
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2687–2699
August 11-16, 2024 ©2024 Association for Computational Linguistics

Is Table Retrieval a Solved Problem?
Exploring Join-Aware Multi-Table Retrieval

Peter Baile Chen
MIT

peterbc@mit.edu

Yi Zhang *

AWS AI Labs
imyi@amazon.com

Dan Roth
University of Pennslyvania
danroth@seas.upenn.edu

Abstract

Retrieving relevant tables containing the neces-
sary information to accurately answer a given
question over tables is critical to open-domain
question-answering (QA) systems. Previous
methods assume the answer to such a ques-
tion can be found either in a single table or
multiple tables identified through question de-
composition or rewriting. However, neither of
these approaches is sufficient, as many ques-
tions require retrieving multiple tables and join-
ing them through a join plan that cannot be
discerned from the user query itself. If the join
plan is not considered in the retrieval stage,
the subsequent steps of reasoning and answer-
ing based on those retrieved tables are likely
to be incorrect. To address this problem, we
introduce a method that uncovers useful join re-
lations for any query and database during table
retrieval. We use a novel re-ranking method
formulated as a mixed-integer program that
considers not only table-query relevance but
also table-table relevance that requires inferring
join relationships. Our method outperforms the
state-of-the-art approaches for table retrieval
by up to 9.3% in F1 score and for end-to-end
QA by up to 5.4% in accuracy.

1 Introduction

Structural tables are an important source of knowl-
edge for many real-world applications, such as
open domain question answering (Herzig et al.,
2021) and open fact-checking (Schlichtkrull et al.,
2021). A standard paradigm to leverage structural
tables as a knowledge source follows first retrieving
relevant tables, then conducting standard question
answering or fact verification over those top-ranked
tables. This setup has been recently adopted by Re-
trieval Augmented Generation (RAG) (Lewis et al.,
2020; Pan et al., 2022; Gao et al., 2023), trying to
address the issue of knowledge update (Yu et al.,
2022) and hallucination (Maynez et al., 2020; Zhou

*Work was done before joining AWS.

et al., 2021) of Large Language Models (LLMs).
Once the tables required to answer the user prompt
are identified, they will then be fed to LLMs with
either zero-shot prompts or in-context learning ex-
amples (Brown et al., 2020) to generate the final
answer. Since the reasoning and answer generation
is conditioned on the retrieved tables, table retrieval
is a critical problem. Recent works (Herzig et al.,
2021; Wang et al., 2022) have proposed to learn a
model that can capture the similarity between table
contents and the given query using either a text or
table-specific model design. However, these works
simplify the table retrieval problem in real-world
open-domain settings. The reasons are as follows.

First, to answer a question or verify a fact rel-
evant to structural tables, we may need multiple
tables. For example, given a database and a query
"Who are the female BOA account holders who
own credit cards and also have loans?", ideally, we
may want to find an account table with a schema
including columns such as account_id, gender,
card_id, loan_id, as shown in the first block in
Figure 1, which we can directly use to answer the
query by writing a SQL query. However, in real-
world databases, it is not very likely that all the in-
formation is stored in a single table. In our running
example, since a client can have multiple credit
cards and loans, to avoid repeating information
which leads to a very large table, the single table
is typically split into three separate joinable tables,
i.e., an Account table, a Card table, and a Loan
table. All these tables need to be retrieved to an-
swer the query correctly. Therefore, table retrieval
should not only target retrieving a single relevant
table but always multiple tables.

Secondly, retrieving multiple tables requires un-
derstanding the relationship among candidate ta-
bles, which is independent of how the query is
framed. A straightforward approach to solve multi-
table retrieval can be training a model that can de-
compose queries (Schick et al., 2023), so that each

2687

Figure 1: Previous work makes simplifying assumptions for table retrieval. Left block assumes there exists a single
table that is sufficient to answer the question. Middle block assumes necessary joins can be recovered from query
decomposition. However, in practice, the question may be more complicated and the join plan may not be discerned
from the user query itself (right block). Therefore it is important to identify the join relationship while conducting
table retrieval.

query is aligned to a table. In our running exam-
ple, the query mentions account, credit cards,
and loans, which may indicate the set of required
tables. Although the decomposition aligns with
how the query is framed, it might not align with
how relevant data are organized and stored. For
instance, relevant tables might have the following
structures:

Client Info (id, gender, card_id, ...)
Disp (disp_id, client_id, account_id ...)
Loan (loan_id, account_id, amount...)
In this case, we may need to join all of them, as

shown in the third block in Figure 1, to answer the
given query. However, we may also find another
set of tables, for example:

Card (card_id, type, issued, ...)
Client (client_id, gender, birth date, ...)
Loan (loan_id, client_id, amount, ...)
Although this set of tables seems to be highly

relevant, it is not the right set of tables to return
because they cannot be joined. In particular, the
relationship between the cards listed in the Card
table and the clients in the Client table is miss-
ing, and therefore they can not produce the answer.
Importantly, only if it understands the relationship
among tables can the model determine which set
of tables to return.

Last but not least, the relationship among tables
needs to be inferred. Previous works in Text-to-
SQLs (Yu et al., 2018a; Li et al., 2023b; Lee et al.,
2021) have considered table joins when generating

SQL expressions. However, they all assumed that
the key-foreign-key constraints (join relationships)
had already been provided with the database. In
reality, this is not always possible, in particular
when we are searching from data lakes (Zhu et al.,
2019; Nargesian et al., 2019; Zhang and Ives, 2020;
Cong et al., 2022) or simply a big dump of tables,
which introduces additional challenges during the
retrieval.

To sum up, the problem of table retrieval was
simplified in previous works, whereas it can be
more challenging in a real-world open-domain
setup. To solve the problems we have discussed,
in this paper, we formulate the multi-table retrieval
problem as a re-ranking problem over a ranked
list of tables produced by a standard table retrieval
method, and we developed an algorithm to select
the best set of tables during test time by consider-
ing both relevance and join relationship together.
We conduct extensive experiments on Spider (Yu
et al., 2018a) and Bird (Li et al., 2023a) datasets,
demonstrating that our re-ranking mechanism out-
performs baselines in both retrieval and end-to-end
performances.

2 Problem Description

A standard table retrieval problem for an open-
domain question-answering task over tables can
be defined as follows. Given a query Q, a table
corpus C = {Ti}Mi=1, retrieve a table Ti from C,

2688

such that the answer of Q resides in Ti. This paper
extends the problem definition to consider multiple
tables that require table joins.

Specifically, given a query Q, a table corpus C,
rather than returning a single table Ti ∈ C, our
problem is to return a ranked list of tables with join
operators denoted as E(Q), such that the answer
of Q resides in the tables in E(Q). Here E(Q) =
{TQ,1 1c1 TQ,2, ...} , where TQ,1, TQ,2, ... ∈ C,
and c1, ... represent the join conditions. For ex-
ample, if table Client Info’s column id should
join table Disp on its column client_id, then
ci = (id, client_id).

3 Join-aware Multi-Table Retrieval

To address the problem described in the section
above, i.e., identifying the best table expression
over a subset of tables from the given databases,
we need to consider two aspects. One is table-query
relevance, which estimates how likely a candidate
table contains the information that can be used to
answer the query. The other one is table-table rele-
vance, which is to identify the tables that contain
complementary information belonging to the same
objects. In this case, table-table relevance is equiv-
alent to how likely tables can be joined.

We note that these two components should be
considered simultaneously to answer the query be-
cause only tables that are relevant to the query and
compatible with each other can provide sufficient
information to answer the query. Therefore, we
propose to solve the problem by adjusting the rank-
ing produced by table-query relevance based on
relationships inferred from table-table relevance to
find the best retrieval result.

In the following sections, we will focus on this
re-ranking problem, developing a computational
framework that can consider and infer the join rela-
tionship while generating the new table ranking to
help answer the query.

3.1 Query-Table Relevance

A standard way to compute query-table relevance is
to compute a similarity score through a bi-encoder
model architecture (Chen et al., 2020b; Huang
et al., 2022; Herzig et al., 2021). Such a simi-
larity score can capture coarse-grained relevance.
However, real queries can be complicated (e.g.,
multi-hop questions). The relevant information to
answer the query may be distributed across mul-
tiple tables, and each table that should be used to

answer the query may be only mapped to a part of
the query. In our running example, a Card table
may only tell us "who own credit cards" but not
"who have loans".

Therefore, we argue that fine-grained query-
table relevance scores are also necessary so that
we can find relevant tables (and their columns) for
different information that is required to answer the
query. To achieve this, we compute the score by
first decomposing the query and then computing
the semantic similarity between each sub-query
and columns from candidate tables.

Specifically, for a query Q, we want to decom-
pose it into sub-queries that can potentially be
mapped to tables and columns. To achieve this goal,
rather than simply using keywords, we use concept
and its attribute mentioned in Q as a pair to repre-
sent a sub-query. For instance, the query “What is
the id of the trip that started from the station with
the highest dock count?” requires information rele-
vant to two main concepts: trip and station. More
specifically, the query needs information about the
attribute “id” from the trip concept and the attribute
“dock count” from the station concept. Therefore,
the query should be decomposed into ⟨trip, id⟩ and
⟨station, dock count⟩, which may better indicate
that we need to look for a table about trip with id
information, and a table about station with dock
information respectively.

To perform the decomposition, we use an LLM
(GPT-3.5 Turbo for our experiment) directly by
feeding the prompt stated in A.1 to it1. Then, for
each sub-query q ∈ Q, the similarity rqik between
q and column ck of table Ti is calculated as the
semantic similarity between q and column ck using
a standard bi-encoder model (Izacard et al., 2021).

3.2 Table Re-ranking with Table-Table
Relevance

As discussed above, we prefer tables with high
query-table relevance and table-table relevance.

For query-table relevance, we consider both
coarse-grained and fine-grained relevance intro-
duced in Section 3.1, so that we can find the ta-
bles that are most relevant to all the information
that is required to answer the query. To ensure
the coverage of different information, we further
complement the relevance score with a coverage
measurement, which will be described in detail in
Section 3.2.1.

1We used 5 ICL examples.

2689

For table-table relevance, we consider the com-
patibility among the returned tables, i.e., whether
selected tables can join with each other. The com-
patibility (joinability) helps us ensure that the in-
formation from the selected tables is compatible —
the information is about the same group of entities
or objects, so that we can use all of them to answer
the query correctly. Therefore, during the process
of selecting tables that can maximize the compat-
ibility scores, we further encourage the selected
tables to be chained through join, which will be
discussed in Section 3.2.2.

All in all, we formulate the re-ranking problem
as an optimization problem, maximizing the sum
of the aforementioned components as a Mixed-
integer Linear Program (MIP). To incorporate the
coarse-grained relevance scores, we define the bi-
nary decision variable bi that denotes whether table
Ti ∈ C is chosen to be returned and parameter
ri that denotes the coarse-grained relevance score
between the input query and table Ti. The maxi-
mization term, the total coarse-grained relevance
of tables selected, is

∑
i ribi. Similarly, to consider

the fine-grained relevance scores, we introduce the
binary decision variable dqik that denotes whether
or not sub-query q is covered by column ck of
table Ti and parameter rqik that denotes the fine-
grained relevance score between sub-query q and
column ck of table Ti. The maximization term, the
total fine-grained relevance of each sub-query, is∑

q,i,k rqikdqik. To take into account the compati-
bility scores, we define the binary decision variable
cklij that describes whether column ck of table Ti is
selected to join with column cl of table Tj and pa-
rameter ωkl

ij that denotes the compatibility between
column ck of Ti and column cl of table Tj . The
maximization term, the total pair-wise compatibil-
ity of columns selected, is

∑
i,j,k,l ω

kl
ij c

kl
ij .

Objective. Using the above variables, parameters,
and three maximization terms, we define our ob-
jective function to return the best K tables in the
following equation

argmax
∑

i

ribi +
∑

q,i,k

rqikdqik +
∑

i,j,k,l

ωkl
ij c

kl
ij

The objective function is subject to the following
six constraints:

Constraint 1. The integral constraint ensures the
decision variables are binary, as defined above.

bi, c
kl
ij , dqik ∈ {0, 1} (1)

Constraint 2. This constraint sets the maximum
number of tables and join relationships that can be
selected according to the input K, as mentioned in
the objective.

∑

i

bi = K,
∑

i,j,k,l

cklij ≤ K − 1 (2)

Constraint 3. This constraint enforces that a pair of
columns from two tables should only be selected if
these two tables are selected to return.

2(cklij + clkji) ≤ bi + bj ,∀i, j, k, l (3)

Constraint 4. For simplicity, we assume that tables
are always joined via a single-column key, while
we leave joining with compound keys in future
work. This constraint requires that if two tables are
selected to join, they join via a single column from
each table. ∑

k,l

cklij ≤ 1 (4)

Constraint 5. This constraint requires each sub-
query is covered by at most one column of a table.

∑

k

dqik ≤ 1,∀q, i (5)

Constraint 6. This constraint requires that tables
used to cover sub-query must be selected to return.
|Q| is the number of sub-queries.

1

|Q|
∑

q

dqik ≤ bi, ∀i, k (6)

3.2.1 Sub-query Coverage
The main purpose of measuring fine-grained table-
query relevance is to find different columns (may
or may not come from the same table) that can map
to different parts of the query, so that all informa-
tion required to answer the query can be covered.
Although we have

∑
q,i,k rqikdqik in the objective

function to maximize the overall relevance between
different parts of the query and columns, it may be
biased to aligning a sub-query (weakly) to many
columns to maximize the term rather than aligning
a sub-query strongly to one column.

Therefore, to encourage strong mappings, we
further introduce the following modifications to
the MIP formulation. We add an upper limit on
the total number of coverage connections between
sub-queries and tables that equals to the number of

2690

sub-queries. To prevent some sub-queries from not
being covered, we introduce the binary decision
variable dq to denote whether or not sub-query q is
covered by at least one column. We then add the
sum of dq terms α

∑
q dq to the objective function.

The α coefficient is a knob that controls which
strategy to adopt. Large α increases the importance
of covering every sub-query covered, which prefers
a single table with strong mappings. A low α,
on the other hand, prefers many tables with weak
mappings. The detailed constraints are included in
Appendix B.1.

3.2.2 Connectedness
We consider a graph where tables are nodes and
compatibility relationships between two tables are
edges. To ensure selected tables are compatible
with each other, as discussed at the beginning of
Section 3.2, we formulate the following connected-
ness problem on this graph: the K selected nodes
are connected (i.e., any two nodes can be reached
by some paths). This problem can be solved by
augmenting the original graph and reducing it to
a maximum flow problem where connectedness is
ensured if and only if the max total flow between
source and sink is K (Even and Tarjan, 1975).

To ensure connectedness among the selected
tables N = {Ti|Ti ∈ C, bi = 1}, we create
an augmented graph G′ = (N ′, E′) based on
G = (N,E), with the following modifications:
(1) N ′ = N ∪ {source, sink} (2) E′ = E ∪
{(source, x)} ∪ {(n, sink), ∀n ∈ N} where x is
a node in N . Then, we define the capacity h(m,n)
for each edge between nodes m and n in N ′. All
edges have 0 capacity except the following:

h(source, x) = K,h(n, sink) = 1, ∀n ∈ N

h(m,n) = K,∀m,n ∈ N

We include the complete set of constraints in Ap-
pendix B.2.

3.3 Table-Table Relationship Inference

The compatibility between two tables can be rep-
resented as the most joinable pair of columns be-
tween the two tables. To compute the joinablity
between two columns, we consider two aspects:
column relevance and the likelihood of satisfying
the key foreign-key constraint.

A column consists of its schema (header) and
instances (rows). Naturally, to compute column
relevance, we consider the similarity between its

schema and instances. To measure the similar-
ity between column instances, we compute the
exact-match overlap (Jaccard similarity). Given
two columns, ck of Ti and cl of Tj , it is defined as
|I(ck)∩I(cl)|
|I(ck)∪I(cl)| where I(ck) represents the instances
of column ck. To have a holistic understanding
of the column schema, we consider the semantic
similarity between two column headers as well as
their contextual information, i.e., the correspond-
ing table names and the other columns in the table.
Specifically, we encode each segment using a pre-
trained embedding model (Izacard et al., 2021),
and compute the cosine similarity as the similarity
score of each segment. Schema similarity is the
weighted sum of similarities of all segments. Col-
umn relevance is the sum of instance similarity and
schema similarity.

We want to further ensure the correctness of join-
ing two columns by considering key foreign-key
constraints. For instance, consider table T1 with
columns: {student_id, city}, with rows: {⟨1,
BOS⟩, ⟨2, BOS⟩} and table T2 with three columns:
{teacher_id, student_id, city} with three rows:
{(1, 1, BOS), (2, 1, BOS), (2, 2, BOS)}. Teachers
want to see the cities of students their students are
from, so they join T1 and T2, for example, over
city. However, this join is incorrect because it
creates incorrect teacher-student pairs (e.g., teacher
1 and student 2). A legal join, instead, should cor-
rectly connect information from two tables. This
occurs when the column ck with duplicate values
(the foreign key) from Ti joins another column cl
(the primary key) from Tj where each of ck’s value
is unique. In short, we want to encourage joins
between two columns where at least one of them is
a primary key.

To address this, we compute the uniqueness u of
both columns ck and cl and use max{u(ck), u(cl)}
to approximate the likelihood of these two columns
satisfying the key foreign-key constraint. Unique-
ness is defined as the ratio between the number
of unique values in a column and the number of
instances in the table. If a column is a primary key,
its uniqueness score equals to 1, whereas if a col-
umn is a foreign key, the uniqueness score should
generally be smaller than 1 because they are likely
to be repeated (e.g., city column). Note we take
the max of the two uniqueness score because we
only need at least one of the two columns to be a
primary key.

To summarize, joinablity score ωkl
ij comprises

2691

two components: (1) column relevance that in-
cludes both instance similarity j and schema sim-
ilarity e (2) likelihood of satisfying key-foreign
key constraint, which is the maximum of the
uniqueness u of two columns. Specifically, ωkl

ij =
(e(ck, cl) + j(ck, cl)) ∗max{u(ck), u(cl)}.

4 Evaluation

In this section, we evaluate the baselines and our
re-ranking method on datasets whose questions
require multiple tables to answer. The goal is to
answer the following two research questions: (1)
To what extent can our re-ranking method, which
jointly considers query-table relevance and table-
table relevance, improve the existing table retrieval
solutions that consider only standard query-table
relevance? (2) To what extent can a better retrieval
performance due to our re-ranking method enhance
the end-to-end performance of question answering
over tables?

4.1 Experimental Settings
Datasets. To the best of our knowledge, there
are no existing large-scale open-domain question-
answering datasets that consider multiple tables2.
Therefore, we use text-to-SQL datasets which natu-
rally consider multiple tables for our evaluation, but
under an open-domain question-answering setup.
In this case, it is required to first retrieve tables from
a table corpus, then answer the query by generating
an SQL expression. Specifically, we run evaluation
on two popular text-to-SQL datasets: Spider (Yu
et al., 2018b) and Bird (Li et al., 2023a). In these
two datasets, tables are organized by topic, and
each topic has its own database (around 5.4 tables
per database) and queries that can be answered. To
make these datasets suitable for our setting, we ag-
gregate tables from all databases to construct a cen-
tralized table corpus for each dataset. The original
datasets contain key foreign-key constraints. How-
ever, as described in Section 1, such constraints are
not always specified and may need to be inferred
during test time. Therefore, we perform evalua-
tions on two setups: with and without the gold key
foreign-key constraints provided by the original
datasets (if gold constraints are provided, we set
the compatibility score of the corresponding pairs
of columns to 1). Moreover, since we focus on
queries that require multiple tables to answer, we

2KaggleDBQA (Lee et al., 2021) has only 26 queries in-
volving multiple tables, which is not a representative dataset
for our task.

omit those that only use one table to construct the
gold SQL expression. We also remove queries with
incorrect answers through human inspection. We
provide examples to explain the removal process
in Appendix C. The above procedure leads to 443
queries and 81 tables for Spider, and 1095 queries
and 77 tables for Bird.

Baselines. We set up two baselines for our eval-
uation. First of all, we consider a strong text re-
trieval model without explicitly considering the ta-
ble structure (Izacard et al., 2021). It is inspired by
the study from Wang et al. (2022) that table-specific
model design may not be necessary for table re-
trieval. Specifically, we use Contriever-msmarco3

to compute the embeddings for the given query and
the flattened tables. The ranking of tables is based
on the cosine similarities between the query and
the tables. Then, we consider a retrieval method,
which is designed for table retrieval, DTR (Herzig
et al., 2021). Specifically, we finetuned TAPAS-
large4 following DTR on the tables in the training
set (with a 8:2 train-valid split) of each dataset re-
spectively. Then, the fine-tuned model outputs a
score for each question-table pair, which is used
for ranking candidate tables.

Environment. We use Python-MIP 5 package
and Gurobi as our MIP solver. Fine-tuning of
DTR models as well as computing coarse- and
fine-grained relevance scores are performed on one
Tesla V100 GPU.

Tasks and Metrics. We conduct the following
two types of evaluation.

Retrieval Only Evaluation. This evaluation is to di-
rectly evaluate to what extent our re-ranking mech-
anism can improve the baselines with regard to
retrieving tables for given queries. We report preci-
sion, recall and F1 varying k for our methods and
the baselines.

End-to-end evaluation. The end-to-end evaluation
is to study whether the improved table retrieval can
actually help the downstream task, e.g., question an-
swering. Specifically, the ranked tables from vari-
ous retrieval methods are used to construct prompts
(A.26), which will be fed to an LLM to generate an

3https://huggingface.co/facebook/contriever-msmarco
4https://huggingface.co/google/tapas-large
5https://www.python-mip.com/
6We used one ICL example to teach the model how to

generate the output.

2692

Top-2 Top-5 Top-10

Spider Bird Spider Bird Spider Bird

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Baselines — Standard Retrieval Approach

DTR 81.4 77.4 78.9 64.9 58.9 61.3 41.0 95.8 57.1 37.2 82.9 50.9 21.3 99.3 34.9 21.5 95.4 34.8
Contriever 76.2 72.7 74.0 65.0 59.4 61.6 39.8 93.3 55.5 37.0 82.9 50.8 20.6 96.3 33.8 21.1 93.9 34.3

Our methods — Full Re-ranking

JAR-F (DTR) 87.1 82.9 84.5 76.1 69.3 72.0 41.9 97.8 58.3 40.2 89.7 55.1 21.3 99.7 35.0 21.7 96.6 35.3
JAR-F (Con.) 82.8 79.1 80.5 73.4 67.0 69.5 39.9 93.7 55.7 40.3 89.9 55.2 20.7 96.6 33.9 21.5 95.4 34.9

Full Re-ranking with gold key foreign-key constraints

JAR-G (DTR) 92.2 87.9 89.6 78.0 71.1 73.8 42.4 99.2 59.1 40.9 91.3 56.0 21.4 99.9 35.1 22.1 97.8 35.8
JAR-G (Con.) 89.2 85.8 87.1 76.7 70.2 72.7 40.3 95.0 56.3 40.4 90.1 55.3 20.6 96.6 33.8 21.8 96.5 35.3

Ablation study: Full Re-ranking without table-table relevance

JAR-D (DTR) 86.4 82.3 83.9 74.7 68.1 70.7 41.4 96.7 57.6 39.5 88.4 54.2 21.3 99.5 35.0 21.6 96.2 35.1
JAR-D (Con.) 81.7 78.1 79.5 72.7 66.3 68.8 39.8 93.3 55.5 39.2 87.5 53.7 20.6 96.4 33.8 21.3 94.5 34.5

Table 1: Our methods outperform baselines in retrieval performances across all datasets. The top half of the table
shows that our full re-ranking attains higher retrieval performances than the standard retrieval methods: DTR and
Contriever. Boldface numbers indicate the best performances in the top half of the table. The bottom half of the
table shows our approach can effectively use constraints if provided to achieve even better performances. It also
shows an ablation suggesting that table-table relevance is essential to the retrieval.

SQL expression to answer the query. In our experi-
ments, we use GPT-3.5 Turbo 1106 (temperature
= 0) as our backbone LLM. To evaluate the end-to-
end performance, generated SQL expressions are
executed, and we compare the results with those
from gold SQL expressions to report the execution
accuracy. Moreover, we report the precision, recall
and F1 scores of the tables used in the final SQL
expression to demonstrate that better retrieval leads
to a better selection of tables by the LLM.

We use the following notations: we use X (e.g.,
DTR) to denote the original baseline approach,
JAR-D (X) to denote our re-ranking approach
based on X but only considering the fine-grained
query-table relevance without table-table relevance,
JAR-F (X) to denote our full re-ranking mecha-
nism based on X, and JAR-G (X) to denote the
same approach as JAR-F (X) but using the pro-
vided gold key foreign-key constraints.

In the following sections, we discuss the results
for table retrieval in Section 4.2 and the end-to-end
question answering task in Section 4.3. We also
include an ablation study as well as a discussion of
the results when gold key foreign-key constraints
are available and results under different datasets
and numbers of tables in Section 4.4.

4.2 Table Retrieval Performances

Results of table retrieval are reported in the upper
half of Table 1, with typical choices of k, including
2, 5, and 10. Across different values of k, our re-

ranking mechanism (JAR-F) can achieve higher re-
trieval performances compared to baseline retrieval
approaches (DTR and Contriever). Specifically, for
the Spider dataset, JAR-F (DTR) outperforms DTR
by at most 5.6% in F1 while JAR-F (Contriever)
outperforms Contriever by at most 6.5% in F1. For
the Bird dataset, JAR-F (DTR) outperforms DTR
by up to 10.7%, in F1 while JAR-F (Contriever)
outperforms Contriever by at most 7.9%. The ex-
tent of performance improvements decreases as k
increases because as the baseline performances in-
crease, it is more difficult to further improve upon
them.

4.3 End-to-end Performances

In this section, we want to show that a better re-
trieval performance can translate to a better end-
to-end performance on the downstream task, e.g.,
question answering through text-to-SQL. In table 2,
we report the execution accuracy of SQL expres-
sions, and in table 3, we report the “retrieval per-
formance” of tables by the LLM when generating
the final SQL expressions.

In table 2, we observe that when feeding the
same number of tables (top-5) to the LLM, our
full re-ranking solutions can significantly outper-
form the baselines. Since our re-ranking mecha-
nism is an additional step between the standard
table retrieval and LLM response generation, we
also want to investigate whether the LLM can do
some level of re-ranking. Therefore, we also com-

2693

DTR JAR-F (DTR) JAR-G (DTR) Contriever JAR-F (Con.) JAR-G (Con.)

Top-5 Top-10 Top-20 Top-5 Top-5 Top-5 Top-10 Top-20 Top-5 Top-5

Spider 46.3 47.4 48.1 50.6 52.2 43.5 43.1 44.7 47.4 48.3
Bird 30.4 34.8 31.5 35.8 36.9 29.7 30.6 32.9 35.1 36.2

Table 2: Our re-ranking mechanism achieves considerable improvements compared to baseline approaches on both
Spider and Bird datasets in terms of end-to-end execution accuracy.

Top-5

Spider Bird

P R F1 P R F1

Full Re-ranking

JAR-F (DTR) 77.2 77.4 77.0 65.6 66.1 65.3
JAR-F (Con.) 75.4 74.8 74.7 64.7 65.4 64.7

Baselines

Top-5

DTR 75.8 75.6 75.2 59.5 59.2 58.8
Contriever 71.9 71.4 71.3 55.9 55.5 55.2

Top-10

DTR 77.6 76.7 76.7 65.4 65.2 64.7
Contriever 74.1 73.2 73.2 61.8 62.5 61.7

Top-20

DTR 76.0 74.8 75.1 64.5 64.8 64.2
Contriever 74.4 73.6 73.6 64.7 64.4 64.1

Table 3: Our approach attains significant gains com-
pared to baseline approaches on both Spider and Bird
datasets in end-to-end retrieval performances.

pare against the baseline which feeds 20 tables (the
same number of tables we feed to our re-ranking
method) to the LLM. Table 2 shows, on average
across both models, an 2.6% and 3.3% improve-
ment on execution accuracy for Spider and Bird
respectively. We then further investigate feeding
LLM with top-10 tables, which represents a bal-
ance between precision and recall compared to top-
5 and 20, and we can observe similar improvements.
All these results demonstrate the effectiveness of
our re-ranking mechanism.

In table 3, we further investigate the table re-
trieval performance by the LLM with different
input of tables produced either by the baselines
or our methods. As shown in the table, our ap-
proach with full re-ranking outperforms baselines
across all datasets and numbers of input tables for
baseline approaches. Compared to the best overall
baseline (top-20), our approach still, on average,
outperforms it by 1.5% and 0.85% in F1 for Spi-
der and Bird respectively. It demonstrates that our
re-ranking mechanism actually improves the end-
to-end performance by helping the LLM select the
correct tables.

Queries with 2 tables Queries with ≥ 3 tables

Spider Bird Spider Bird

P R F1 P R F1 P R F1 P R F1

Table retrieval performances (Top-5)

DTR

JAR-D 38.8 97 55.4 36.1 90.3 51.6 58.9 94.7 72.5 50.8 82.7 62.8
JAR-F 39.2 98 56 36.5 91.3 52.2 59.6 95.9 73.4 52 84.6 64.3
Diff. 0.4 1.0 0.6 0.4 1.0 0.6 0.7 1.2 0.9 1.2 1.9 1.5

Contriever

JAR-D 37.9 94.8 54.2 35.9 89.7 51.2 52.3 83.6 64.2 49.8 80.7 61.5
JAR-F 38 94.9 54.2 36.6 91.6 52.3 53 85.1 65.2 52 84.5 64.3
Diff. 0.1 0.1 0.0. 0.7 1.9 1.1 0.7 1.5 1.0 2.2 3.8 2.8

Table 4: Our approach is the most effective on more
challenging and realistic queries involving more tables.

4.4 Discussion

Re-ranking without table-table relevance. As
shown in Table 1, performing re-ranking using fine-
grained query-table relevance (JAR-D) already out-
performs the baseline approaches (DTR and Con-
triever), demonstrating the effectiveness of fine-
grained query-table relevance. Further considering
table-table relevance can further enhance retrieval
performances as JAR-F generally outperforms JAR-
D. This suggests that join compatibility is helpful.
We conclude that both fine-grained and table-table
relevance are essential to better retrieval perfor-
mances.

Full re-ranking with gold key foreign-key con-
straints. Table 1 and Table 2 suggest that comple-
menting full re-ranking with the gold key foreign-
key constraints (JAR-G) leads to better perfor-
mances compared to full re-ranking (JAR-F). This
is because gold join relationships can generate
higher-quality compatibility scores and our re-
ranking mechanism can effectively leverage better
scores to generate better outputs.

Retrieval performances under different datasets
and numbers of tables. Table 4 shows that table-
table relevance contributes (as measured by the
difference between the retrieval performances of
JAR-F and JAR-D) more to retrieval performances
for (1) queries involving more tables and (2) Bird
compared to Spider. Since our focus is to improve
table-related downstream tasks involving multiple

2694

tables, the fact that table-table relevance provides
the most benefits with a higher number of tables
should be expected. Moreover, we find that queries
in the Bird dataset are more challenging and realis-
tic because they involve more bridging tables (e.g.,
the Disp table as mentioned in Figure 1) that are
less directly relevant to the user question. They
also contain more confusing tables (tables with
similar schema, such as Client (client_id) and
Customers (CustomerID)). These features resem-
ble what exists in real life and table-table relevance
can address these more challenging issues, demon-
strating its effectiveness.

5 Related Work

One line of related work is text-to-SQL (Zhong
et al., 2017; Yu et al., 2018b). Thanks to recent
advances in LLM, SQL queries (including tables)
corresponding to a natural language question or
query can be generated through prompting engi-
neering (Nan et al., 2023; Liu et al., 2023) or fine-
tuning (Gao et al., 2024; Wang et al., 2024) with
LLMs. Although, in this paper, we evaluate our
method on the aggregated version of text-to-SQL
datasets, we target a general multi-table retrieval
problem that requires the consideration of multi-
ple (joinable) tables. In other words, we do not
limit our work to specific downstream tasks (e.g.,
text-to-SQL for a given database).

To the best of our knowledge, we are the first
work to propose the problem of join-aware multi-
table retrieval for complex questions, and our paper
encourages considering table relationships for re-
trieval during inference time. One related direction
from the literature is fusion retrieval (Chen et al.,
2020a). The basic idea of fusion retrieval is based
on an “early fusion” strategy to group relevant het-
erogeneous data (including text and tables) before
retrieval. The early fusion process aims to fuse a
table segment and relevant passages into a group.
It is implemented by linking entities mentioned in
a table segment to the appropriate passages, similar
to traditional document expansion based on individ-
ual entities. Although this method can also capture
the relationship between table and text, it cannot
capture key foreign-key relationships among multi-
ple tables. Therefore, when answering aggregation
questions, false-positive tables are very likely to be
introduced due to the expansion through individual
entities. Furthermore, tables do not have to be con-
nected by columns of entities, and the foreign key

column can be just as simple as an id column. Last
but not least, real questions may require more than
2 tables to answer, and therefore bridging tables
may be needed to connect tables. Sometimes, the
bridging tables can also cross multiple hops. In
this case, tables introduced by an "early fusion"
strategy will grow exponentially, which may not
help the downstream LLM to answer the question
correctly. In this work, we also aim to narrow down
the number of correlated tables in a limited ranked
list, so that they can best help the LLM to answer
the question correctly.

6 Conclusion

Table retrieval is critical for open-domain ques-
tion answering, fact-checking, and, more generally,
retrieval-augmented generation that relies on table
information. However, existing work primarily fo-
cuses on single-table retrieval without considering
real-life situations where tables are typically nor-
malized. Thus, multiple tables need to be joined
to produce sufficient information. Works that con-
sider multi-table retrieval only consider query-table
relevance. In this paper, we propose a re-ranking
method based on mixed-integer programming to
select the best set of tables based on joint deci-
sions about relevance and compatibility. Our exper-
iments demonstrated that our approach outperforms
baselines in standard retrieval performance and end-
to-end evaluation on the question-answering down-
stream task.

7 Limitations

The primary purpose of this paper is to remind the
community that table retrieval is still not a solved
problem. For complex queries, retrieving multi-
ple (joinable) tables may be required. The pro-
posed MIP-based reranking mechanism in this pa-
per takes a first step to consider join relationships
among tables during the inference time. Though
MIP may have scalability issues and can be sen-
sitive to the problem data, it provides a flexible
framework to model constraints and objectives.

Furthermore, key-foreign-key relationships may
not be the only connection among multiple tables
for questions in real-life scenarios. Some questions
may ask about values of the same column across
multiple tables.

We believe exploring a more scalable solution, as
well as considering different types of connections
among tables in the corpus, would be interesting

2695

future work.

Acknowledgments

We thank Mike Cafarella and Çağatay Demiralp for
their constructive feedback and discussion on this
project. We thank the MIT SuperCloud and Lincoln
Laboratory Supercomputing Center for providing
computing resources that have contributed to the re-
search results reported in this paper. We gratefully
acknowledge the support of the DARPA ASKEM
project (Award No. HR00112220042), ONR Con-
tract N00014-23-1-2365, and the Croucher Schol-
arship.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William
Wang, and William W Cohen. 2020a. Open ques-
tion answering over tables and text. arXiv preprint
arXiv:2010.10439.

Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu,
and Brian D Davison. 2020b. Table search using a
deep contextualized language model. In Proceedings
of the 43rd international ACM SIGIR conference on
research and development in information retrieval,
pages 589–598.

Tianji Cong, James Gale, Jason Frantz, HV Jagadish,
and Çağatay Demiralp. 2022. Warpgate: A seman-
tic join discovery system for cloud data warehouse.
arXiv preprint arXiv:2212.14155.

Shimon Even and R Endre Tarjan. 1975. Network flow
and testing graph connectivity. SIAM journal on
computing, 4(4):507–518.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Jonathan Herzig, Thomas Müller, Syrine Krichene, and
Julian Eisenschlos. 2021. Open domain question
answering over tables via dense retrieval. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages
512–519, Online. Association for Computational Lin-
guistics.

Junjie Huang, Wanjun Zhong, Qian Liu, Ming Gong,
Daxin Jiang, and Nan Duan. 2022. Mixed-modality
representation learning and pre-training for joint
table-and-text retrieval in openqa. arXiv preprint
arXiv:2210.05197.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. Trans.
Mach. Learn. Res., 2022.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew
Richardson. 2021. KaggleDBQA: Realistic evalu-
ation of text-to-SQL parsers. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 2261–2273, Online. As-
sociation for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. 2023a. Can llm
already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi
Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu
Cao, Ruiying Geng, et al. 2023b. Can llm already
serve as a database interface? a big bench for large-
scale database grounded text-to-sqls. arXiv preprint
arXiv:2305.03111.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023. A comprehensive evaluation of chatgpt’s zero-
shot text-to-sql capability.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919, On-
line. Association for Computational Linguistics.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu
Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and
Dragomir Radev. 2023. Enhancing few-shot text-to-
sql capabilities of large language models: A study on
prompt design strategies.

2696

https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.18653/v1/2021.naacl-main.43
https://doi.org/10.18653/v1/2021.naacl-main.43
https://aclanthology.org/2021.acl-long.176
https://aclanthology.org/2021.acl-long.176
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2303.13547
http://arxiv.org/abs/2303.13547
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586
http://arxiv.org/abs/2305.12586

Fatemeh Nargesian, Erkang Zhu, Renée J Miller, Ken Q
Pu, and Patricia C Arocena. 2019. Data lake manage-
ment: challenges and opportunities. Proceedings of
the VLDB Endowment, 12(12):1986–1989.

Feifei Pan, Mustafa Canim, Michael Glass, Alfio
Gliozzo, and James Hendler. 2022. End-to-end table
question answering via retrieval-augmented genera-
tion. arXiv preprint arXiv:2203.16714.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Michael Sejr Schlichtkrull, Vladimir Karpukhin, Bar-
las Oguz, Mike Lewis, Wen-tau Yih, and Sebastian
Riedel. 2021. Joint verification and reranking for
open fact checking over tables. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6787–6799, Online. As-
sociation for Computational Linguistics.

Tianshu Wang, Hongyu Lin, Xianpei Han, Le Sun, Xi-
aoyang Chen, Hao Wang, and Zhenyu Zeng. 2024.
Dbcopilot: Scaling natural language querying to mas-
sive databases.

Zhiruo Wang, Zhengbao Jiang, Eric Nyberg, and Gra-
ham Neubig. 2022. Table retrieval may not necessi-
tate table-specific model design. In Proceedings of
the Workshop on Structured and Unstructured Knowl-
edge Integration (SUKI), pages 36–46, Seattle, USA.
Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018a. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018b. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2022. A
survey of knowledge-enhanced text generation. ACM
Computing Surveys, 54(11s):1–38.

Yi Zhang and Zachary G. Ives. 2020. Finding related ta-
bles in data lakes for interactive data science. In Pro-
ceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20,
page 1951–1966, New York, NY, USA. Association
for Computing Machinery.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
ArXiv, abs/1709.00103.

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona Diab,
Francisco Guzmán, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2021. Detecting hallucinated content
in conditional neural sequence generation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1393–1404, Online.
Association for Computational Linguistics.

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and
Renée J. Miller. 2019. Josie: Overlap set similar-
ity search for finding joinable tables in data lakes. In
Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, page 847–864,
New York, NY, USA. Association for Computing
Machinery.

A Prompts

A.1 Decomposition

We use the following prompt to ask GPT-3.5 Turbo
to decompose a question into (concept, attribute)
pairs
I’m going to ask you a question. I

want you to decompose it into a series
of non-composite noun concepts and
attributes. If you are uncertain about
concepts, only output attributes. You
should wrap each concept and attribute
in <sub_c></sub_c> tags. Once you have
all the concepts you need to cover the
question, output <FIN></FIN> tags.
Let’s go through some examples together.
Question: For movies with the keyword
of "civil war", calculate the average
revenue generated by these movies.

Answer:
<sub_c>movies:keyword</sub_c>
<sub_c>movies:revenue</sub_c>
<FIN></FIN>

Question: How many customers have a
credit limit of not more than 100,000 and
which customer made the highest total
payment amount for the year 2004?

Answer:
<sub_c>customers:credit limit</sub_c>
<sub_c>customers:payment amount</sub_c>
<sub_c>year</sub_c>
<FIN></FIN>

2697

https://doi.org/10.18653/v1/2021.acl-long.529
https://doi.org/10.18653/v1/2021.acl-long.529
http://arxiv.org/abs/2312.03463
http://arxiv.org/abs/2312.03463
https://doi.org/10.18653/v1/2022.suki-1.5
https://doi.org/10.18653/v1/2022.suki-1.5
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.1145/3318464.3389726
https://doi.org/10.1145/3318464.3389726
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.1145/3299869.3300065
https://doi.org/10.1145/3299869.3300065

Question: What is the aircraft name
for the flight with number 99?

Answer:
<sub_c>aircraft:name</sub_c>
<sub_c>flight:number</sub_c>
<FIN></FIN>

Question: On which day has it neither been
foggy nor rained in the zip code of 94107?

Answer:
<sub_c>zip code</sub_c>
<sub_c>weather</sub_c>
<FIN></FIN>

Question: What is the id of the
trip that started from the station with
the highest dock count?

Answer:
<sub_c>trip:id</sub_c>
<sub_c>station:dock count</sub_c>
<FIN></FIN>

Question: ...

Answer:

A.2 SQL generation
We use the following prompt to ask GPT 3.5 Turbo
1106 to generate SQLs:
// TASK INSTRUCTION
Generate SQL given the question, tables,
and external knowledge to answer the
question correctly. First, identify
tables with relevant columns. Then, join
these tables using only columns in the
tables. Finally, decide which columns to
return in the SQL to answer the original
question. When returning columns, please
specify the tables associated with it
to prevent ambiguity. Think step by step.

// 1-SHOT PSEUDO EXAMPLE
CREATE TABLE singer(
singer_id TEXT: <instance 1>, ...,
nation TEXT: <instance 1>, ...,
sname TEXT: <instance 1>, ...,
dname TEXT: <instance 1>, ...,
cname TEXT: <instance 1>, ...,

age INTEGER: <instance 1>, ...,
year INTEGER: <instance 1>, ...,
birth_year INTEGER: <instance 1>, ...,
salary REAL: <instance 1>, ...,
city TEXT: <instance 1>, ...,
phone_number INTEGER: <instance 1>,

...,
tax REAL: <instance 1>, ...)

External Knowledge: age = year -
birth_year
Question: How many singers in USA who is
older than 27?
Answer: SELECT COUNT(*) FROM singer
WHERE year - birth_year > 27;

// NEW INPUT
CREATE TABLE <table1>(
<Column1> <Type1>: <instance 1>, ...,
<Column2> <Type2>: <instance 1>, ...)

...

External knowledge: ...
Question: ...
Answer:

B MIP formulation

B.1 Coverage quality

α
∑

q

dq (7)

dq ∈ {0, 1} (8)

(integral constraints)

dq ≤
∑

i,k

dqik, ∀q (9)

(A sub-query is covered if it is covered
by at least one column)

∑

q,i,k

dqik ≤ |Q| (10)

(total number of question-table
connections do not exceed the total
number of sub-queries)

B.2 Connectedness

We introduce these additional variables: si denotes
the amount of flow from source to table i; ti denotes
the amount of flow from table i to sink; ei denotes

2698

whether or not to give an initial flow of k to table i;
fkl
ij denotes amount of flow from column k of table
i to column l of table j.

ei ∈ {0, 1}, 0 ≤ ti ≤ 1, si ≥ 0, fkl
ij ≥ 0 (11)

(variables constraints)

si +
∑

j,k,l

f lk
ji =

∑

j,k,l

fkl
ij + ti,∀i (12)

(flow balance constraint)

∑

i

ti = K (13)

(the amount of flow into the sink should
be K)

∑

i

ei = 1, ei ≤ Mbi, si = Kei,∀i (14)

(select one chosen table to give all K
units of flow)

1

k
fkl
ij ≤ cklij ≤ Mfkl

ij (15)

(linking constraint between flow and
column selection)

C Dataset processing

We remove questions if their corresponding gold
SQL expressions involve table joins that generate
incorrect instances. This typically happens when
a non-unique foreign key of a table is joined with
another non-unique foreign key of another table.
We illustrate one example from each dataset:

Spider Consider the following two tables:
AREA_CODE_STATE (area_code, state)
VOTES (vote_id, phone_number, state, ...)
To obtain information about the vote and the

area code of each vote, these two tables are joined
using “state”. However, a state can have mul-
tiple areas and thus its value is not unique in
AREA_CODE_STATE. Therefore, joining over the
state column creates incorrect instances where a
vote in, for example, Area 1 of a state is connected
to Area 2 of the same state simply because they are
in the same state.

Bird Consider the following two tables:
Account (account_id, district_id, frequency,

date)
Client (client_id, gender, birth date, dis-

trict_id)
To obtain information about client and their

accounts, these two tables are joined using
district_id. However, this join creates incor-
rect instances, similar to the case above in Spider.
For example, if two clients live in the same district
and opened their accounts in the same district, such
a join creates instances involving each client with
the other client’s account which is incorrect.

2699

