dataset MIMICS as an example, each query
is labeled with a list of clarification options.
• Query matching: The query matching task in-
volves determining whether two queries or texts,
despite differing in expression, convey the same
meaning. This is crucial in search tasks where iden-
tifying synonymous queries can enhance the rele-
vance and accuracy of results. We use the dataset:
MSRP.7 It provides a label for each pair of sen-
tences, indicating whether they convey identical
content.
• Query subtopic generation: The query subtopic
generation task addresses the ambiguity of web
searches by identifying and presenting various as-
pects of the initial query. This approach aids search
engines in understanding the query’s breadth, lead-
ing to more diverse and relevant search results. We
use the dataset: TREC-Web 09-14. It contains
subtopic annotations for queries.
• Query suggestion: In search sessions, users of-
ten input a series of queries to fulfill a specific
information need. The query suggestion task aims

7https://www.microsoft.com/en-us/download/
details.aspx?id=52398
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to analyze these queries and associated search be-
haviors to understand the user’s intent and predict
the next likely query, thereby enhancing the search
experience. We use the AOL dataset.8 This dataset
contains a large number of search sessions. Within
each session, a query at a specific position is ran-
domly chosen to represent the “next query”. Sub-
sequently, the preceding queries in the session, op-
tionally inclusive of the clicked documents, are
utilized as the search context.

A.2 Document Understanding

In IR, a document refers to any piece of informa-
tion that can be retrieved in response to a query,
such as web pages in search engines. Document
understanding is the process by which an IR sys-
tem interprets and comprehends the content and
context of these documents. The importance of
document understanding lies in its direct impact
on the effectiveness and accuracy of information
retrieval. Enhanced document understanding leads
to better search results, more effective organiza-
tion of information, and an overall more efficient
and user-friendly retrieval process. Therefore, we
collect the following four tasks to enhance LLMs’
capability of document understanding.
• Fact verification: The fact verification task
involves assessing whether a claim is supported
or refuted by the given evidence. It requires a
clear analysis of the relationship between the claim
and the evidence, with a careful check to deter-
mine if there is sufficient information for a con-
clusive judgment. Such detailed understanding
aids search engines in achieving a deeper compre-
hension of the documents, enhancing their ability
to deliver accurate and relevant results. We use
the three datasets: FEVER (Thorne et al., 2018),
Climate-FEVER (Diggelmann et al., 2020), and
SciFact (Wadden et al., 2020). Taking the dataset
FEVER as an example, it provides claims, their
labels, and the corresponding evidences.
• Summarization: The text summarization task
seeks to create a concise summary of one or more
lengthy documents, encapsulating all vital informa-
tion while omitting extraneous details. The sum-
mary must accurately reflect the content of the orig-
inal documents without introducing any new in-
formation. Achieving this necessitates a profound
understanding of the documents, which can signifi-

8The AOL dataset has been officially withdrawn. However,
as it is the most commonly used dataset for query suggestion,
we still include it in INTERS.

cantly enhance the performance of search engines
by providing distilled, relevant content. We use
four datasets: CNN/DM (Nallapati et al., 2016),
WikiSum (Liu et al., 2018), Multi-News (Fabbri
et al., 2019), and XSum (Narayan et al., 2018). Tak-
ing the dataset CNN/DM as an example, it provides
articles and their summaries.
• Reading comprehension: The reading compre-
hension task requires generating an answer to a
question using information from a given context.
It necessitates a deep understanding of the text’s
context and semantics, enabling search engines to
more accurately rank the relevance of retrieved doc-
uments based on this nuanced comprehension. We
use the following six datasets: SQuAD (Rajpurkar
et al., 2016), HotpotQA (Yang et al., 2018), MS
MARCO (Nguyen et al., 2016), TriviaQA (Joshi
et al., 2017), BoolQ (Clark et al., 2019), and
WebGLM-QA (Liu et al., 2023). Taking the dataset
SQuAD as an example, it provides questions, their
answers, and the corresponding context.
• Conversational question-answering: Conver-
sational question-answering involves responding
to a series of interrelated questions based on a
given context. As these questions might build upon
shared information, some details may be implicitly
understood rather than explicitly stated. By com-
prehensively understanding and analyzing this dia-
logue structure, search engines can enhance their
interpretation of user queries and their connections
to relevant documents, thereby improving result
accuracy and relevance. We use these two datasets:
CoQA (Choi et al., 2018) and QuAC (Choi et al.,
2018). Taking the dataset CoQA as an example,
each data sample contains a story, a series of ques-
tions about the story, and the corresponding an-
swers.

A.3 Query-document Relationship
Understanding

Query-document relationship understanding in in-
formation retrieval is the process of determining
how well the content of a document matches or
satisfies the intent behind a user’s query. This in-
volves interpreting the query’s semantics, context,
and purpose, and then assessing the relevance of
documents based on how closely they correspond
to these aspects. It is the core task of information
retrieval. The relationship between queries and doc-
uments varies in different scenarios. For example,
in question answering, the model needs to under-
stand the relationship between the question and

2796



its potential relevant materials. In fact checking,
the model is required to examine the relationship
between the claim and its supporting evidence.

We use the MS MARCO passage ranking dataset
and the datasets in the BEIR (Thakur et al., 2021)
benchmark across multiple domains (such as bio-
medical, finance, and social media), which in-
cludes Touché-2020 (Bondarenko et al., 2020), Ar-
guAna (Wachsmuth et al., 2018), TREC-COVID,
NFCorpus (Boteva et al., 2016), SciDocs (Cohan
et al., 2020), Quora,9 CQADupStack (Hoogeveen
et al., 2015), DBPedia (Auer et al., 2007), FEVER,
Climate-FEVER, SciFact (Wadden et al., 2020),
NQ (Kwiatkowski et al., 2019), FiQA (Maia et al.,
2018), and HotpotQA. Note that some datasets do
not have queries in the training set, so we use the
generated queries provided by BEIR.10

It is important to recognize the variety of archi-
tectures available for modeling the query-document
relationship. In this research, we focus on the
reranking architecture, which is the most straight-
forward way to apply LLMs. More details about ap-
plying LLMs to document reranking are provided
in Appendix C. The primary objective of document
reranking is to rerank a list of candidate documents
according to their relevance to the user’s query. The
most relevant documents, those that best cover the
user’s information needs, are ranked at the top of
the list. In our experiments, we use the documents
retrieved by BM25 (Robertson and Zaragoza, 2009)
as the candidates.

The statistics of all datasets and their evaluation
metrics are reported in Table 8.

A.4 Licenses

We plan to release our data under the license of
CC BY-SA 4.0.11 The authors of 10 out of the 43
datasets in INTERS (FIRE, TREC-Web, MANtIS,
ClariQ-FKw, RaoCQ, AOL, Climate-FEVER, Wik-
iSum, TriviaQA, and WebGLM-QA) do not report
the dataset license in the paper or a repository. The
rest is over view as follows:
• Apache License 2.0 license: GOV2, TREC-

Robust, CODEC, CNN/DM
• MIT license: TREC-CAsT, GECOR, ORCAS-

I, MIMICS, MIMICS-Duo, XSum
• CC BY 4.0: Query2Doc, MSRP, SQuAD

9https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

10https://huggingface.co/BeIR
11https://creativecommons.org/licenses/by-sa/4.

0/

• CC BY-SA 4.0: CANARD, BEIR, HotpotQA,
QuAC
• CC BY-SA 3.0: QReCC, FEVER, BoolQ
• CC BY-NC 2.0: SciFact
• Provided under the “Dataset License Agree-

ment”: TREC-COVID, Multi-News, MS MARCO
Note that CoQA contains several datasets under

different licenses. They are listed on the Hugging-
Face page.12

B In-domain Evaluation Details

In this evaluation, we split the full dataset into
training, validation, and test sets. The split pro-
cess is designed based on the size and structure of
the original datasets. Specifically, if the original
datasets do not contain a test set, then: For original
datasets with over 10,400 samples, we randomly se-
lect 10,000 samples for constructing training data,
200 samples for validation, and 200 samples for
testing. In instances where the datasets comprise
between 2,000 and 10,400 samples, we randomly
select 200 samples each for validation and testing,
with the remainder constructing the training sam-
ples. For smaller datasets contain fewer than 2,000
samples, we use the ratio of 8:1:1 to obtain the
training, validation, and test sets. When the orig-
inal dataset includes a test set, we use the test set
to construct test samples, extracting only the vali-
dation set from the samples in the training dataset.
The extraction rule is similar to the previous case.

C LLMs for Reranking

To apply LLMs for the document reranking task,
there are three typical methods: pointwise, pair-
wise, and listwise (shown in Figure 7). They use
different prompts to perform reranking. A brief
overview of these methods is presented below, with
further details accessible in the literature (Zhu et al.,
2023; Qin et al., 2023b).

(1) Pointwise methods measure the relevance
between a query and a single document. As illus-
trated in Figure 7 (a), a common method is prompt-
ing the LLMs to judge whether a query and a docu-
ment are relevant. The relevance score is computed
based on the generation probability of “Yes” and
“No” tokens: r = pyes/(pyes + pno).

(2) Pairwise methods require LLMs to deter-
mine which of two documents is more relevant to
the given query, as shown in Figure 7 (b). To get

12https://huggingface.co/datasets/stanfordnlp/
coqa
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(a) Pointwise
Input 
Assess the relevance between the provided document:
{document}
and the query: "{query}". Respond with 'Yes' if 
the document is relevant to the query or 'No' if 
not.
Output
Yes / No
--------------------------------------------------

(b) Pairwise
Input 
Consider a query "{query}" alongside two documents:
[1] {document_1}
[2] {document_2}
Decide which document is more relevant to the 
given query by providing the corresponding 
document identifier.
Output
[1] / [2]
--------------------------------------------------

(c) Listwise
Input 
Organize the documents:
[1] {document_1}
[2] ...
according to their relevance to the provided query 
"{query}". Return the list of identifiers, 
indicating the order of decreasing relevance.
Output
[2] > [3] > [1] ...

Figure 7: Three typical methods of applying LLMs for
reranking.

a ranking list of all candidate documents, aggre-
gation methods, such as PRP-Allpair (Qin et al.,
2023b), are applied.

(3) Listwise methods directly prompt LLMs to
generate a reranked list of documents, as shown
in Figure 7 (c). However, due to the limited input
length of LLMs, it is often impractical to include
all candidate documents in a single prompt. To ad-
dress this, a sliding window strategy is commonly
applied (Sun et al., 2023).

To support various application scenarios, we con-
sider all three methods when collecting the tem-
plates for the query-document relationship under-
standing tasks in INTERS. Concretely, we collect
four distinct templates for each of these methods.
The performance comparison of different methods
has been presented in Table 6. Note that we only
report the results on a select number of datasets due
to the substantial computational costs of pairwise
methods. From the results, we can see:

First, no matter which reranking method is used,
INTERS can consistently improve LLMs’ perfor-
mance on query-document relationship understand-
ing tasks, reflecting its broad applicability. Second,
comparing the three methods, the pointwise meth-
ods generally outperform the pairwise methods,

Dataset Model Metric Pointwise Pairwise Listwise

Touché-2020 LLaMA MRR@10 0.0667 0.2010 0.1930
Touché-2020 LLaMA NDCG@10 0.0082 0.0645 0.0663
Touché-2020 INTERS-LLaMA MRR@10 0.2037 0.3173 0.2186
Touché-2020 INTERS-LLaMA NDCG@10 0.1132 0.1196 0.0802
TREC-COVID LLaMA MRR@10 0.6209 0.6842 0.6662
TREC-COVID LLaMA NDCG@10 0.3849 0.4103 0.4162
TREC-COVID INTERS-LLaMA MRR@10 0.8317 0.8609 0.7048
TREC-COVID INTERS-LLaMA NDCG@10 0.6337 0.5874 0.4208
NFCorpus LLaMA MRR@10 0.3474 0.1646 0.1806
NFCorpus LLaMA NDCG@10 0.1956 0.0703 0.0715
NFCorpus INTERS-LLaMA MRR@10 0.3766 0.2787 0.3038
NFCorpus INTERS-LLaMA NDCG@10 0.2272 0.1120 0.1191
DBPedia LLaMA MRR@10 0.1777 0.2096 0.2091
DBPedia LLaMA NDCG@10 0.0637 0.0703 0.0687
DBPedia INTERS-LLaMA MRR@10 0.7386 0.4877 0.3009
DBPedia INTERS-LLaMA NDCG@10 0.4026 0.2004 0.1138
SciFact LLaMA MRR@10 0.0133 0.0203 0.0179
SciFact LLaMA NDCG@10 0.0224 0.0337 0.0300
SciFact INTERS-LLaMA MRR@10 0.7307 0.2357 0.2327
SciFact INTERS-LLaMA NDCG@10 0.7522 0.2409 0.2399
FiQA LLaMA MRR@10 0.0437 0.0317 0.0317
FiQA LLaMA NDCG@10 0.0355 0.0274 0.0274
FiQA INTERS-LLaMA MRR@10 0.4437 0.1803 0.0700
FiQA INTERS-LLaMA NDCG@10 0.3649 0.1266 0.0514

Average LLaMA MRR@10 0.2247 0.2186 0.2164
Average LLaMA NDCG@10 0.1282 0.1127 0.1134
Average INTERS-LLaMA MRR@10 0.5542 0.3934 0.3051
Average INTERS-LLaMA NDCG@10 0.4156 0.2312 0.1709

Table 6: Performance of using different reranking meth-
ods on several query-document relationship understand-
ing tasks.

which in turn exceed the listwise methods in ef-
fectiveness. Moreover, models with 7B or fewer
parameters cannot handle the listwise evaluation.
This may be due to the fact that the listwise method
requires comparing multiple documents simultane-
ously and employs a sliding window method, pre-
senting a complexity beyond the capability of such
models. Third, in terms of inference cost, the pair-
wise method is the most resource-intensive. This
is attributed to its requirement for pairwise docu-
ment comparisons and an additional algorithm for
deriving the final result. The cost of listwise meth-
ods relies on the sliding window algorithm, but
its performance relies on the quality of the initial
ranking list (Sun et al., 2023). Based on these ob-
servations, we consider that the pointwise method
is the most suitable one for query-document rela-
tionship understanding tasks on LLMs with 7B or
fewer parameters, which provides a good balance
between efficacy and computational costs.

D Backbone Models & Implementation
Details

We employ four LLMs in different sizes, ranging
from 1B parameters to 7B parameters:
• Falcon-RW-1B (Penedo et al., 2023) is a lan-
guage model developed by the Technology Inno-
vation Institute, trained on 600B tokens of English
data. The model is designed for researching large
language models and the impact of adequately fil-
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tered and deduplicated web data on their properties,
such as fairness, safety, limitations, and capabili-
ties.13

• Minima-2-3B (Zhang et al., 2023a) is a novel lan-
guage model designed to achieve a new compute-
performance frontier on common benchmarks by
distilling knowledge from a large teacher language
model (LLaMA-2-7B). The model uses a data mix-
ture of 126 billion tokens from various sources for
distillation.14

• Mistral-7B (Jiang et al., 2023) is a language
model engineered for superior performance and ef-
ficiency. It leverages mechanisms such as grouped-
query attention (Ainslie et al., 2023) and sliding
window attention (Beltagy et al., 2020; Child et al.,
2019) to outperform other language models in vari-
ous benchmarks.15

• LLaMA-2-7B (Touvron et al., 2023) is language
model trained on around 2T tokens. It has shown
exceptional performance across multiple bench-
mark tests and has been widely used for LLM
research. In our experiments, we find that the
LLaMA-2-Chat model performs slightly better than
the LLaMA-2-Base after fine-tuning (the result
is reported in Section 4.2). Therefore, we use
LLaMA-2-Chat in our main experiments and fur-
ther investigation.16

For all backbone models, we used their publicly
available checkpoints on Huggingface. The fine-
tuning process was implemented using PyTorch
and Colossal-AI frameworks (Li et al., 2023). To
optimize memory usage and accelerate training,
we applied Deepspeed ZeRO stage 2 (Rasley et al.,
2020) and BFloat16 mixed precision techniques.
Additionally, Flash attention (Dao et al., 2022) was
used to further improve training efficiency. The
training was conducted with a batch size of 32, a
learning rate of 1e-5, and a maximum length setting
of 2,048 tokens. Though some backbone models
support longer inputs, we limit the input length to
reduce training costs. All models were trained on 8
Tesla A100-40G GPUs. It is important to note that
the hyperparameters were set based on empirical
observations, as the primary aim was to validate the
effectiveness of INTERS. Comprehensive hyperpa-
rameter tuning was beyond the scope of this study

13https://huggingface.co/tiiuae/falcon-rw-1b
14https://huggingface.co/GeneZC/MiniMA-2-3B
15https://huggingface.co/mistralai/

Mistral-7B-v0.1
16https://huggingface.co/meta-llama/

Llama-2-7b, https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

Task LLaMA-2-7B-Chat 70B GPT-4

QD 10.21 12.65 9.01
QE 9.29 9.78 17.38
QR 7.82 8.99 25.24
QC 2.73 3.30 4.49
QSG 0 0 0
QS 3.83 2.67 2.91
CQA 0.42 1.33 1.48
Summ 11.11 14.41 18.81
RC 13.01 25.29 32.40

Table 7: Results of larger models on query understand-
ing and document understanding tasks.

due to resource limitations.

E Comparison with Larger Models

We also attempt to evaluate the zero-shot perfor-
mance of GPT-4 and LLaMA-2-70B. However,
due to the limited computational resources, we
only evaluate them on query understanding and
document understanding tasks. Besides, as some
tasks require generation logits (such as BoolQ) for
computing evaluation metrics, we do not include
them in this evaluation. The results are shown in
Table 7. From the results, we can observe that
while larger LMs generally perform better on NLP-
relevant tasks (such as summarization), they still
struggle with IR tasks (such as query clarification).
This highlights again the importance of our IN-
TERS dataset for IR tasks.

F Additional Results

We present the full evaluation results in Table 9 –
Table 14.

G Data Examples

We present an example per task in Table 15 – Ta-
ble 26.
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Task Dataset Metrics # Examples Avg #In Avg #Out

Query Description GOV2 BLEU-1&2, ROUGE-L 900 308.07 57.90
Query Description TREC-Robust BLEU-1&2, ROUGE-L 1,794 280.38 48.18
Query Description TREC-COVID BLEU-1&2, ROUGE-L 300 258.74 33.13
Query Description FIRE BLEU-1&2, ROUGE-L 1,200 290.38 46.58
Query Expansion GOV2 BLEU-1&2, ROUGE-L 900 168.71 15.77
Query Expansion TREC-Robust BLEU-1&2, ROUGE-L 1,800 189.72 20.54
Query Expansion TREC-COVID BLEU-1&2, ROUGE-L 300 193.50 17.59
Query Expansion FIRE BLEU-1&2, ROUGE-L 1,200 197.39 18.83
Query Expansion Query2Doc BLEU-1&2, ROUGE-L 62,400 378.88 81.21
Query Expansion Trec-CAsT BLEU-1&2, ROUGE-L 300 182.64 17.39
Query Expansion TREC-Web BLEU-1&2, ROUGE-L 1,506 163.57 12.50
Query Reformulation CODEC Precision, Recall, F1 236 853.89 74.29
Query Reformulation QReCC BLEU-1&2, ROUGE-L 62,395 644.02 15.66
Query Reformulation CANARD BLEU-1&2, ROUGE-L 30,437 666.32 16.43
Query Reformulation TREC-CAsT BLEU-1&2, ROUGE-L 606 444.37 14.40
Query Reformulation GECOR BLEU-1&2, ROUGE-L 4,056 559.53 12.27
Query Clarification MIMICS EM-Precision, Recall, F1 16,734 153.83 21.06
Query Clarification MIMICS-Duo EM-Precision, Recall, F1 5,484 172.27 22.43
Query Clarification ClariQ-FKw BLEU-1&2, ROUGE-L 13,086 142.50 12.47
Query Clarification RaoCQ BLEU-1&2, ROUGE-L 2,759 854.22 15.33
Query Subtopic Generation TREC-Web Precision, Recall, F1 1,506 321.30 74.82
Query Suggestion AOL BLEU-1&2, ROUGE-L 62,400 202.07 5.18
Query Matching MSRP Accuracy, F1 25,656 325.13 2.00
Query Intent Classification MANtIS Precision@1 6,062 1,109.86 3.81
Query Intent Classification ORCAS-I Accuracy, F1 6,000 242.26 3.36
Query Intent Classification TREC-Web Accuracy, F1 1,200 224.34 3.66

Fact Verification FEVER Accuracy, F1 61,932 547.03 2.29
Fact Verification Climate-FEVER Accuracy, F1 8,544 1,133.29 2.88
Fact Verification SciFact Accuracy, F1 4,638 618.58 2.34
Conversational QA CoQA Exact Match 19,741 1,208.52 80.81
Conversational QA QuAC Exact Match 19,874 1,267.01 124.72
Summarization CNN/DM ROUGE-1&2, ROUGE-L 21,883 823.92 301.19
Summarization XSum ROUGE-1&2, ROUGE-L 31,510 1,057.63 135.22
Summarization WikiSum ROUGE-1&2, ROUGE-L 6,874 2,101.13 422.31
Summarization Multi-News ROUGE-1&2, ROUGE-L 5,339 3,106.26 285.37
Reading Comprehension SQuAD F1 62,336 858.54 5.74
Reading Comprehension HotpotQA F1 62,400 595.62 5.46
Reading Comprehension MS MARCO F1 40,029 1,314.41 24.82
Reading Comprehension BoolQ Accuracy, F1 62,384 652.50 2.00
Reading Comprehension WebGLM-QA BLEU-1&2, ROUGE-L 29,164 1,107.86 140.69
Reading Comprehension Trivia-QA F1 34,140 1,312.96 9.32

General Retrieval MS MARCO MRR@10, NDCG@10 65,909 816.71 4.25
Argument Retrieval Touché-2020 MRR@10, NDCG@10 21,951 992.36 4.46
Argument Retrieval ArguAna MRR@10, NDCG@10 42,736 1,077.62 4.06
Biomedical Retrieval TREC-COVID MRR@10, NDCG@10 31,476 1,127.98 4.38
Biomedical Retrieval NFCorpus MRR@10, NDCG@10 4,508 1,185.16 3.79
Article Retrieval SciDocs MRR@10, NDCG@10 41,043 1,090.32 3.82
Duplicate Question Retrieval Quora MRR@10, NDCG@10 43,930 589.70 7.20
Duplicate Question Retrieval CQADupStack MRR@10, NDCG@10 88,934 1,117.72 4.43
Entity Retrieval DBPedia MRR@10, NDCG@10 470 909.46 3.59
Fact Retrieval FEVER MRR@10, NDCG@10 35,201 1,131.90 5.20
Fact Retrieval Climate-FEVER MRR@10, NDCG@10 57,672 945.14 4.11
Fact Retrieval SciFact MRR@10, NDCG@10 1,963 1,179.06 7.70
Supporting Evidence Retrieval NQ MRR@10, NDCG@10 43,963 944.69 5.33
Supporting Evidence Retrieval FiQA MRR@10, NDCG@10 20,988 1,063.95 5.73
Supporting Evidence Retrieval Hotpot-QA MRR@10, NDCG@10 63,441 934.56 7.41

Table 8: The statistics of all datasets. “#In” and “#Out” represent the number of tokens in the input and output with
the LLaMA’s tokenizer. The underlined metric is used in the figures of the main paper.
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LLaMA-2-Base LLaMA-2-Chat Falcon Minima Mistral

Task & Dataset Metric Vanilla +INTERS Vanilla +INTERS +25% +50% +75% +FLAN Vanilla +INTERS Vanilla +INTERS Vanilla +INTERS

Query Description
GOV2 BLEU-1 0.0687 0.2143 0.1293 0.1884 0.2172 0.2324 0.2008 0.1057 0.0074 0.1847 0.0308 0.1761 0.0559 0.1894

BLEU-2 0.0285 0.1002 0.0611 0.0971 0.1030 0.1096 0.0956 0.0495 0.0021 0.0793 0.0074 0.0707 0.0229 0.0933
ROUGE-L 0.1197 0.2057 0.1333 0.2063 0.1900 0.2199 0.2020 0.1187 0.0284 0.1856 0.0407 0.1930 0.0885 0.2297

TREC-Robust BLEU-1 0.0391 0.3135 0.1308 0.3400 0.2327 0.3605 0.3163 0.0905 0.0106 0.1803 0.0315 0.2921 0.0432 0.3408
BLEU-2 0.0115 0.2286 0.0529 0.2528 0.1469 0.2628 0.2253 0.0278 0.0026 0.1090 0.0099 0.2197 0.0117 0.2564
ROUGE-L 0.0876 0.3377 0.0998 0.3703 0.2791 0.3606 0.3465 0.0905 0.0216 0.2537 0.0417 0.3508 0.0790 0.3597

TREC-COVID BLEU-1 0.0269 0.2747 0.0728 0.1879 0.1582 0.1188 0.1565 0.0859 0.0095 0.1359 0.0290 0.1648 0.0207 0.0828
BLEU-2 0.0081 0.1599 0.0267 0.1022 0.0851 0.0391 0.0742 0.0182 0.0042 0.0372 0.0103 0.0619 0.0041 0.0233
ROUGE-L 0.0530 0.2310 0.0488 0.2371 0.2185 0.1633 0.2565 0.0904 0.0030 0.1429 0.0094 0.1735 0.0443 0.1111

FIRE BLEU-1 0.0559 0.3745 0.1285 0.3400 0.3058 0.3122 0.3529 0.0943 0.0161 0.2694 0.0421 0.3125 0.0534 0.3420
BLEU-2 0.0270 0.2615 0.0654 0.2308 0.2043 0.2058 0.2487 0.0583 0.0034 0.1749 0.0177 0.2321 0.0207 0.2253
ROUGE-L 0.0967 0.3522 0.1264 0.3422 0.3300 0.3224 0.3578 0.1335 0.0290 0.2796 0.0543 0.3492 0.1044 0.3495

Query Expansion
GOV2 BLEU-1 0.0303 0.3612 0.0751 0.3208 0.3398 0.3110 0.3006 0.0399 0.0035 0.2070 0.0187 0.2833 0.0278 0.2752

BLEU-2 0.0170 0.2642 0.0369 0.2066 0.2297 0.2080 0.1957 0.0216 0.0017 0.0884 0.0097 0.1989 0.0112 0.1766
ROUGE-L 0.0672 0.4527 0.0954 0.4013 0.3891 0.3853 0.3736 0.1179 0.0085 0.2337 0.0165 0.3867 0.0539 0.3881

TREC-Robust BLEU-1 0.0305 0.3807 0.0631 0.4260 0.3502 0.3333 0.4006 0.0768 0.0049 0.2483 0.0503 0.3020 0.0329 0.3621
BLEU-2 0.0139 0.3100 0.0330 0.3410 0.2472 0.2335 0.3265 0.0415 0.0026 0.1682 0.0277 0.2237 0.0136 0.2993
ROUGE-L 0.0735 0.4681 0.1108 0.4543 0.4059 0.3621 0.4497 0.1348 0.0102 0.2636 0.0687 0.4206 0.0596 0.4466

TREC-COVID BLEU-1 0.0141 0.1551 0.0475 0.2207 0.1531 0.1746 0.1531 0.0459 0.0069 0.0968 0.0169 0.1477 0.0257 0.1089
BLEU-2 0.0045 0.0878 0.0174 0.1108 0.0774 0.1134 0.0774 0.0223 0.0031 0.0359 0.0085 0.0727 0.0126 0.0381
ROUGE-L 0.0551 0.3245 0.0424 0.3036 0.2912 0.3722 0.2984 0.1389 0.0490 0.1861 0.0217 0.2931 0.0454 0.2449

FIRE BLEU-1 0.0326 0.4465 0.0510 0.3985 0.2739 0.3112 0.3257 0.0649 0.0102 0.1362 0.0302 0.4044 0.0237 0.3169
BLEU-2 0.0183 0.3653 0.0313 0.3118 0.1845 0.2281 0.2442 0.0366 0.0056 0.0736 0.0152 0.3123 0.0110 0.2391
ROUGE-L 0.0686 0.5255 0.1270 0.4771 0.4097 0.4326 0.4487 0.1267 0.0094 0.2255 0.0618 0.4416 0.0468 0.4476

Query2Doc BLEU-1 0.1065 0.3061 0.1952 0.3011 0.2984 0.3038 0.3032 0.1983 0.0169 0.1253 0.0739 0.3045 0.1262 0.2916
BLEU-2 0.0512 0.1712 0.1055 0.1729 0.1762 0.1723 0.1732 0.1047 0.0066 0.0547 0.0312 0.1626 0.0626 0.1549
ROUGE-L 0.1417 0.2578 0.1554 0.2698 0.2525 0.2578 0.2622 0.1617 0.0199 0.1488 0.0643 0.2558 0.1537 0.2398

TREC-CAsT BLEU-1 0.0194 0.1806 0.0307 0.2295 0.2258 0.1477 0.2513 0.0937 0.0000 0.0343 0.0145 0.1718 0.0205 0.1974
BLEU-2 0.0087 0.1205 0.0074 0.1568 0.1259 0.0705 0.1740 0.0554 0.0000 0.0180 0.0055 0.1006 0.0067 0.1291
ROUGE-L 0.0453 0.2138 0.0282 0.2691 0.2373 0.2037 0.2923 0.0614 0.0046 0.1858 0.0199 0.3265 0.0393 0.2963

TREC-Web BLEU-1 0.0109 0.3596 0.0321 0.3652 0.3368 0.2100 0.3492 0.0313 0.0066 0.1318 0.0078 0.2627 0.0159 0.4944
BLEU-2 0.0042 0.2998 0.0170 0.3016 0.2756 0.1649 0.2660 0.0180 0.0021 0.0661 0.0020 0.2181 0.0056 0.4587
ROUGE-L 0.0381 0.4967 0.0912 0.4738 0.4757 0.3889 0.4338 0.1761 0.0208 0.1967 0.0292 0.4692 0.0376 0.6337

Query Reformulation
CODEC Precision 0.0000 0.3333 0.0000 0.0729 0.0000 0.0357 0.0250 0.0000 0.0000 0.0000 0.0000 0.0357 0.0000 0.0278

Recall 0.0000 0.1333 0.0000 0.1333 0.0000 0.0833 0.0833 0.0000 0.0000 0.0000 0.0000 0.0833 0.0000 0.0833
F1 0.0000 0.1667 0.0000 0.0940 0.0000 0.0500 0.0385 0.0000 0.0000 0.0000 0.0000 0.0500 0.0000 0.0417

QReCC BLEU-1 0.0389 0.7474 0.0795 0.7451 0.7347 0.7570 0.7611 0.2027 0.0102 0.6650 0.0410 0.7493 0.0248 0.7446
BLEU-2 0.0303 0.6879 0.0575 0.6857 0.6675 0.6935 0.6973 0.1604 0.0066 0.5917 0.0310 0.6890 0.0173 0.6830
ROUGE-L 0.0836 0.8127 0.1431 0.8065 0.8011 0.8196 0.8174 0.4568 0.0257 0.7280 0.0916 0.8029 0.0541 0.8123

CANARD BLEU-1 0.0346 0.7523 0.0586 0.7497 0.7711 0.7434 0.7289 0.1814 0.0122 0.6920 0.0240 0.7524 0.0165 0.7235
BLEU-2 0.0259 0.7020 0.0428 0.6994 0.7208 0.6907 0.6740 0.1355 0.0085 0.6348 0.0167 0.7006 0.0106 0.6695
ROUGE-L 0.0773 0.8371 0.0783 0.8342 0.8388 0.8259 0.8269 0.3085 0.0296 0.7867 0.0448 0.8328 0.0415 0.8150

TREC-CAsT BLEU-1 0.0365 0.7172 0.0781 0.6545 0.7188 0.6800 0.7300 0.1227 0.0084 0.6512 0.0222 0.6545 0.0123 0.6800
BLEU-2 0.0254 0.6473 0.0589 0.6000 0.6464 0.6208 0.6740 0.0744 0.0032 0.5988 0.0136 0.5778 0.0067 0.6085
ROUGE-L 0.0846 0.7941 0.1156 0.7769 0.7982 0.7615 0.8030 0.2279 0.0159 0.7602 0.0297 0.7632 0.0320 0.7829

GECOR BLEU-1 0.0285 0.8918 0.0503 0.9118 0.8920 0.8789 0.9108 0.1550 0.0110 0.8142 0.0211 0.8670 0.0175 0.8879
BLEU-2 0.0234 0.8594 0.0372 0.8789 0.8593 0.8446 0.8751 0.1232 0.0087 0.7644 0.0156 0.8361 0.0091 0.8512
ROUGE-L 0.0592 0.9544 0.0541 0.9579 0.9485 0.9365 0.9461 0.2568 0.0216 0.8860 0.0297 0.9400 0.0385 0.9429

Query Clarification
MIMICS Precision 0.0000 0.2154 0.0000 0.2161 0.1442 0.1788 0.1985 0.0000 0.0000 0.1033 0.0000 0.1792 0.0000 0.1871

Recall 0.0000 0.2217 0.0000 0.2353 0.1609 0.1880 0.2139 0.0000 0.0000 0.1090 0.0000 0.1951 0.0000 0.2020
F1 0.0000 0.2142 0.0000 0.2207 0.1492 0.1780 0.2007 0.0000 0.0000 0.1040 0.0000 0.1824 0.0000 0.1902

MIMICS-Duo Precision 0.0000 0.2665 0.0000 0.2676 0.2399 0.3125 0.2819 0.0000 0.0000 0.2725 0.0000 0.2473 0.0000 0.2870
Recall 0.0000 0.2700 0.0000 0.2934 0.2546 0.3288 0.2995 0.0000 0.0000 0.2934 0.0000 0.2733 0.0000 0.3090
F1 0.0000 0.2570 0.0000 0.2654 0.2392 0.3113 0.2759 0.0000 0.0000 0.2698 0.0000 0.2446 0.0000 0.2848

ClariQ-FKw BLEU-1 0.0155 0.3603 0.0573 0.3531 0.3557 0.3390 0.3320 0.0598 0.0009 0.3514 0.0151 0.3546 0.0190 0.3664
BLEU-2 0.0075 0.2510 0.0333 0.2420 0.2515 0.2299 0.2189 0.0267 0.0005 0.2446 0.0071 0.2426 0.0094 0.2602
ROUGE-L 0.0402 0.3631 0.0941 0.3551 0.3642 0.3464 0.3391 0.1786 0.0053 0.3602 0.0180 0.3599 0.0402 0.3681

RaoCQ BLEU-1 0.0131 0.1731 0.0223 0.1253 0.1755 0.1882 0.1451 0.0340 0.0039 0.1694 0.0070 0.1378 0.0133 0.1575
BLEU-2 0.0037 0.0259 0.0062 0.0132 0.0265 0.0336 0.0261 0.0092 0.0015 0.0260 0.0026 0.0382 0.0045 0.0471
ROUGE-L 0.0235 0.1016 0.0150 0.1052 0.1085 0.0986 0.0962 0.0490 0.0054 0.1084 0.0016 0.1016 0.0273 0.0863

Query Subtopic Generation
TREC-Web Precision 0.0000 0.0754 0.0000 0.0888 0.0480 0.0623 0.0762 0.0000 0.0000 0.0480 0.0000 0.1000 0.0000 0.1080

Recall 0.0000 0.1360 0.0000 0.1620 0.0913 0.1327 0.1460 0.0000 0.0000 0.0533 0.0000 0.1460 0.0000 0.1560
F1 0.0000 0.0892 0.0000 0.1076 0.0580 0.0778 0.0913 0.0000 0.0000 0.0497 0.0000 0.1089 0.0000 0.1189

Query Suggestion
AOL BLEU-1 0.0082 0.3936 0.0192 0.4238 0.3878 0.3794 0.4140 0.0367 0.0031 0.3301 0.0089 0.3494 0.0032 0.3956

BLEU-2 0.0054 0.2962 0.0111 0.3218 0.2877 0.2797 0.3157 0.0212 0.0021 0.2406 0.0056 0.2532 0.0018 0.3005
ROUGE-L 0.0198 0.4804 0.0383 0.5024 0.4673 0.5097 0.5087 0.2148 0.0045 0.4263 0.0681 0.5059 0.0085 0.4737

Query Matching
MSRP Acc 0.4250 0.8600 0.4400 0.8550 0.7850 0.8350 0.7950 0.6300 0.3250 0.7000 0.4000 0.8850 0.3900 0.7350

F1 0.4387 0.8592 0.4587 0.8554 0.7856 0.8346 0.7955 0.6480 0.2675 0.6566 0.4049 0.8834 0.3950 0.7476

Query Intent Classification
MANtIS P@1 0.0650 0.4550 0.1000 0.4750 0.4200 0.4250 0.4650 0.1650 0.0050 0.3750 0.0850 0.4400 0.1550 0.4300
ORCAS-I Acc 0.3600 0.4900 0.3200 0.4700 0.4900 0.5000 0.4800 0.2200 0.1000 0.4900 0.2100 0.4600 0.3200 0.4500

F1 0.2918 0.4206 0.2486 0.4084 0.4200 0.4329 0.4074 0.1905 0.0865 0.4265 0.1526 0.3959 0.2435 0.3820
TREC-Web Acc 0.2000 0.8500 0.3000 0.9000 0.3500 0.7500 0.7000 0.2500 0.4000 0.5500 0.2000 0.7500 0.8500 0.9000

F1 0.2667 0.8726 0.3733 0.8863 0.4548 0.8296 0.7543 0.3200 0.4303 0.5881 0.2667 0.7712 0.8416 0.9000

Table 9: Results for eight query understanding tasks. “Vanilla” denotes the model without fine-tuning. “+25%”
means using 25% of INTERS for training.
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LLaMA-2-Base LLaMA-2-Chat Falcon Minima Mistral

Task & Dataset Metric Vanilla +INTERS Vanilla +INTERS +25% +50% +75% +FLAN Vanilla +INTERS Vanilla +INTERS Vanilla +INTERS

Fact Verification
FEVER Acc 0.6850 0.9050 0.6650 0.9300 0.9050 0.9450 0.9200 0.7150 0.6950 0.7550 0.6800 0.9250 0.7450 0.9000

F1 0.6364 0.9000 0.6405 0.9295 0.9082 0.9444 0.9176 0.7159 0.6373 0.6812 0.6427 0.9237 0.6361 0.8993
Climate-FEVER Acc 0.4248 0.5882 0.4771 0.5882 0.5882 0.6144 0.6078 0.3922 0.3595 0.3922 0.4248 0.5359 0.4379 0.5948

F1 0.3177 0.5659 0.3163 0.5732 0.5792 0.5962 0.5865 0.3425 0.3240 0.3250 0.2910 0.5298 0.2997 0.5437
SciFact Acc 0.4805 0.7922 0.4805 0.8182 0.6623 0.8182 0.8052 0.6883 0.7143 0.6883 0.4935 0.7792 0.6623 0.7662

F1 0.5040 0.7555 0.5056 0.7860 0.6786 0.8123 0.7746 0.6452 0.5952 0.6023 0.5173 0.7741 0.6363 0.7249

Conversational QA
CoQA EM 0.0032 0.3375 0.0064 0.3455 0.3100 0.3497 0.3141 0.0372 0.0000 0.0932 0.0010 0.3216 0.0061 0.3097
QuAC EM 0.0000 0.1735 0.0021 0.1924 0.1857 0.1954 0.1914 0.0082 0.0000 0.1308 0.0000 0.1998 0.0000 0.2194

Summarization
CNN/DM ROUGE-1 0.2236 0.3640 0.2928 0.3852 0.3773 0.3666 0.3729 0.3285 0.0245 0.3083 0.0773 0.3679 0.2158 0.3743

ROUGE-2 0.1016 0.1649 0.1117 0.1791 0.1646 0.1553 0.1654 0.1395 0.0011 0.1178 0.0339 0.1578 0.0921 0.1536
ROUGE-L 0.1481 0.2475 0.1852 0.2649 0.2560 0.2433 0.2497 0.2172 0.0224 0.2049 0.0570 0.2490 0.1431 0.2425

XSum ROUGE-1 0.0968 0.3604 0.1428 0.3699 0.3562 0.3618 0.3577 0.2728 0.0177 0.2240 0.0421 0.3335 0.0846 0.3196
ROUGE-2 0.0197 0.1401 0.0381 0.1469 0.1342 0.1373 0.1303 0.0997 0.0006 0.0459 0.0078 0.1173 0.0186 0.1040
ROUGE-L 0.0714 0.2840 0.1039 0.2866 0.2802 0.2811 0.2719 0.2087 0.0155 0.1672 0.0304 0.2592 0.0611 0.2399

WIkiSum ROUGE-1 0.1348 0.2709 0.1432 0.2776 0.2772 0.2788 0.2751 0.1358 0.0301 0.2326 0.0317 0.2566 0.1168 0.2935
ROUGE-2 0.0363 0.1099 0.0410 0.1120 0.1151 0.1122 0.1115 0.0406 0.0014 0.0745 0.0064 0.1027 0.0250 0.1193
ROUGE-L 0.0849 0.1744 0.0885 0.1757 0.1765 0.1715 0.1729 0.0881 0.0293 0.1476 0.0217 0.1671 0.0771 0.1836

MultiNews ROUGE-1 0.1651 0.2226 0.1225 0.2201 0.2225 0.2252 0.2243 0.0950 0.0247 0.1627 0.0638 0.2050 0.1472 0.2256
ROUGE-2 0.0565 0.0868 0.0361 0.0805 0.0885 0.0850 0.0887 0.0334 0.0018 0.0555 0.0185 0.0763 0.0455 0.0865
ROUGE-L 0.0918 0.1167 0.0670 0.1120 0.1188 0.1168 0.1205 0.0578 0.0228 0.0895 0.0371 0.1117 0.0793 0.1190

Reading Comprehension
SQuAD F1 0.0448 0.7964 0.0124 0.8161 0.7873 0.7624 0.8279 0.7270 0.0427 0.5577 0.0390 0.7790 0.0599 0.7730
HotpotQA F1 0.0396 0.8076 0.0943 0.8518 0.8219 0.7939 0.8435 0.4542 0.0181 0.4364 0.0386 0.8489 0.0449 0.8324
MS MARCO F1 0.1842 0.6601 0.3146 0.6575 0.6267 0.6279 0.6563 0.3693 0.1161 0.4877 0.0904 0.6473 0.1375 0.6567
BoolQ Acc 0.6100 0.8150 0.6450 0.8400 0.7150 0.7550 0.8100 0.6500 0.4350 0.5750 0.5700 0.7700 0.5750 0.7050

F1 0.5629 0.8162 0.5639 0.8425 0.7201 0.7580 0.8125 0.5613 0.4453 0.5580 0.4751 0.7740 0.5441 0.7104
WebGLM-QA BLEU1 0.2584 0.5153 0.1565 0.5223 0.5429 0.5249 0.5077 0.1186 0.0486 0.3896 0.0971 0.5470 0.2478 0.5192

BLEU2 0.1782 0.4210 0.1048 0.4280 0.4325 0.4227 0.4149 0.0752 0.0252 0.2891 0.0629 0.4414 0.1683 0.4069
ROUGE-L 0.2362 0.4554 0.1566 0.4598 0.4414 0.4532 0.4588 0.1424 0.0539 0.3192 0.0819 0.4437 0.1764 0.4290

TriviaQA F1 0.0523 0.3932 0.0728 0.4019 0.4017 0.3857 0.3873 0.3232 0.0134 0.2742 0.0870 0.3410 0.0346 0.3436

Table 10: Results for four document understanding tasks. “Vanilla” denotes the model without fine-tuning. “+25%”
means using 25% of INTERS for training.

LLaMA-2-Base LLaMA-2-Chat Falcon Minima Mistral

Task & Dataset Metric Vanilla +INTERS Vanilla +INTERS +25% +50% +75% +FLAN Vanilla +INTERS Vanilla +INTERS Vanilla +INTERS

Passage Retrieval
MS-MARCO MRR@10 0.0180 0.2407 0.0191 0.2416 0.2710 0.2537 0.2526 0.1953 0.0226 0.0147 0.0139 0.2394 0.0175 0.2464

NDCG@10 0.0271 0.2971 0.0292 0.2985 0.3277 0.3106 0.3098 0.2457 0.0332 0.0218 0.0209 0.2957 0.0257 0.2996

Argument Retrieval
Touché-2020 MRR@10 0.1907 0.3147 0.1449 0.2037 0.3402 0.3455 0.3197 0.1904 0.2509 0.0850 0.1951 0.3210 0.0951 0.2255

NDCG@10 0.0646 0.1565 0.0667 0.1132 0.1651 0.1560 0.1571 0.0732 0.1083 0.0410 0.0692 0.1549 0.0427 0.1283
ArguAna MRR@10 0.0265 0.1552 0.0082 0.2380 0.1823 0.2054 0.2397 0.0265 0.0161 0.0149 0.0401 0.1526 0.0026 0.1533

NDCG@10 0.0441 0.2392 0.0144 0.3532 0.2809 0.3118 0.3585 0.0446 0.0255 0.0243 0.0641 0.2366 0.0042 0.2286

Bio-Medical IR
TREC-Covid MRR@10 0.6012 0.8190 0.6209 0.8317 0.9233 0.8907 0.8862 0.7947 0.6081 0.6011 0.6415 0.8613 0.7021 0.8392

NDCG@10 0.4011 0.5919 0.3849 0.6337 0.7203 0.6707 0.6526 0.5546 0.4141 0.3458 0.4015 0.6159 0.4096 0.6331
NFCorpus MRR@10 0.2524 0.3984 0.3474 0.3766 0.5731 0.4887 0.4184 0.4572 0.2636 0.2610 0.2600 0.3294 0.2664 0.2624

NDCG@10 0.1347 0.2321 0.1956 0.2272 0.3243 0.2779 0.2376 0.2694 0.1518 0.1419 0.1471 0.1925 0.1538 0.1595

Citation Prediction
SciDocs MRR@10 0.0388 0.2950 0.0552 0.3004 0.3274 0.3102 0.3145 0.0878 0.0429 0.0407 0.0841 0.2715 0.0614 0.2079

NDCG@10 0.0217 0.1628 0.0290 0.1671 0.1873 0.1749 0.1798 0.0479 0.0245 0.0206 0.0444 0.1537 0.0337 0.1117

Duplicate Question Retrieval
Quora MRR@10 0.0295 0.8240 0.0331 0.8278 0.8406 0.8192 0.8070 0.2615 0.0373 0.0081 0.0579 0.7047 0.0238 0.8083

NDCG@10 0.0368 0.8396 0.0406 0.8426 0.8533 0.8357 0.8258 0.2970 0.0474 0.0084 0.0754 0.3754 0.0290 0.8208
CQADupStack MRR@10 0.1566 0.3450 0.1309 0.3540 0.3612 0.3414 0.3366 0.1394 0.1437 0.1043 0.1486 0.3459 0.1498 0.3497

NDCG@10 0.2019 0.3393 0.1846 0.3422 0.3497 0.3361 0.3331 0.1889 0.1941 0.1640 0.1963 0.3399 0.1986 0.3418

Entity Retrieval
DBPedia MRR@10 0.2048 0.7262 0.1777 0.7386 0.7263 0.7314 0.7419 0.4663 0.1998 0.1449 0.1471 0.7047 0.1751 0.6906

NDCG@10 0.0741 0.3961 0.0637 0.4026 0.4110 0.4030 0.4030 0.2237 0.0763 0.0568 0.0491 0.3754 0.0651 0.3697

Fact Checking
FEVER MRR@10 0.1214 0.8704 0.1303 0.8764 0.8336 0.8713 0.8800 0.2840 0.0781 0.0156 0.0156 0.8516 0.0306 0.8239

NDCG@10 0.1487 0.8521 0.1775 0.8561 0.8232 0.8516 0.8587 0.3030 0.1093 0.0183 0.0248 0.8352 0.0419 0.8150
Climate-FEVER MRR@10 0.0709 0.3477 0.1093 0.3645 0.3005 0.3011 0.3351 0.0507 0.0258 0.0138 0.0180 0.2774 0.0102 0.2470

NDCG@10 0.0589 0.2513 0.0876 0.2670 0.2193 0.2244 0.2490 0.0390 0.0214 0.0114 0.0154 0.1965 0.0086 0.1908
SciFact MRR@10 0.0132 0.7410 0.0133 0.7307 0.7143 0.6959 0.7204 0.1492 0.0193 0.0410 0.0221 0.6893 0.0222 0.6182

NDCG@10 0.0217 0.7625 0.0224 0.7522 0.7343 0.7148 0.7491 0.2025 0.0274 0.0515 0.0401 0.7087 0.0339 0.6300

Question Answering
NQ MRR@10 0.0207 0.4311 0.0316 0.4298 0.4471 0.4386 0.4548 0.2137 0.0253 0.0229 0.0208 0.4198 0.0157 0.3993

NDCG@10 0.0302 0.4776 0.0438 0.4763 0.4906 0.4825 0.4952 0.2511 0.0360 0.0325 0.0298 0.4621 0.0219 0.4414
FiQA MRR@10 0.0244 0.4370 0.0437 0.4437 0.4757 0.4572 0.4282 0.1440 0.0367 0.0280 0.0288 0.3702 0.0365 0.3542

NDCG@10 0.0204 0.3712 0.0355 0.3649 0.3911 0.3826 0.3591 0.1145 0.0321 0.0213 0.0267 0.3106 0.0369 0.2989
HotpotQA MRR@10 0.0380 0.8898 0.1018 0.8918 0.8515 0.8787 0.8916 0.2389 0.0489 0.0208 0.0427 0.8339 0.0342 0.8088

NDCG@10 0.0388 0.7480 0.0955 0.7493 0.7154 0.7350 0.7510 0.2048 0.0470 0.0183 0.0423 0.6990 0.0338 0.6814

Table 11: Results for eight query-document relationship understanding tasks. “Vanilla” denotes the model without
fine-tuning. “+25%” means using 25% of INTERS for training.
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Task & Dataset Metric w/o Q w/o D w/o Q-D w/o QIC w/o FV w/o CP w/o Ds w/o Description w/o Template

Query Description
GOV2 BLEU-1 0.0089 0.2343 0.2152 0.1990 0.1782 0.1324 0.1999 0.2077 0.1227

BLEU-2 0.0037 0.1224 0.1062 0.0974 0.0849 0.0506 0.0992 0.0811 0.0570
ROUGE-L 0.0755 0.2051 0.2297 0.2037 0.2118 0.1166 0.2072 0.1787 0.1472

TREC-Robust BLEU-1 0.0624 0.2993 0.3552 0.3419 0.2919 0.1912 0.2129 0.2884 0.2303
BLEU-2 0.0268 0.2084 0.2660 0.2611 0.2303 0.1098 0.0925 0.1955 0.1442
ROUGE-L 0.0852 0.3113 0.3616 0.3611 0.3647 0.1907 0.2218 0.2832 0.2043

TREC-COVID BLEU-1 0.0339 0.1418 0.1513 0.2412 0.1429 0.1474 0.1739 0.1057 0.0109
BLEU-2 0.0176 0.0738 0.0786 0.1185 0.0758 0.0691 0.0894 0.0494 0.0048
ROUGE-L 0.1082 0.1830 0.2139 0.2896 0.1529 0.2399 0.1577 0.1977 0.0560

FIRE BLEU-1 0.0044 0.3492 0.3087 0.3486 0.3015 0.1345 0.2967 0.1779 0.2085
BLEU-2 0.0023 0.2342 0.2147 0.2311 0.2070 0.0893 0.2077 0.1179 0.1285
ROUGE-L 0.1191 0.3579 0.3547 0.3551 0.3684 0.1631 0.3691 0.1905 0.2388

Query Expansion
GOV2 BLEU-1 0.0828 0.2995 0.3311 0.2824 0.3284 0.3250 0.2892 0.3329 0.1656

BLEU-2 0.0413 0.1768 0.2226 0.1977 0.2283 0.2296 0.2027 0.2342 0.0898
ROUGE-L 0.1321 0.3159 0.3830 0.3921 0.4384 0.3811 0.4132 0.4429 0.2544

TREC-Robust BLEU-1 0.0460 0.3747 0.4179 0.4039 0.3915 0.3910 0.1809 0.3923 0.1180
BLEU-2 0.0270 0.3067 0.3328 0.3383 0.3198 0.3264 0.1120 0.3181 0.0903
ROUGE-L 0.1027 0.4088 0.4421 0.4617 0.4409 0.4694 0.3274 0.4534 0.1744

TREC-COVID BLEU-1 0.0719 0.1662 0.2839 0.1941 0.2295 0.2198 0.1729 0.1667 0.0891
BLEU-2 0.0556 0.1113 0.1540 0.1163 0.1491 0.1238 0.0942 0.0957 0.0441
ROUGE-L 0.1879 0.3053 0.3424 0.2793 0.3659 0.3211 0.2950 0.2876 0.2275

FIRE BLEU-1 0.1089 0.3871 0.2836 0.3993 0.4368 0.3311 0.4190 0.2947 0.2243
BLEU-2 0.0514 0.2965 0.2227 0.3008 0.3449 0.2458 0.3285 0.2145 0.1647
ROUGE-L 0.1670 0.4313 0.4308 0.4867 0.4934 0.4147 0.4802 0.3784 0.2679

Query2Doc BLEU-1 0.0378 0.3087 0.3278 0.2892 0.3215 0.2871 0.3262 0.2940 0.1278
BLEU-2 0.0193 0.1712 0.1907 0.1639 0.1877 0.1632 0.1876 0.1680 0.0722
ROUGE-L 0.0819 0.2495 0.2781 0.2623 0.2642 0.2484 0.2724 0.2578 0.1251

TREC-CAsT BLEU-1 0.0016 0.1583 0.1817 0.1746 0.1546 0.1361 0.2000 0.1733 0.0008
BLEU-2 0.0006 0.0972 0.1046 0.0950 0.1102 0.0880 0.1096 0.0999 0.0004
ROUGE-L 0.0480 0.2538 0.2058 0.2306 0.2184 0.2100 0.2922 0.1977 0.0320

TREC-Web BLEU-1 0.0380 0.4848 0.2513 0.3871 0.4857 0.2996 0.4951 0.3333 0.1609
BLEU-2 0.0125 0.4437 0.2089 0.3118 0.4203 0.2423 0.4337 0.2838 0.1104
ROUGE-L 0.1404 0.5897 0.4403 0.4774 0.5507 0.3782 0.5585 0.3889 0.2286

Query Reformulation
CODEC Precision 0.0000 0.0357 0.0590 0.1250 0.0694 0.0670 0.0313 0.0903 0.0000

Recall 0.0000 0.0833 0.1333 0.0833 0.1333 0.1333 0.0833 0.1333 0.0000
F1 0.0000 0.0500 0.0812 0.1000 0.0913 0.0885 0.0455 0.0972 0.0000

QReCC BLEU-1 0.3044 0.7436 0.7490 0.7451 0.7557 0.7502 0.6801 0.7616 0.5111
BLEU-2 0.2472 0.6858 0.6929 0.6832 0.6985 0.6901 0.6138 0.7030 0.4507
ROUGE-L 0.4010 0.8194 0.8180 0.8114 0.8250 0.8114 0.7502 0.8212 0.5914

CANARD BLEU-1 0.1128 0.7387 0.7456 0.7585 0.7505 0.7396 0.7456 0.7617 0.3375
BLEU-2 0.0868 0.6860 0.6951 0.7073 0.6986 0.6899 0.6927 0.7091 0.2960
ROUGE-L 0.1704 0.8247 0.8272 0.8333 0.8348 0.8354 0.8333 0.8394 0.4082

TREC-CAsT BLEU-1 0.1253 0.6765 0.7389 0.6634 0.6887 0.7030 0.6979 0.6415 0.1440
BLEU-2 0.1033 0.6063 0.6826 0.5791 0.6338 0.6399 0.6241 0.5722 0.1345
ROUGE-L 0.1933 0.7664 0.8062 0.7394 0.7851 0.7629 0.7683 0.7559 0.2545

GECOR BLEU-1 0.1470 0.8799 0.8834 0.9115 0.9004 0.8537 0.9056 0.8793 0.3524
BLEU-2 0.1215 0.8450 0.8537 0.8795 0.8688 0.8206 0.8769 0.8485 0.3144
ROUGE-L 0.2149 0.9430 0.9536 0.9504 0.9485 0.9405 0.9563 0.9509 0.4089

Query Clarification
MIMICS Precision 0.0000 0.2018 0.1940 0.2034 0.2038 0.1118 0.2072 0.1035 0.1967

Recall 0.0000 0.2149 0.2165 0.2107 0.2193 0.1245 0.2158 0.1138 0.2228
F1 0.0000 0.2032 0.1989 0.2017 0.2065 0.1142 0.2072 0.1064 0.2042

MIMICS-Duo Precision 0.0000 0.2795 0.2998 0.2665 0.2861 0.1767 0.0471 0.1835 0.2718
Recall 0.0000 0.2886 0.3148 0.2786 0.3104 0.2000 0.0531 0.1903 0.2844
F1 0.0000 0.2732 0.2924 0.2571 0.2842 0.1751 0.0460 0.1757 0.2675

ClariQ-FKw BLEU-1 0.0425 0.3547 0.3680 0.3500 0.3475 0.3183 0.3541 0.3197 0.0745
BLEU-2 0.0263 0.2454 0.2587 0.2385 0.2397 0.2246 0.2461 0.2156 0.0418
ROUGE-L 0.1114 0.3585 0.3696 0.3575 0.3562 0.3383 0.3555 0.3329 0.1042

RaoCQ BLEU-1 0.0281 0.1989 0.1790 0.1506 0.1775 0.1630 0.1905 0.1811 0.0345
BLEU-2 0.0083 0.0693 0.0449 0.0229 0.0413 0.0181 0.0480 0.0270 0.0054
ROUGE-L 0.0751 0.1275 0.1182 0.1035 0.1362 0.0918 0.1069 0.0927 0.0248

Query Subtopic Generation
TREC-Web Precision 0.0000 0.1134 0.0927 0.0728 0.0944 0.0463 0.0933 0.0333 0.0653

Recall 0.0000 0.1660 0.1220 0.1460 0.1427 0.1167 0.1240 0.0867 0.0960
F1 0.0000 0.1241 0.1045 0.0916 0.1067 0.0641 0.1052 0.0468 0.0773

Query Suggestion
AOL BLEU-1 0.0963 0.4273 0.4030 0.4443 0.3873 0.3981 0.4133 0.4466 0.3366

BLEU-2 0.0623 0.3298 0.3022 0.3377 0.2872 0.2907 0.3147 0.3402 0.2479
ROUGE-L 0.2492 0.5152 0.4882 0.5313 0.4724 0.5008 0.4993 0.5175 0.4036

Query Matching
MSRP Acc 0.5500 0.8900 0.8400 0.8200 0.8800 0.7100 0.8350 0.7950 0.6000

F1 0.5685 0.8900 0.8441 0.8200 0.8800 0.7241 0.8304 0.8018 0.6182

Query Intent Classification
MANtIS P@1 0.1450 0.4450 0.4500 0.0750 0.4650 0.4450 0.4650 0.4700 0.0800
ORCAS-I Acc 0.3700 0.4900 0.4900 0.3100 0.5000 0.5200 0.4600 0.5400 0.3800

F1 0.3359 0.4131 0.4226 0.2806 0.4319 0.4577 0.3914 0.4704 0.3021
TREC-Web Acc 0.2000 0.8000 0.9000 0.4500 0.6000 0.8000 0.9000 0.9000 0.2000

F1 0.2778 0.8433 0.9214 0.5143 0.6872 0.8133 0.9214 0.8863 0.2667

Table 12: Results for eight query understanding tasks on LLaMA-Chat with INTERS removing different tasks/datasets.
“Q” stands for “query understanding”, “D” means “document understanding”, “Q-D” means “query-document
relationship understanding”, “QIC” refers to “query intent classification”, “FV” indicates “fact verification”, and
“CP” denotes “citation prediction”.
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Task & Dataset Metric w/o Q w/o D w/o Q-D w/o QIC w/o FV w/o CP w/o Ds w/o Description w/o Template

Fact Verification
FEVER Acc 0.9250 0.6150 0.9200 0.9100 0.6800 0.9200 0.9500 0.8700 0.8600

F1 0.9225 0.6185 0.9195 0.9066 0.6914 0.9195 0.9503 0.8729 0.8632
Climate-FEVER Acc 0.6078 0.2288 0.5948 0.6013 0.2288 0.5752 0.4641 0.6013 0.4248

F1 0.5838 0.2208 0.5743 0.5646 0.1351 0.5588 0.3903 0.5847 0.3628
SciFact Acc 0.8052 0.6494 0.8312 0.8052 0.6753 0.8312 0.7013 0.6494 0.4935

F1 0.7665 0.6267 0.8107 0.7816 0.6459 0.8047 0.7146 0.6646 0.5156

Conversational QA
CoQA EM 0.3530 0.0000 0.3322 0.3285 0.3401 0.3350 0.3496 0.3504 0.0729
QuAC EM 0.1722 0.0000 0.1817 0.1632 0.2240 0.2051 0.2148 0.2141 0.0077

Summarization
CNN/DM ROUGE-1 0.3737 0.2568 0.3777 0.3557 0.3869 0.3845 0.3840 0.3923 0.3450

ROUGE-2 0.1679 0.1024 0.1726 0.1615 0.1676 0.1707 0.1675 0.1795 0.1568
ROUGE-L 0.2505 0.1768 0.2590 0.2413 0.2600 0.2576 0.2588 0.2685 0.2307

XSum ROUGE-1 0.3645 0.1584 0.3765 0.3607 0.3669 0.3574 0.1756 0.3723 0.1790
ROUGE-2 0.1372 0.0414 0.1554 0.1394 0.1501 0.1367 0.0460 0.1343 0.0679
ROUGE-L 0.2873 0.1294 0.3050 0.2799 0.2907 0.2824 0.1231 0.2868 0.1364

WIkiSum ROUGE-1 0.2783 0.1062 0.2788 0.2737 0.2807 0.3034 0.2773 0.3040 0.2734
ROUGE-2 0.1145 0.0417 0.1149 0.1095 0.1155 0.1261 0.1148 0.1230 0.1109
ROUGE-L 0.1741 0.0749 0.1781 0.1759 0.1796 0.1946 0.1764 0.1912 0.1749

MultiNews ROUGE-1 0.2191 0.0877 0.2275 0.2191 0.2241 0.2363 0.2237 0.2352 0.1749
ROUGE-2 0.0826 0.0275 0.0922 0.0801 0.0868 0.0891 0.0912 0.0942 0.0690
ROUGE-L 0.1142 0.0524 0.1239 0.1135 0.1216 0.1203 0.1217 0.1261 0.0936

Reading Comprehension
SQuAD F1 0.8225 0.1075 0.8324 0.7940 0.7908 0.7849 0.8492 0.7735 0.1880
HotpotQA F1 0.8518 0.1570 0.8753 0.8570 0.8643 0.8303 0.8823 0.8439 0.3230
MS MARCO F1 0.6872 0.2781 0.6430 0.6716 0.6727 0.6759 0.6502 0.6720 0.2286
BoolQ Acc 0.8250 0.6000 0.7950 0.8300 0.8550 0.8450 0.8300 0.7900 0.5900

F1 0.8274 0.5387 0.7947 0.8277 0.8563 0.8460 0.8330 0.7933 0.5970
WebGLM-QA BLEU1 0.5067 0.0002 0.5141 0.4977 0.5413 0.5090 0.5546 0.5081 0.0087

BLEU2 0.4132 0.0002 0.4173 0.4048 0.4399 0.4139 0.4471 0.4082 0.0065
ROUGE-L 0.4520 0.0647 0.4481 0.4468 0.4623 0.4547 0.4580 0.4487 0.0919

TriviaQA F1 0.3919 0.1173 0.3892 0.3809 0.4068 0.3858 0.4038 0.3809 0.2187

Table 13: Results for four document understanding tasks on LLaMA-Chat with INTERS removing different
tasks/datasets. “Q” stands for “query understanding”, “D” means “document understanding”, “Q-D” means
“query-document relationship understanding”, “QIC” refers to “query intent classification”, “FV” indicates “fact
verification”, and “CP” denotes “citation prediction”.
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Task & Dataset Metric w/o Q w/o D w/o Q-D w/o QIC w/o FV w/o CP w/o Ds w/o Description w/o Template

Passage Retrieval
MS-MARCO MRR@10 0.2544 0.2365 0.1805 0.2482 0.2557 0.2201 0.2360 0.2424 0.1376

NDCG@10 0.3090 0.2913 0.2254 0.3058 0.3114 0.2772 0.2934 0.2986 0.1813

Argument Retrieval
Touché-2020 MRR@10 0.3311 0.2313 0.4368 0.3251 0.2658 0.2093 0.2876 0.2068 0.2775

NDCG@10 0.1641 0.1197 0.1754 0.1603 0.1361 0.1063 0.1393 0.0936 0.1096
ArguAna MRR@10 0.2768 0.2866 0.0365 0.2428 0.2298 0.1994 0.2449 0.1690 0.1629

NDCG@10 0.4014 0.4044 0.0574 0.3621 0.3407 0.3078 0.3594 0.2640 0.2548

Bio-Medical IR
TREC-Covid MRR@10 0.7920 0.8065 0.8385 0.8907 0.8638 0.8240 0.8198 0.8829 0.6506

NDCG@10 0.5812 0.5928 0.5757 0.6593 0.6147 0.6292 0.6412 0.6285 0.4619
NFCorpus MRR@10 0.4425 0.4818 0.5347 0.5074 0.3605 0.3692 0.3263 0.3290 0.3319

NDCG@10 0.2758 0.2903 0.3148 0.3107 0.2059 0.2249 0.2026 0.2002 0.1941

Citation Prediction
SciDocs MRR@10 0.3211 0.2646 0.2452 0.3147 0.3276 0.2878 0.3475 0.2989 0.1965

NDCG@10 0.1827 0.1517 0.1366 0.1802 0.1866 0.1603 0.1993 0.1633 0.1097

Duplicate Question Retrieval
Quora MRR@10 0.8259 0.7926 0.6551 0.7793 0.8062 0.7861 0.7438 0.8231 0.6882

NDCG@10 0.8411 0.8135 0.6910 0.8060 0.8272 0.8079 0.7768 0.8383 0.7146
CQADupStack MRR@10 0.3458 0.3263 0.2487 0.3328 0.3358 0.3340 0.3496 0.3316 0.2429

NDCG@10 0.3365 0.3232 0.2666 0.3306 0.3326 0.3283 0.3392 0.3266 0.2665

Entity Retrieval
DBPedia MRR@10 0.7157 0.7053 0.5585 0.7329 0.7300 0.6734 0.7267 0.7239 0.5552

NDCG@10 0.3955 0.3793 0.2974 0.4041 0.4115 0.3695 0.4084 0.4090 0.2823

Fact Checking
FEVER MRR@10 0.8732 0.8671 0.3111 0.8845 0.8794 0.8658 0.8698 0.8753 0.7681

NDCG@10 0.8547 0.8485 0.3288 0.8618 0.8601 0.8495 0.8524 0.8554 0.7644
Climate-FEVER MRR@10 0.3130 0.3469 0.1360 0.3628 0.3869 0.3140 0.3855 0.2771 0.1100

NDCG@10 0.2362 0.2476 0.1013 0.2647 0.2797 0.2340 0.2780 0.2049 0.0842
SciFact MRR@10 0.7265 0.6951 0.3260 0.7143 0.7648 0.6611 0.7378 0.7039 0.1721

NDCG@10 0.7540 0.7276 0.3488 0.7512 0.7872 0.6996 0.7668 0.7289 0.2046

Question Answering
NQ MRR@10 0.4472 0.4239 0.2951 0.4452 0.4803 0.4164 0.4295 0.4638 0.3261

NDCG@10 0.4868 0.4647 0.3398 0.4867 0.5150 0.4617 0.4697 0.5003 0.3736
MRR@10 0.4663 0.4325 0.2569 0.4157 0.4724 0.3845 0.4693 0.4249 0.3094
NDCG@10 0.3838 0.3553 0.2068 0.3480 0.3923 0.3277 0.3809 0.3541 0.2708

HotpotQA MRR@10 0.8787 0.8558 0.3223 0.8787 0.8954 0.8548 0.8827 0.8975 0.7929
NDCG@10 0.7427 0.7195 0.2702 0.7383 0.7565 0.7275 0.7477 0.7562 0.6777

Table 14: Results for eight query-document relationship understanding tasks on LLaMA-Chat with INTERS removing
different tasks/datasets. “Q” stands for “query understanding”, “D” means “document understanding”, “Q-D” means
“query-document relationship understanding”, “QIC” refers to “query intent classification”, “FV” indicates “fact
verification”, and “CP” denotes “citation prediction”.

Query Description

Input
The query description task involves describing documents potentially relevant to a user-provided query. Queries typically
comprise keywords reflecting the user’s information needs. The objective of the task is to articulate the characteristics and
content of documents that would be considered pertinent to these keywords, aiding in the understanding and retrieval of
relevant information.

Query: Bhopal gas tragedy

What are the relevant documents?

Target
Relevant documents should contain information about the controversies ensuing after the verdict was passed on the long
drawn legal tussle related to the Bhopal gas tragedy. The people’s response to the verdict is valuable information too.

Table 15: A data example of the query description task. Data source: FIRE.
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Query Expansion

Input
The query expansion task involves elaborating an original, brief query into a longer, more detailed version while preserving
the original search intent. This process enhances the search engine’s understanding of the user’s needs, leading to more
accurate and relevant document retrieval.

What is the expansion of this query:

what does cybercrime mean

Target
Cybercrime is a broad term that refers to any criminal activity that involves the use of computer technology. It can
include anything from fraudulent bank transfers to identity theft, posting of threatening messages online and distribution
of malicious software. Cybercriminals use sophisticated software and hardware to commit their crimes, and their targets
can range from individuals to large companies and organizations.

Table 16: A data example of the query expansion task. Data source: Query2Doc.

Query Reformulation

Input
The query reformulation task enhances user-input queries to be more explicit and comprehensible for search engines. It
addresses omissions typical of user queries, which often exclude common sense or contextually implied information. The
refined query, therefore, includes all necessary details to guide the search engine towards retrieving the most relevant
documents.

The question is “How much of a threat are ETFs to actively-managed Asset Managers?”. How can we rewrite the question
in a new way?

Target
Reformulations: [1] Why do actively managed funds rarely beat the market? [2] How much of a threat are ETFs to
actively-managed Asset Managers? [3] Passive vs active managed funds

Table 17: A data example of the query reformulation task. Data source: CODEC.

Query Clarification

Input
The query clarification task addresses unclear or ambiguous user queries by asking for further details or providing
clarification options. This process helps refine the query, resulting in clearer and more precise search terms for improved
search engine results.

Considering the query “what did the emancipation proclamation do”, what clarification options would you suggest?

Target
[1] how did [2] who did

Table 18: A data example of the query clarification task. Data source: MIMICS.

Query Subtopic Generation

Input
The query subtopic generation task addresses the ambiguity of web searches by identifying and presenting various aspects
of the initial query. This approach aids search engines in understanding the query’s breadth, leading to more diverse and
relevant search results.

Here are some descriptions about the query “wind power”: What are the pros and cons of using wind power. Generate the
query’s subtopics.

Target
Subtopics: (1) What are the pros and cons of using wind power. (2) Find information on wind power in the USA. (3) Find
information on wind power companies. (4) Find information on residential (home) wind power. (5) Find information on
how wind turbines work. (6) Find pictures of wind turbines used for wind power. (7) Find pictures of a wind farm.

Table 19: A data example of the query subtopic generation task. Data source: TREC-Web.
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Query Suggestion

Input
In search sessions, users often input a series of queries to fulfill a specific information need. The query suggestion task
aims to analyze these queries and associated search behaviors to understand the user’s intent and predict the next likely
query, thereby enhancing the search experience.

The search context is presented below:
Query: tickets for nba draft
Document title: tickets com online ticket broker selling tickets for concerts sports and theater events.
Can you predict the next query?

Target
nba draft tickets

Table 20: A data example of the query suggestion task. Data source: AOL.

Query Intent Classification

Input
User queries can have various search intents, such as informational (seeking knowledge about a topic), transactional
(aiming to purchase a product), or navigational (looking to find a specific website). Accurately discerning the type of
intent behind a query is crucial for search engines to tailor and refine their results effectively.

“voting locations by zip code”
What is the intent type of the query? Select one from the following options:
(A) factual
(B) abstain
(C) instrumental
(D) transactional
(E) navigational

Target
factual

Table 21: A data example of the query intent classification task. Data source: ORCAS-I.

Query Matching

Input
The query matching task involves determining whether two queries or texts, despite differing in expression, convey the
same meaning. This is crucial in search tasks where identifying synonymous queries can enhance the relevance and
accuracy of results.

The driver, Eugene Rogers, helped to remove children from the bus, Wood said.

At the accident scene, the driver was “covered in blood” but helped to remove children, Wood said.

Do the above sentences mean the same thing?

Target
no

Table 22: A data example of the query matching task. Data source: MSRP.
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Fact Verification

Input
The fact verification task is to assess whether a claim is supported or refuted by the given evidence. It requires a clear
analysis of the relationship between the claim and the evidence, with careful examination to determine if there is enough
information for making a judgment. It aids search engines in achieving a deeper comprehension of the documents.

“U2 is a Scottish rock band.”
Based on “(1) Title: U2 Content: U2 are an Irish rock band from Dublin formed in 1976 . (2) Title: U2 Content: Within
four years , they signed with Island Records and released their debut album , Boy 1980 . (3) Title: U2 Content: Subsequent
work such as their first UK number-one album , War 1983 , and the singles “ Sunday Bloody Sunday ” and “ Pride In the
Name of Love ” helped establish U2 ’s reputation as a politically and socially conscious group . (4) Title: U2 Content:
The group ’s fifth album , The Joshua Tree 1987 , made them international superstars and was their greatest critical and
commercial success . (5) Title: U2 Content: Topping music charts around the world , it produced their only number-one
singles in the US , “ With or Without You ” and “ I Still Haven’t Found What I ’m Looking For ” . (6) Title: U2 Content:
Beginning with their acclaimed seventh album , Achtung Baby 1991 , and the multimedia intensive Zoo TV Tour , the
band integrated influences from alternative rock , electronic dance music , and industrial music into their sound , and
embraced a more ironic , flippant image . (7) Title: U2 Content: This experimentation continued through their ninth
album , Pop 1997 , and the PopMart Tour , which were mixed successes . (8) Title: U2 Content: U2 regained critical and
commercial favour with the records All That You Ca n’t Leave Behind 2000 and How to Dismantle an Atomic Bomb
2004 , which established a more conventional , mainstream sound for the group . (9) Title: U2 Content: The group ’s
thirteenth album , Songs of Innocence 2014 , was released at no cost through the iTunes Store , but received criticism for
its automatic placement in users’ music libraries.”, which label support or refute should be assigned?

Target
refute

Table 23: A data example of the query matching task. Data source: FEVER.

Conversational QA

Input
Conversational question-answering involves responding to a series of interrelated questions based on a given context. As
these questions might build upon shared information, some details may be implicitly understood rather than explicitly stated.
By comprehensively understanding and analyzing this dialogue structure, search engines can enhance their interpretation
of user queries and their connections to relevant documents, thereby improving result accuracy and relevance.

In the context provided, answer the following questions:
Malawi (, or ; or [maláwi]), officially the Republic of Malawi, is a landlocked country in southeast Africa that was formerly
known as Nyasaland. It is bordered by Zambia to the northwest, Tanzania to the northeast, and Mozambique on the east,
south and west. Malawi is over with an estimated population of 16,777,547 (July 2013 est.). Its capital is Lilongwe, which
is also Malawi’s largest city; the second largest is Blantyre, the third is Mzuzu and the fourth largest is its old capital
Zomba. The name Malawi comes from the Maravi, an old name of the Nyanja people that inhabit the area. The country is
also nicknamed “The Warm Heart of Africa”.

Malawi is among the smallest countries in Africa. Lake Malawi takes up about a third of Malawi’s area.

The area of Africa now known as Malawi was settled by migrating Bantu groups around the 10th century. Centuries later
in 1891 the area was colonised by the British. In 1953 Malawi, then known as Nyasaland, a protectorate of the United
Kingdom, became a protectorate within the semi-independent Federation of Rhodesia and Nyasaland. The Federation was
dissolved in 1963. In 1964 the protectorate over Nyasaland was ended and Nyasaland became an independent country
under Queen Elizabeth II with the new name Malawi. Two years later it became a republic. Upon gaining independence it
became a one-party state under the presidency of Hastings Banda, who remained president until 1994, when he lost an
election. Arthur Peter Mutharika is the current president. Malawi has a democratic, multi-party government. The country
has a Malawian Defence Force that includes an army, a navy and an air wing. Malawi’s foreign policy is pro-Western
and includes positive diplomatic relations with most countries and participation in several international organisations,
including the United Nations, the Commonwealth of Nations, the Southern African Development Community (SADC),
the Common Market for Eastern and Southern Africa (COMESA), and the African Union (AU).
Questions: (1) Who settled in Malawi? (2) when? (3) What does the defence force include? (4) What does COMESA
stand for? (5) Is it a large country? (6) When was it colonized? (7) By who? (8) What was it called before Malawi?
(9) when was the federation dissolved? (10) What is the capital city? (11) What is the biggest lake? (12) how much of
Malawi’s space does it take up? (13) What is AU?

Target
(1) Bantu groups (2) 10th century (3) army, a navy and an air wing (4) Common Market for Eastern and Southern Africa
(5) No (6) 1891 (7) British (8) Nyasaland (9) 1963 (10) Lilongwe (11) Lake Malawi (12) a third of Malawi’s area (13)
African Union

Table 24: A data example of the conversational QA task. Data source: CoQA.
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Reading Comprehension

Input
The reading comprehension task requires generating an answer to a question using the information from a given context.
It necessitates a deep understanding of the text’s context and semantics, enabling search engines to more accurately rank
the relevance of retrieved documents based on this nuanced comprehension.

Question: Who was the county where Jed Prouty Tavern and Inn is located named after?
Consult the provided facts and generate your answer

1. The Jed Prouty Tavern and Inn is an historic building at 57 Main Street in downtown Bucksport, Hancock County,
Maine.
2. The county was incorporated on June 25, 1789 and named for John Hancock, the first governor of the Commonwealth
of Massachusetts.

Target
John Hancock

Table 25: A data example of the reading comprehension task. Data source: HotpotQA.

Reranking

Input
In the reranking task, search engines must understand the relationship between the user’s query, which may be keywords
or a sentence, and the potential documents. The goal is to ensure that the most relevant documents, those that best cover
the user’s information needs, are ranked highest. This requires a nuanced understanding of both the query’s intent and the
content of the documents.

Investigate the relationship between the document:
What’s the point of your question? Are looking for the alcoholic drinks that will least interfere with your fat loss goals or
make you pack on the least fat? Straight distilled liquor has zero carbs, all the calories are from alcohol. Drink with ...
and query - what alcohol has the least amount of carbs. Ascertain the document’s relevance to the given query, providing a
definitive response of ‘Yes’ if the document is relevant to the query or ‘No’ if not.

Target
Yes

Table 26: A data example of the reranking task. Data source: MS MARCO.
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