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Abstract

A syntactic language model (SLM) incremen-
tally generates a sentence with its syntactic
tree in a left-to-right manner. We present
Generative Pretrained Structured Transformers
(GPST), an unsupervised SLM at scale capable
of being pre-trained from scratch on raw texts
with high parallelism. GPST circumvents the
limitations of previous SLMs such as relying on
gold trees and sequential training. It consists of
two components, a usual SLM supervised by a
uni-directional language modeling loss, and an
additional composition model, which induces
syntactic parse trees and computes constituent
representations, supervised by a bi-directional
language modeling loss. We propose a rep-
resentation surrogate to enable joint parallel
training of the two models in a hard-EM fash-
ion. We pre-train GPST on OpenWebText, a
corpus with 9 billion tokens, and demonstrate
the superiority of GPST over GPT-2 with a
comparable size in numerous tasks covering
both language understanding and language gen-
eration. Meanwhile, GPST also significantly
outperforms existing unsupervised SLMs on
left-to-right grammar induction, while holding
a substantial acceleration on training.'

1 Introduction

Pre-training a Transformer architecture (Vaswani
et al., 2017) as a large language model has dom-
inated the field of natural language processing
(NLP) (Devlin et al., 2019; Liu et al., 2019; Rad-
ford et al., 2018, 2019; Brown et al., 2020; Ouyang
et al., 2022). While Transformer language models
have exhibited remarkable performance over var-
ious downstream NLP tasks (Bang et al., 2023),
the recursive compositions behind language are
represented in an implicit and entangled form. In

* Equal contribution, see appendix A.7 for details.
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! Code will be released at https://github.com/
ant-research/StructuredLM_RTDT.

contrast, human language understanding exhibits
explicit composition decisions, as exemplified by
the garden path sentence (Dynel, 2009) “Time flies
like an arrow; Fruit flies like a banana”, where dis-
tinct syntactic configurations yield vastly divergent
meanings”. In addition, human infants acquire such
compositional capability without supervision (Saf-
fran et al., 1996). These phenomena motivate us
to explore an unsupervised approach to learning
explicit compositions in language modeling.

A typical approach to achieve language mod-
eling with explicit composition is to model the
joint distribution of words and a syntactic tree
within the framework of syntactic language mod-
els (SLMs) (Dyer et al., 2016). Though there has
been a long line of research on SLMs, they are
rarely exploited as the backbone in state-of-the-art
language modeling due to poor scalability. Re-
cent Transformer-based SLMs (Sartran et al., 2022;
Murty et al., 2023) require annotated parse trees or
supervised parsers as structural supervision, lead-
ing to limited training data scales and domain adap-
tion issues (McClosky et al., 2006). On the other
hand, in unsupervised SLMs (Kim et al., 2019b;
Shen et al., 2019a), non-terminal constituents are
composed from their sub-constituents sequentially
in a left-to-right manner, resulting in data depen-
dencies that impede training parallelism.

In this work, we aim to pre-train an SLM at scale
on raw texts. To this end, we propose Generative
Pretrained Structured Transformer (GPST), an un-
supervised SLM with the Transformer architec-
ture as a backbone. A common practice in exist-
ing unsupervised SLMs is to learn structures by a
uni-directional language modeling loss (LM loss).
However, we empirically find such an asymmet-
ric loss with only right-to-left feedback results in
branching biases in the induced parse trees. Based

%(Fruit (flies (like a banana))) or ((Fruit flies) (like (a
banana)))
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on the insight, we propose two components in

GPST, a composition model performing structural

learning supervised by a bi-directional LM loss,

and a generative model for uni-directional syntac-
tic language modeling. Specifically, we train the

GPST in a fashion similar to hard-EM (Liang et al.,

2017): in E-step, the composition model runs a

pruned deep inside-outside encoder to induce a

parse tree and compute inside and outside represen-

tations of constituents simultaneously within log-
arithmic steps (Hu et al., 2024); while in M-step,
we update all parameters of GPST by minimizing
both the bi-directional (reconstructing the sentence
from outside representations) and uni-directional

LM loss given the induced tree. The key in the M-

step lies in using the inside representations of con-

stituents computed by the composition model as a

surrogate of inputs for the generative model, which

enjoys two advantages. First, the representations
of all constituents pre-computed in the E-step can
be simultaneously fed into the generative model,
which breaks the data dependencies and facilitates
training parallelism. Second, with these representa-
tions participating in generation, the uni-directional

LM loss in the M-step could be back-propagated to

not only the generative model but the composition

model used in the E-step as well.

In experiments, we pre-train GPSTs with sizes
comparable to those of GPT-2¢n,1 and GPT-2 e dium
on OpenWebText (Gokaslan and Cohen, 2019)(~ 9
billion tokens), and evaluate the models on various
tasks including language understanding, language
generation, and grammar induction. GPST demon-
strates an approximately 60-fold training accelera-
tion and over 15% absolute increase in left-to-right
grammar induction in comparison with existing un-
supervised SLMs. Meanwhile, GPST also shows
advantages over GPT-2 across almost all language
understanding/generation benchmarks. GPST pro-
vides constituent-level interfaces that are not inher-
ently possessed by the conventional Transformer-
based language models, and thus exhibits great po-
tential to enhance interpretability (Hu et al., 2023),
support multi-modality (Wan et al., 2022), and im-
prove dense retrieval in the future. Our contribu-
tions are three-fold:

* We propose an SLM consisting of a composition
model in addition to a generative model, which
can be trained without gold trees via a novel
approach akin to hard-EM.

* We propose a representation surrogate to enable
joint parallel training of all components.

* To the best of our knowledge, GPST is the first
unsupervised SLM able to be pre-trained from
scratch on billions of tokens and surpass GPT-2
on various benchmarks. The experimental results
demonstrate the potential of GPST as a backbone
for large language models.

2 Related work

Syntactic Language Models. There have been
extensive studies on syntactic language model-
ing (Baker, 1979; Jelinek and Lafferty, 1991;
Chelba, 1997; Chelba and Jelinek, 2000; Vinyals
et al., 2015; Charniak et al., 2016; Dyer et al., 2016;
Qian et al., 2021; Yoshida and Oseki, 2022), in
which words and constituent symbols are mixed
up and generated in a left-to-right manner. Re-
cent works (Sartran et al., 2022; Murty et al., 2023)
utilize Transformers to parameterize action prob-
ability distributions, but relies on annotated parse
trees or parsers trained on gold trees as structural
guidance. Besides, unsupervised SLMs are also
explored, by differentiable structured hidden lay-
ers (Kim et al., 2017; Shen et al., 2018, 2019a;
DuSell and Chiang, 2024), reinforcement learning
approaches (Yogatama et al., 2017), or variational
approximations (Li et al., 2019; Kim et al., 2019b).
Normally, these unsupervised models are trained in
a sequential manner. Our model follows a similar
generation paradigm, but has stark differences in
model architecture and training approach.

Composition Models. A composition model
transforms text encoding into a combinatorial opti-
mization problem, learns and searches for the opti-
mal structure, and encodes the text in a bottom-up
manner along a binary tree via a composition func-
tion recursively. Maillard et al. (2019) proposes a
CKY-like (Cocke, 1969; Kasami, 1966; Younger,
1967) encoder, in which high-level constituents are
soft-weighted over composed representations of its
sub-constituents. Drozdov et al. (2019) proposes
a deep inside-outside encoder (Baker, 1979; Lari
and Young, 1990), enabling the model to learn un-
derlying structures via an auto-encoding objective.
Recently, a series of studies (Hu et al., 2021, 2022,
2024) have been conducted to reduce the neural in-
side encoder complexity from cubic to linear. Our
SLM is built on top of state-of-the-art composition
modeling techniques, in which we achieve unsu-
pervised learning and enhance training parallelism
by taking advantage of the pruned inside-outside
encoder (Hu et al., 2024).
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3 Methodology

Given a sentence X = [z1,Z2,...,2T,] With z;
from a vocabulary V (1 < ¢ < n), our goal is
to train an SLM without gold trees that can simulta-
neously generate x and its syntactic structure. We
first introduce the generative architecture of GPST,
and then elaborate on how to perform training and
inference with the model.

3.1 Generative Model

GPST generates a sentence and its parse tree from

left to right via two types of actions, GEN and

CoMmp, along with a stack (Dyer et al., 2015) to

maintain partially completed sub-trees during gen-

eration. GEN generates a word x and pushes its
embedding onto the stack. We denote such an ac-
tion as GEN(x), with z € V. COMP pops the top
two elements off the stack, computes their com-
posed representation, and pushes it back to the
stack. A major difference in model architecture
between GPST and existing unsupervised SLMs,
such as URNNG (Kim et al., 2019b), is that GPST
makes good use of the architecture of Transformers
to parameterize the action probabilities and thus
hidden states from previous actions can be directly
accessed via self-attention during generation.
Figure 1 illustrates the generative process of

GPST. The generative model comprises type layers

and token layers, both consisting of multi-layered

Transformers. Let us denote the stack at step ¢

as Sy, with SY and S} representing the top two

elements, respectively. Initially, 88 is set to the em-

bedding of the beginning-of-sentence token (i.e.,

(bos) in Figure 1). At each step ¢, S? along with a

position ID wy is fed into the type layers, yielding

a hidden state h;, which is then utilized to predict

the next action type ¥

e If y; = 0 (COMP), we set w1 as wy, pop off Sg
and S} from S;, and compose them using a com-
position function. The composed representation
is then pushed back into the stack. In such a case,
action ay at time step ¢ is set to COMP.

o If y, = 1 (GEN), we set wy1 as wy + 1, feed hy
to the subsequent token layers, and get an output
state g, that is used to generate z,,,+1. In such
a case, we have a; = GEN(Zy,+1).

Suppose that ayy is the action sequence to generate

a sentence x and its parse tree y, then the joint

distribution of x and y can be formulated as:

p(x,y) = plaxy) = [ [ plasla<), 0

(x4, x2), x3

(x1,%2)
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Figure 1: An illustration of the generative process of GPST.
X;.j denotes the sub tree representation spanning from s to j.
As we use Transformers as the backbone, all previous hidden
states are leveraged. At step ¢, the length of historical hidden
states is ¢ for the type layers and w; for the token layers as
illustrated with dotted lines for step 3.

where p(a;|a<;) is computed by:

p(CoMPla<:) = p(y: = Ola<t),
P(GEN(Zw,+1)]a<t) = p(Tw,+1|ye = 1, ace)p(ye = 1|a<t),
p(:th+1|yt =1, a<t) = SOftmaX(MLPx(gwt))7
p(yt|a<t) = softmax(MLP,, (hy)).

MLP,(-) and MLP,(-) convert inputs to a 2-dim
vector and a |V|-dim vector, respectively. By pre-
dicting action types through shallow layers and
tokens through deep layers, we can keep the total
computational cost close to that of vanilla Trans-
formers.

3.2 Unsupervised Training

How to train an unsupervised SLM effectively and
efficiently has always been a challenge. Existing
methods suffer from two issues: asymmetric feed-
back and inability to train in parallel. The former
arises from the uni-directional LM loss, and the
latter stems from the inherent data dependency of
each composition step on the representations of
its sub-constituents from previous steps. We tackle
both issues with an approach similar to hard-EM. In
E-step, we employ a composition model to induce
a parse tree through a pruned deep inside-outside
encoder. In M-step, we update both the composi-
tion model and the generative model by optimizing
a joint objective based on the induced tree. The
composition and generative model are connected
by sharing the same composition function. Below
we present details of the two steps and explain how
they tackle the issues mentioned above.

E-step. During the E-step, the composition
model searches for the best parse tree and com-
poses representations through a deep inside-outside
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Figure 2: Illustration of the training process. (a) In the E-step, we induce a parse tree and compute constituent representations.
(b)(i) Data dependencies within inputs of the generative model. (b)(ii) Illustration of representation surrogates. x;.; denotes the
original input representation spanning over (i, ) composed from left to right.

auto-encoder (DIORA) (Drozdov et al., 2019). In
the inside pass, we compute a composed representa-
tion 1k and a compatibility score ak ;.; for each pair
of nelghbormg constituents (7, k) and (k + 1, j).
We then compute each internal span representation
i; ; as a weighted average over all possible pairs of
constituents>:

;k = fa(iik, ikt ])76' = ¢a(iik, kt1,5) 5
_ 7j—1
exp(a; ;
wr; = —p( ) e Wi

7,7 v 4,7
S exp(al)) pat

in which f, and ¢, are formulated in Ap-
pendix A.2. An illustration to compute ij 3 is given
in Figure 2(a). Analogously, the outside pass com-
putes each outside representation o; ; in a top-down
manner based on bi-directional information out-
side span (i, 7). To accelerate computation, we use
the pruned deep inside-outside encoder (Hu et al.,
2024) which achieves linear space complexity and
approximately logarithmic parallel time complex-
ity. The details of the algorithm and the complete
outside pass are presented in Appendix A.1.

Note that for a given span (3, j), the best split-
point is k with the highest c‘zﬁ ;- Thus, to derive a
parse tree, we can recursively select the best split-
points top-down starting from the root span (1,n).

The outside representations of tokens can be
used to define an auto-encoding loss (i.e., predict-
ing each token from its outside representation) for
the composition model, which is optimized in the
M-step:

exp(o;;ex,)
Z M _, exp(o]. ek)
where ey, is the embedding of the k-th token in the
vocabulary. As the auto-encoding loss provides

3A nuance between ours and the original DIORA is that
we use the single-step compatibility score aﬁ ; to estimate the
split probability. We empirically find modeling in this way
results in better grammar induction performance.

feedback to each token representation from both
sides of the token, the asymmetric feedback issue
is addressed.

M-step. With the induced tree y, we update
the parameters of the composition model and
the generative model in a joint manner. De-
note the sequence of node spans in post-order as
[(’L'o,jg), (il,jl), . (i2nflaj2n71)]- The action se-
quence can be formulated as:

{COMP it < Jt
at =

GEN(z;,) ° it =Ji’

An auto-regression loss can be defined as:

2n—1

Lar = —logp(x,y)

However, even though the action sequence is
given, there are still two challenges. First, there are
data dependencies within the inputs for the genera-
tive model as mentioned earlier and shown in Fig-
ure 2(b), which impedes parallel training. Second,
there are no feedforwards from the composition
model to the generative model, so the two mod-
els are disconnected and hence cannot be trained
jointly. A key insight to tackle these issues is to use
the internal span representations i; ; as surrogates™
of the inputs x;.; to the generative model as de-
picted in Figure 2(b)(ii). As the internal span repre-
sentations are already computed in the E-step, they
can be fed into Transformers seamlessly all at once
to fully leverage the parallel training ability of the
architecture. Moreover, replacing x with i enables
the representations computed by the composition
model to participate in the generative model, thus

*It is an approximation because i; ; is soft-weighted over
all If ; with the best split-point at k. Though x; ; is composed
using the same composition function and with the same split-
point k during inference, it is in a one-hot manner. However,
our experimental results indicate that such an approximation
approach has minimal impact on actual inference.
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the two models are connected and can be jointly
optimized via the auto-regression loss. Note that
internal span representations do not contain any in-
formation outside spans, so there is no information
leakage in the uni-directional generative model.
The final training loss for the M-step combines
the auto-regression and auto-encoding losses as:

L= Lae+ Lar.

We empirically find that the combined loss leads
to left-branching bias in parse trees induced by
the composition model that is not observed when
training with £, alone. A possible reason is that
left-leaning trees provide more left-side context
for each step during generation and thus are rein-
forced in learning. To tackle the issue, we stop gra-
dient propagation from L, to aﬁ ;» Which means
only gradients from L, are allowed to be back-
propagated along aﬁ ;- Note that other variables
like i; ; still receive gradients from L.

3.3 Inference

The action space of GEN(z) is much larger than
that of CoMP, leading to an imbalance between
their probabilities. Stern et al. (2017) point out
that during beam search decoding, hypotheses in
a beam should be grouped by the length of gener-
ated tokens instead of action history, which they
refer to as “word-level search”. However, their ap-
proach does not guarantee that the top-k next words
searched are the optimal ones. To address the issue,
we propose an improved word-level search tailored
for our generation paradigm. The core idea is to
guarantee that all hypotheses in a beam have the
same number of GEN(x) actions. Beams satisfy-
ing the condition are marked as sync and otherwise
sync. Below we depict the entire word-level search
process through an example shown in Figure 3:

1. Starting with a sync beam, e.g., A, B,C and
(A, B), D, we estimate the probability distri-
bution of the next action for each hypothesis
within it. For each possible action, we compute
the probability of the resulting new hypothesis
as the product of the probabilities of the current
hypothesis and the action. The new hypothe-
ses are pooled and ranked, and the top-k are
retained (e.g., A4, (B,C) and (A, B), D, E).

2. If the current beam contains hypotheses with the
last step being COMP, e.g., A, (B, C'), we con-
tinue to explore their next actions, update their
probabilities, pool them with other hypotheses

L=3, sync

fffffff e |
2
04

L=3,5ync L=4, sync

Figure 3: An illustration of beam search decoding of size
2. For simplicity, we use “)” to denote COMP and upper
case characters to denote words generated by GEN(z). Boxes
filled in gray are hypotheses with the last action being COMP.
Grayed-out boxes are pruned out during beam search.

in the beam, and rank the top-k, until all the top-
k hypotheses have GEN(z) as their last action.

3. End generation upon reaching the length limit
or producing an end token; otherwise, go back
to step 1.

This method is also applicable to top-k random
sampling (Fan et al., 2018), or parsing with a given
input sentence by simply setting the probabilities of
all GEN(z) actions to zeros except for the correct
next token.

4 Experiments

To fairly compare GPST and GPT-2, we pre-train
both models from scratch on the same corpus with
the same setups and comparable parameter sizes.
Evaluation is conducted on various language under-
standing/generation tasks. Besides, we also evalu-
ate GPST on grammar induction to verify to what
extent the induced parse trees are consistent with
human annotation.

Pre-training Corpus. We pre-train models on
WikiText-103 (Merity et al., 2017) and OpenWeb-
Text (Gokaslan and Cohen, 2019), where the two
datasets contain 116 million tokens and 9 billion
tokens, respectively. The context window size in
pre-training is set to 1024. When a context involves
more than one complete sentence, parse trees are
induced for each sentence separately.

Hyper-parameters. Following GPT-2 (Radford
et al., 2019), we use 768/1024-dimensional em-
beddings, a vocabulary size of 30522, 3072/4096-
dimensional hidden layer representations, and
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Models corpus SST2 COLA MRPC(f1) QQP(f1) QNLI RTE MNLI-(m/mm) average #param.
GPT-2¢man wikil03 88.11 27.75  80.80 85.37 83.71 5391 75.85/75.77 7141 1.0x
GPSTsmall wio grad.stop Wikil03 88.11 29.09  81.16 8498 84.62 53.19 75.87/75.88 71.61 1.05x
GPSTmall wio surrogate Wikil03 88.07 29.24  80.98 85.08 84.05 52.71 76.47/76.36  71.62 1.05x
GPSTsmai wikil03 88.34 28.41 81.21 85.33 85.08 56.08 76.60/76.46 72.19 1.05x
GPT-2¢man opw 90.71 40.53 83.20 86.55 85.60 58.72 79.53/79.75 75,57 1.0x
GPT-2smai_13 opw 91.28 44.07  83.99 86.75 85.94 58.84 79.46/79.82  76.27 1l.I1x
GPSTsman opw  90.94 44.51 84.72 86.70 86.91 64.98 79.60/80.15 77.31 1.05x
GPT-2edium opw 91.10 47.55 83.68 87.17 86.64 61.49 81.35/81.05 77.50 2.0x
GPT-2medium_25 opw 91.55 46.81 83.43 87.27 86.99 59.92 81.19/80.78 77.24  2.1x
GPST mnedium opw 9197 50.79  85.69 87.36 87.60 64.86 81.80/82.01 79.01 2.1x
For Reference

Ordered-Memory" - 90.40 - —/— /- - - 72.53/73.20 -

Table 1: Evaluation results on GLUE benchmark. We mark out the best result of each group in bold. The results of Ordered-
Memory'(Shen et al., 2019a) are copied from Ray Chowdhury and Caragea (2023). A comparison of parameter sizes can be

found in Appendix A.6.

12/16 attention heads for the generative models
of GPSTgman and GPSTeqium, respectively. To
align with Transformer layer counts in GPT-2, we
configure GPSTy, with 3 type layers and 9 token
layers, and GPSTedium With 3 type layers and 21
token layers, respectively. We set the input dimen-
sion of the composition model to 256/512, and the
number of Transformer layers used in the composi-
tion function and decomposition function to 4 and
1, corresponding to the small and medium setups.
To compare with GPT-2 under the same parameter
sizes, we provide GPT-24yq11 13 and GPT-2pedium 25
as additional baselines, representing models with
13 and 25 layers, respectively. The token embed-
dings are down-scaled before being fed into the
composition model, and the constituent representa-
tions are up-scaled before being fed into GPST. All
models are trained on 8 A100 GPUs with a learn-
ing rate of Se-5/1e-4, 8 x 32 x 1024 tokens per
step, 5 billion and 15 billion total training tokens
for WikiText-103 and OpenWebText, respectively.

4.1 Understanding Tasks

Dataset. We evaluate GPST on the GLUE bench-
mark (Wang et al., 2018), which collects tasks cov-
ering a broad range of natural language understand-
ing (NLU) domains.

Evaluation Settings. We borrow and minimally
modify the fine-tuning paradigm from Radford et al.
(2018). Details are described in Appendix A.3. As
the whole sentence is given, the composition model
is utilized to induce the best tree and compose con-
stituent representations as described in the E-step.
The constituent representations in the induced tree
are gathered in post-order as inputs for the gener-

ative model. We derive two additional baselines
GPSTy/o surrogate and GPSTyy/o grad.stop for ablation
study. In GPSTywjo surrogate> all constituent repre-
sentations of non-terminals are replaced by em-
beddings of a placeholder COMP as in Transformer
Grammars (Sartran et al., 2022), and thus there is
no interaction between the composition model and
the generative model (i.e., they are separately opti-
mized). In GPSTyyo grad.stop, partial gradient stop-
ping is disabled to study the impact of left-leaning
trees on downstream tasks. We run three rounds of
fine-tuning with different seeds and report average
results (accuracy by default) on the validation sets.

Results and Discussions. Table 1 reports the
results on the GLUE benchmark. GPST sig-
nificantly outperforms GPT-2 in both small and
medium setups. We find that GPSTyyo grad.stop
and GPSTy/o surrogate underperform GPST, but are
still better than GPT-2. The performance drop
of GPSTyyo grad.stop indicates that poor structures
compromise the performance of downstream tasks.
GPSTy/o surrogate 18 better than GPT-2, implying that
as long as induced syntactic structures are utilized,
simply replacing non-terminal representations with
COMP embeddings is also helpful. It is, however,
worse than GPST, demonstrating that computing
representations of non-terminal constituents via an
explicit composition function further benefits lan-
guage understanding. One more interesting thing
we find is that GPST consistently and most signifi-
cantly outperforms baselines on the RTE task. One
possible explanation is that certain relationships
in RTE are predicated on negation words such as
“not”, which generally affects high-level semantics
through compositions with other phrases. Explicit
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syntactic composition modeling contributes to a
better representation of such cases.

4.2 Generation Tasks

4.2.1 Abstractive Summarization

Datasets. We conduct experiments on three
summarization datasets: BBC extreme (XSum)
(Narayan et al., 2018), CNN and DailyMail (Nal-
lapati et al., 2016), and Gigaword (Napoles et al.,
2012) to assess the performance of GPST in terms
of language generation abilities. Statistics of the
datasets are presented in Table 6 in Appendix A.4.

Evaluation Settings. For XSum and CNN/Dai-
lyMail, we truncate the documents and their sum-
maries to 900 and 100 tokens respectively, and con-
catenate them with short prompt Summary:. For
Gigaword, the truncating thresholds of documents
and summaries are set to 400 and 120 respectively,
following the settings of Rothe et al. (2020). Con-
sidering the complexity of the generation task,
we primarily evaluate the models pre-trained on
OpenWebText. More details are described in Ap-
pendix A.5. We apply the word-level search de-
scribed in §3.3 to top-k random sampling for GPST,
except for models with w/o sync which only uses
naive action-level beam search. ROUGE (Lin and
Hovy, 2003) is employed as the evaluation metric.

4.2.2 Syntactic Generalization

Datasets. The syntactic generalization task (Hu
et al., 2020) collects 34 test suites to assess syntac-
tic generalizability of the models. The test suites
are grouped into 6 circuits: Agreement (Agr.), Cen-
ter Embedding (C.E), Garden-Path Effects (G.P.E),
Cross Syntactic Expectation (C.S.E.), Licensing
(Lcs.) and Long-Distance Dependencies (L.D.D.).

Evaluation Settings. We evaluate models on syn-
tactic generalization test suites by comparing sur-
prisals (Hale, 2001) without fine-tuning, as re-
quired by Hu et al. (2020). Surprisal: S(w|C) =
—logy p(w|C) is defined as negative log condi-
tional probabilities of a sub-sentence w given the
left-side context C'. In detail, when we apply word-
level search with beam size b to do left-to-right pars-
ing with a given input, we temporarily store b best
hypotheses with their probability p(x<¢, Y <)) at
each token position ¢, in which y ., refers to
the current latent structure before generating z;.
We marginalize y ;) out of p(X<t,¥<n()) by
summing up all the probabilities of the b best hy-
potheses. Finally, we obtain the surprisal of a sub-

sentence with starting position s and ending posi-
tion e as S(w|C) = —logp(x<.) +1logp(r<s—_1).

To align with Murty et al. (2023) and Sartran
et al. (2022), we set beam size b to 300.

4.2.3 Results and Discussions

Table 2 and 3 report the results of summarization
and syntactic generalization tasks. Overall, the
performance of GPST is comparable to GPT, with
a slight advantage. One possible reason why the
advantage of GPST on generalization tasks is not
as significant as that on GLUE is the discrepan-
cies between training and inference. During train-
ing, the constituent representations are computed
via the inside algorithm, where the representations
are soft-weighed over composed representations of
valid sub-constituents. However, during inference,
constituent representations are composed of the
top two elements in the stack, which is a one-hot
version of the inside algorithm. This issue could
potentially be resolved using a hard inside-outside
algorithm (Drozdov et al., 2020), which we may ex-
plore in our future work. Despite the discrepancies,
our performance still slightly surpasses that of GPT-
2, which adequately demonstrates the potential of
GPST in generation tasks. One more interesting
thing is that GPST peqium €ven outperforms base-
lines with gold trees in the syntactic generalization
task, and the results of all GPSTs maintain a lead
on Garden-Path Effect. Note that the results have
a large variance due to the relatively small size
of the evaluation set, e.g., GPTeqium €ven under-
performs GPTgp,. However, the results still imply
that unsupervised syntactic LMs have reached a
critical point where they can surpass approaches
reliant on gold trees.

4.3 Grammar Induction

Baselines & Dataset. We select baselines that re-
port unsupervised left-to-right parsing results: Neu-
ral variational (NV) approaches (Li et al., 2019)
and PRPN (Shen et al., 2018). For reference, we
also select some baselines performing parsing re-
quiring whole sentence visible: URNNG (Kim
et al., 2019b), C-PCFG (Kim et al., 2019a), DIORA
(Drozdov et al., 2019), ON-LSTM (Shen et al.,
2019b), Fast-R2D2 (Hu et al., 2022) and GPST
using the deep inside algorithm. We report their
performance on PTB (Marcus et al., 1993). Be-
sides, we also report results of GPST\y/o grad.stop and
GPSTyw/o surrogate for checking the gains from partial
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Models #param XSum CNN/DailyMail Gigaword
param-l p 1 R2 RL R-AVG| R-1 R2 RL RAVG|R-1 R-2 RL R-AVG
GPT-2¢man 1.0 |29.78 9.43 23.56 20.92 |35.54 14.45 24.76 24.92 |32.45 14.84 30.37 25.88
GPT-24mai_i3 1.1 |29.84 9.46 23.62 20.97 |35.78 14.58 24.92 25.09 (32.71 14.54 30.35 25.87
GPSTsmall-wro sync 1.05 [29.44 9.09 23.20 20.58 |35.63 14.57 24.93 25.04 |32.34 14.69 29.98 25.67
GPSTsman 1.05 [29.86 9.51 23.70 21.02 |35.52 14.65 25.01 25.06 |32.53 14.76 30.37 25.89
GPT-21nedium 2.0 3191 11.11 25.28 22.76 |37.18 15.23 25.59 26.00 |33.13 15.27 30.85 26.42
GPT-2medium.25 2.1 |31.95 11.17 25.35 22.82 |37.13 15.26 25.59 25.99 |33.49 15.27 31.28 26.68
GPSThediumwiosyne| 2.1 |31.66 10.91 25.16 22.58 |37.07 15.45 25.69 26.07 |32.83 15.06 30.59 26.16
GPSTnedium 2.1 |31.96 11.31 25.58 22.95 |37.18 15.69 26.00 26.29 |33.19 15.27 3091 26.46
Table 2: Abstractive summarization results.
Models Agr. CE. GPE. CSE. Les. LD.D. avg Models corpus _ left-to-right Fl
WikiText-103 NV (unsupervised) WSJ yes 29.0
GPTZgman 50.88 73.21 77.88 97.83 33.95 6598 66.62 NV(+linguistic rules) ~ WSJ yes 42.0
GPSTman 59.65 73.21 87.10 97.83 57.89 64.78 73.41 PRPN WSJ yes 37.4
gg;nwebTeXt 7895 8750 8522 97.83 71.58 78.65 83.29 OPSTimall wo syne wikil03 ves Bol
small . . . . . . . k1
GPSToman 77.19 8571 9454 9674 68.95 72.38 82.59 GPSTsman wikil03 yes 55.25
GPTomeqiom 6491 94.64 8641 9891 73.42 79.38 82.95 GPSTsmall who sync opw yes 43.09
GPSTimedium 85.96 85.71 95.04 94.57 83.68 78.17 87.19 GPSTsman opw yes 51.40
For Reference (Models with gold trees) GPST nedium wio syne opw yes 43.37
TG 69.7 884 904 956 781 779 8335 GPSTmedium opw yes 54.71
Pushdown Layers 79.0 92.0 842 100.0 77.8 77.5 85.08
For Reference
Table 3: Syntactic generalization results. For reference, we GPSTsmall wio gradstop ~ Wikil103 no 42.46
list the results of models with gold trees from Sartran et al. GPSTsmall wio surrogate ~ Wikil03 no 50.27
(2022) and Murty et al. (2023). GPSTyman wiki103 no 57.46
. . .. . . . GPSTsman opw no 53.95
gradient stopplng'and joint pre-training achieved GPSTeqium opw o 56.27
by the representation surrogate. URNNG WSJT no 45.4
ON-LSTM WSJI no 474
Evaluation Settings. We continue to fine-tune C-PCFG WSJ no 55.2
all models on the training set of PTB for 10 epochs DIORA WSJ no 55.7
with batch size set to 32 after pre-training. Since (F;ZEEZDZ wikil03 1o ZZ?

GPST takes word pieces as inputs, we provide
our model with word-piece boundaries as non-
splittable spans to align with models with word-
level inputs. We apply different inference algo-
rithms to grammar induction. For the inside algo-
rithm, we directly evaluate the parse tree induced
by the composition model. For the left-to-right
parsing, we apply improved word-level search de-
scribed in §3.3 with a beam size of 20 to parse the
given text, except for GPSTyyo sync Which employs
action-level sync beam search for parsing. We
adopt sentence-level unlabeled F as the evaluation
metric, with the same setup as Kim et al. (2019a)
where punctuations are discarded and words are
lowercased. We evaluate the checkpoints from all
epochs on the validation set, pick the best one, and
then report its performance on the test set.

Results and Discussions. There are several ob-
servations from the results shown in Table 4. First
and foremost, we find that our unsupervised left-
to-right parsing achieves comparable performance
with the bi-directional inside algorithm, signifi-
cantly surpassing previous left-to-right grammar
induction baselines. Such results indicate the struc-
tures generated by GPST are meaningful and con-

Table 4: Results on unsupervised left-to-right parsing.

sistent with those from humans. Secondly, a larger
pre-training corpus may not necessarily bring im-
provement. A plausible explanation is that Open-
WebText, mixed with more non-natural text such
as URLs, introduces additional noise, leading to a
performance drop. The results indicate the impor-
tance of high-quality corpora for structural learn-
ing. Thirdly, the performance of GPSTy/o surrogate
infering with the inside algorithm drops a lot. We
suppose the main reason is that disabling the repre-
sentation surrogate prevents the composition model
from receiving long-term feedback from tokens on
the right introduced by the auto-regression loss.
Lastly, the performance decline of GPSTyy grad.stop
corroborates the impact of asymmetric loss on
structural learning. We attach trees parsed by GPST
in Appendix A.8 for case studies.

4.4 Training Efficiency

Finally, we conduct a fair comparison of training
efficiency with other unsupervised SLMs. We keep
the model sizes and memory usage comparable
and the training tokens the same. We report their
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time consumption in Table 5, from which we can
observe the huge advantage of GPST over the base-

lines in terms of efficiency.

sentence length
#param. 128 256 512 1024

GPST 24M 1x 1x 1x 1x
URNNG 23M 130.6x  955.3x n/a n/a
OM 28M 2.0x 9.2x 25.4x  63.3x

Table 5: Training acceleration on the same number of tokens.

5 Conclusion

In this paper, we propose an unsupervised approach
to train GPST at scale efficiently. A key insight
of our work is to guide the left-to-right structural
learning with symmetric supervision such as an
auto-encoding loss, which can receive feedback
from both sides. A key technical contribution is
that we propose the representation surrogate which
enables joint training of all components in parallel.
Besides, the composition model of GPST can be
regarded as an enhancement to the conventional
embedding layer, which provides context-invariant
embeddings of various granularities beyond token
embeddings. Our experiment results show the su-
periority of GPST on language understanding, gen-
eration, and left-to-right grammar induction, which
demonstrate the potential of GPST as a founda-
tional architecture for large language models.

6 Limitation

Despite GPST achieving a multiple-fold accelera-
tion compared to previous syntactic language mod-
els, it still requires 1.5 to 5 times the training time
compared to vanilla GPTs. The more layers there
are in the type/token layers, the lower the overall
time multiplier becomes. The additional training
time comes from the composition model which
only accounts for one-tenth of the overall model
parameters. Due to the unpredictable memory over-
head at each step, many fragmented memories are
generated, resulting in PyTorch having to spend
extra time cleaning up the memory cache period-
ically. Meanwhile, our implementation is quite
naive, without any operator fusion or hardware-
aware implementation. Thus there should be multi-
ple potential ways to further reduce the time con-
sumption of the composition model in the future.
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A Appendix

A.1 Pruned inside-outside algorithm

Fast-R2D2 (Hu et al., 2022) introduces a pruned
variant of the inside algorithm that reduces its com-
plexity from O(n3) to O(n) in both space and time.
Building on this, ReCAT (Hu et al., 2024) extends
the pruning method to the inside-outside algorithm,
and further enables it to complete in approximate
log n steps, whose key idea is to prune out unnec-
essary cells in the chart-table and encode cells in
different rows simultaneously. The main idea of
the pruning process is to decide which two spans
should be merged at each step during the inside
pass and prune out cells that would break the non-
splittable span. An unsupervised top-down parser
is applied to determine the merge order of spans.
Given a sentence x = [x1,Z2,...,Zy|, the top-
down parser assigns each split point a score v;
s.t. 1 <7 < n —1, and recursively split the sen-
tence into two in the descending order of the scores
shown in Figure 4 (a). Hence, the reverse order of
the split points could be used to decide which cells
to merge. Specifically, the pruned inside-outside
algorithm works as follows:

0. Prepare merge batches according to the height of
merge points in the induced tree, with the lowest
merge points in the first batch, as illustrated in
Figure 4(b).

1. Merge each pair of adjacent cells into one ac-
cording to the current merge batch. For example,
in Figure 5(b), at merge point 1, we merge z;
and 3 into x1.9; at merge point 5, we merge s
and zg into x5.¢.

2. Remove all conflicting cells that would break
the now non-splittable span from Step 1, e.g.,
the dark cells in Figure 5(c), and reorganize the
chart table much like in the Tetris game as in
(d).

3. Encode the cells that just descend to height
m and record their valid splits in /C, e.g., the
cells highlighted with stripes in Figure 5(d) with
valid splits {2, 3} for span (1,4) and {3, 4} span
(3,6). Go back to Step 1 until no blank cells are
left.

Therefore, the entire inside process can be com-
pleted within steps equal to the height of the tree.
Using the valid splits X recorded for each cell dur-
ing the pruning process, we now have the new in-
side state transition equation as:

a5 ; = Galiik, dhi1;) 005 = fallik, ki),

ok eXP(@f;) N

F . = Li; = w; iz
YT e, ep(at) T e

ke, ;
where KC; j is the valid splits set for span (3, j).
According to IC, we can obtain a mapping from
a span to its immediate sub-spans. By reversing
such mapping, we get a mapping from a span to its
valid immediate parent spans denoted as P, which
records the non-overlapping endpoint £ in the par-
ent span (i, k) or (k, j) for a given span (i, ).
Thus, for the outside pass, we have:

&° fa(0ik,ij41,6) ifk>j
I fo(on,j,ikic1) ifk<i’
bk 08(0i, 5, 1j41,6) k>
b0k, ik,i—1) ifk <i’
7k
i exp(bi;) e
Wii =5 axp(pF) 2 T Wy ;04 j -
Zk’epi‘j exp(b};) ke;,j

We optimize the top-down parser jointly at the
M-step with GPST. Given the parse tree y induced
at the E-step, we maximize p(y|x; ©) for the top-
down parser, whose parameters are denoted as O.
As shown in Figure 4(a), at ¢ step, the span corre-
sponding to a given split a; is determined, which
is denoted as (i, j'). Thus we can minimize the
negative log-likelihood of the parser as follows:
exp(vat)
gt

b
7t exp(vk)

n—1

Zlogp ai|x; ©).

t=1

We notice that the steps to finish the pruned
inside-outside algorithm depend on the highest tree
in a batch, thus any extremely skewed tree may
result in a significant increase in time consump-
tion. A straightforward approach to reduce the
maximum height of parse trees in a batch is to in-
troduce a height penalty. During the inside pass,
the weighted tree height of span (7, ) could be
computed as:

p(az va 6) =

L, = —logp(ylx; ©)

hiy = max(hig, bir1g) + Lhig = Y @ik
KEK, ;

To minimize the impact of height penalties on
grammar induction, we set a threshold Hyj,,-s which
is 15 by default. Only trees that exceed this thresh-
old will be affected.

1
Ly = E max(hl,n - chr'570)

Thus the final auto-encoding objective is:
Loe=Lac+ Ln+ Ly

2653



a;
A

a; a
as
xleZDx3Dx4Dx5Dx6
U1 7] V3 Vg Vs

@) A = {3,4,2,51}

Batch1 {3}

Batch1 {2,4}

Batch1 {1,5}

() M = {1,5,2,4,3}

Figure 4: Fast encoding follows the order given by a top-down parser, with the merging order M being the reverse order of
the split point sequence .A. z; denotes the i, token in a sentence of length 6. Numbers in .4 and M denote the indices of the
split/merge point between tokens. v; denotes the split score of jp, split point, predicted by the top-down parser.
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Figure 5: The initial step of encoding in O(logn) steps. The numbers in blue correspond to the indices of the split points

introduced in Figure 4.

A.2 Composition function and score function
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Figure 6: Model illustrations for the composition and decom-
position functions.

We borrow the idea from Hu et al. (2021) to use
Transformers as the backbone of the composition
function f,. As shown in Figure 6(a), composition
function f, takes left/right constituent representa-
tions i; /ix41,; along with their role embeddings
[LEFT]/LRIGHT] into N-layered Transformers as
inputs, passes the summation of their correspond-
ing outputs through a layer normalization layer to
get the composed representation. Decomposition
function fg works analogously as shown in Fig-
ure 6(b) and (c), with [PRT] as the role embedding
for parents.

We define the score function ¢, as:

¢a(l,r) = MLP, (1) MLP (r)/Vd @)

where 1 and r are representations for left/right
constituents. MLP!, and MLP?, are used to cap-
ture syntactic features from the left and right in-

puts, which convert inputs to d-dimensional vec-
tors. Analogously, ¢z is defined as:

¢5(p,1) = MLP (p)" MLPj(1)/Vd
¢5(p,r) = MLP(p)" MLPj(r)/Vd

where p is the outside representation of a parent.
MLPlﬁ, MLPJ}, and MLP}, are used to capture fea-
tures from left/right children and parents respec-
tively.

A.3  Glue fine-tuning

In detail, we append a CLS token after the input
sequence and then feed the hidden states of the
CLS tokens to a linear layer as the logits for clas-
sification. An additional cross-entropy loss along
with the pre-training objective is used during fine-
tuning.

A.4 Summarization dataset statistics

BBC extreme (XSum) comprises 204k document-
summary pairs for single-sentence summarization
of long documents. CNN and DailyMail (CNN/-
DailyMail) contains 287k training pairs, each con-
sisting of a document annotated with highlights.
Gigaword focuses on sentence summarization with
3.8M sentence-summary training pairs conversely.
We organize the statistics in Table 6.

A.5 Summarization fine-tuning

We fine-tune for 15 epochs with a batch size of
16 on XSum and CNN/DailyMail datasets. For
Gigaword, we fine-tune for 10 epochs with a batch
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‘ XSum ‘ CNN/DailyMail |Gigaword

Training Set| 204k 287k 3.8M
Test Set 11.3k 11.5k 1.95k

Table 6: Detailed statistics for summarization datasets.

size of 64. Top-k random sampling with & = 2 is
used as the basic inference method as suggested in
GPT-2 (Radford et al., 2019).

A.6 Comparison of parameter sizes

model ‘ MLP ‘QKV linear‘ score linear| total
comp. func.|256%1024%2|256*256*3 | 256*128*2 | 786,432
GPT-2 768%3072%2|768*768%3 — 6,488,064

Table 7: The comparison of parameter size of a single layer in
the composition function of GPSTsman and GPT-2¢mai.

A.7 Author Contributions Statement

We list our contributions below:

* Xiang Hu: proposing the unsupervised training
approach, implementing GPST, pre-training and
decoding algorithms, and paper writing.

* Pengyu Ji: GPST fine-tuning, experiments code,
running experiments, and paper writing.

A.8 Case studies

Please refer to the following pages.
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