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Abstract

Scientific Natural Language Inference (NLI)
is the task of predicting the semantic relation
between a pair of sentences extracted from
research articles. The automatic annotation
method based on distant supervision for the
training set of SCINLI (Sadat and Caragea,
2022b), the first and most popular dataset for
this task, results in label noise which inevitably
degenerates the performance of classifiers. In
this paper, we propose a novel co-training
method that assigns weights based on the train-
ing dynamics of the classifiers to the distantly
supervised labels, reflective of the manner they
are used in the subsequent training epochs.
That is, unlike the existing semi-supervised
learning (SSL) approaches, we consider the
historical behavior of the classifiers to evalu-
ate the quality of the automatically annotated
labels. Furthermore, by assigning importance
weights instead of filtering out examples based
on an arbitrary threshold on the predicted confi-
dence, we maximize the usage of automatically
labeled data, while ensuring that the noisy la-
bels have a minimal impact on model training.
The proposed method obtains an improvement
of 1.5% in Macro F1 over the distant super-
vision baseline, and substantial improvements
over several other strong SSL baselines. We
make our code and data available on Github.1

1 Introduction
Scientific Natural Language Inference (NLI) aims
at predicting the semantic relation between a pair
of sentences extracted from research articles. This
task was recently proposed by Sadat and Caragea
(2022b) as a Natural Language Understanding
(NLU) benchmark for scientific text along with
a new dataset called SCINLI. The training set of
SCINLI was constructed automatically using a dis-
tant supervision method (Mintz et al., 2009). The
labels assigned using this method contain strong

1https://github.com/msadat3/weighted_
cotraining

signals, and achieved a Macro F1 of ∼ 78% on
the human annotated test set using pre-trained lan-
guage models. Nevertheless, despite the strong
signals, the labels assigned based on distant super-
vision still contain noise that inevitably degenerates
the performance of classifiers. The noisy labels can
be particularly harmful for training large scale deep
learning models because these models can achieve
zero training loss even for mislabeled examples
simply by memorizing them (Zhang et al., 2021b;
Arpit et al., 2017).

Semi-supervised learning (SSL) methods such as
pseudo-labeling, i.e., self-training (Xie et al., 2020;
Chen and Yang, 2021), consistency regularization
(Sajjadi et al., 2016; Sohn et al., 2020), and co-
training (Blum and Mitchell, 1998) have emerged
as promising approaches that utilize a small amount
of human annotated data, and learn from a large
amount of unlabeled data. Generally, these meth-
ods first train models with the limited human la-
beled data, and combine their most confident pre-
dictions (selected by applying a fixed high thresh-
old, e.g., 0.9 on confidence) for unlabeled examples
with the human labeled data for subsequent training.
While a fixed high threshold ensures high quality
pseudo-labels, it also ignores a large fraction of
diverse examples that have correct pseudo-labels
but with lower confidence. Consequently, several
dynamic thresholding mechanisms (Zhang et al.,
2021a; Xu et al., 2021) have been proposed to en-
sure a higher utilization of the pseudo-labels. How-
ever, a dynamic threshold still discards a large num-
ber of examples, compromises the pseudo-label
quality, and is susceptible to error accumulation.

In this paper, we propose a novel co-training ap-
proach for scientific NLI that takes the signal from
labels assigned based on distant supervision, but
their quality is discerned by two classifiers simulta-
neously trained on different regions of the data map
(Swayamdipta et al., 2020) that guide each other
in the learning process. Unlike existing co-training
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approaches which also train two classifiers simulta-
neously in a cross-labeling manner by exchanging
the most confident pseudo-labels, in our approach,
the quality of each distantly supervised label is de-
termined mutually by each classifier in the form of
importance weights, which are exchanged between
the two classifiers. Thus, instead of exchanging the
pseudo-labels, we exchange the classifiers’ beliefs
in the quality of the distantly supervised labels. In
addition, we do not discard any examples but uti-
lize all of them with different importance weights
to ensure that noisy labels have a minimal impact
on model training.

The weights in our approach are estimated by
monitoring the training dynamics to capture the
behavior of the classifiers on each example—easy,
hard, and ambiguous. Specifically, we calculate
the weights based on both average confidence, and
variability of the probability predicted over the
training epochs for each label assigned based on
distant supervision. Our weight calculation strategy
ensures a high weight of the easy examples which
are more likely to be clean, and a low weight of
the hard examples which are more likely to be
noisy for both classifiers; and a contrasting weight
of the ambiguous examples by each classifier to
encourage divergence between them.

We explore our proposed approach by using a
small amount of human annotated examples, and
a large number of automatically annotated exam-
ples based on distant supervision from the SCINLI
training set. Our experiments show that the pro-
posed approach improves the performance by more
than 1.5% over distant supervision (i.e., models
trained directly on the SCINLI training set); and
obtains substantial improvements over co-training,
co-teaching (Han et al., 2018), and several other
baselines designed for low-resource settings. Our
key contributions can be summarized as follows:

• We develop a novel co-training approach
for scientific NLI that utilizes the historical
training dynamics to evaluate the quality
of distantly supervised labels to assign
importance weights for these labels.

• We thoroughly evaluate our proposed method
by comparing its performance with distant
supervision, co-training, co-teaching, and
several other strong SSL methods.

• We present the first ever human annotated
training set for scientific NLI containing

2, 000 examples which we will make publicly
available for future research.

2 Related Work

Scientific NLI Sadat and Caragea (2022b) pro-
posed a distant supervision method based on link-
ing phrases to automatically annotate large scale
training datasets for the scientific NLI task and
introduced the first dataset for this task which is
called SCINLI. This task consists of four classes:
ENTAILMENT, REASONING, CONTRASTING and
NEUTRAL. The training examples for the former
three classes are annotated automatically based
on linking phrases indicative of these relations.
For example, if the second sentence in an adja-
cent sentence pair starts with “Therefore,” the pair
is labeled as REASONING. Random non-adjacent
sentences are paired together and labeled as NEU-
TRAL. Using the same distant supervision method,
MSCINLI (Sadat and Caragea, 2024) was recently
introduced to cover multiple scientific domains.
The automatic annotation method results in noisy
labels that can harm the performance and general-
ization of the classifiers.

Semi-supervised Learning Self-training (Xie
et al., 2020; Becker et al., 2013; Mukherjee and
Awadallah, 2020; Sadat and Caragea, 2022a) incor-
porates unlabeled data into model training by using
three general steps: a) training a model using the
available labeled examples; b) assigning pseudo-
labels to unlabeled examples based on the model’s
prediction; c) selecting a subset of pseudo-labeled
examples based on some quality assurance mea-
sures and using them for further model training in
addition to the labeled examples. Consequently,
the model gets exposed to more data which results
in a better performance.

Co-training methods (Blum and Mitchell, 1998;
Wan, 2009; Gollapalli et al., 2013; Chen et al.,
2011; Qiao et al., 2018; Zou and Caragea, 2023)
employ a similar approach as self-training to in-
corporate pseudo-labeled data into model training
with a key difference. Instead of training a sin-
gle classifier as self-training, two classifiers are
trained simultaneously which exchange their most
confident pseudo-labels for further training. In con-
trast to the existing approaches, we do not discard
any examples, and enable co-training by exchang-
ing importance weights indicative of the distantly
supervised label quality, calculated based on the
classifiers’ training dynamics.
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Consistency regularization (Sajjadi et al., 2016;
Laine and Aila, 2017) uses a consistency loss term
(in addition to the supervised loss) that minimizes
the distance between the predictions made by the
model for different versions of the same unlabeled
data. For example, FixMatch (Sohn et al., 2020)
first generates pseudo-labels for weak augmenta-
tions (e.g., replacing a random subset of tokens in a
sentence with their synonyms) of unlabeled exam-
ples. A subset of these examples are then selected
based on a fixed confidence threshold. FixMatch
then uses strong augmentations (e.g., automatically
translating a sentence to a different language and
translating it back to the original language to get
its paraphrased version) of the selected unlabeled
examples as the input with these pseudo-labels as
their target. Recently, there have been a plethora
of consistency regularization based methods that
build on top of FixMatch. For example, FlexMatch
(Zhang et al., 2021a) uses a label-wise dynamic
thresholding method based on the learning status
for each label. SoftMatch (Chen et al., 2023) as-
signs soft weights to pseudo-labels based on the
model confidence instead of filtering them out. Al-
though SoftMatch does not filter out any examples,
the soft weights are assigned based only on the cur-
rent training iteration. That is, similar to other SSL
approaches, SOFTMATCH ignores the historical be-
havior of the classifier on the unlabeled examples.

Co-teaching The methods for learning from
noisy labels generally rely on the classifier pre-
diction during training to evaluate the quality of
the labels. From this point of view, this research
area is closely related to SSL. Co-teaching (Han
et al., 2018) is a method for training two classi-
fiers simultaneously (similar to co-training) which
exchange small-loss training instances (instances
with low training loss) for further training. One of
the key motivations behind training two classifiers
is that each classifier will filter our different types
of noise by learning complementary information.
If the classifiers reach a consensus, they are no
longer able to complement each other, reducing the
learning process to single classifier training. There-
fore, a divergence between the classifiers through-
out the training process is crucial. To this end,
De-coupling (Malach and Shalev-Shwartz, 2017)
and Co-teaching+ (Yu et al., 2019) use only the
examples for which the classifiers disagree in their
predictions. However, similar to SSL approaches,
these methods also evaluate the label quality based

only on the current classifiers’ predictions; ignore
the history based on their training dynamics; and
discard a large number of examples.

3 Background

We design our proposed approach based on our ob-
servations from the data map (Swayamdipta et al.,
2020) of SCINLI. In this section, we define the
metrics used to characterize each example; plot
them on a data map based on their characteriza-
tions; and discuss our observations from the data
map that guide the development of our approach.

Notations Consider a dataset D = {Dl ∪ Da}
where Dl = {(xi, yi)}i=1,...,n is a small hu-
man labeled training set of size n; and Da =
{(xi, ỹi)}i=1,...,m is an automatically labeled set
of size m, constructed using distant supervision.
xi is a premise-hypothesis pair, yi is a human an-
notated label, ỹi is an automatically assigned label,
and n ≪ m. We denote p(y|x; θ) as the predicted
probability for an assigned label y by a classifier θ,
given the premise-hypothesis pair x.

Dataset Cartography Dataset cartography
(Swayamdipta et al., 2020) is a tool for mapping
and diagnosing a dataset by analyzing the training
dynamics i.e., the model’s behavior on each ex-
ample during training. Particularly, each example
is characterized by three metrics—confidence,
variability, and correctness, defined below.

For an example (x, y), Swayamdipta et al.
(2020) defines the confidence as the mean of the
probabilities predicted for its assigned label y over
the training epochs {1, .., e}. That is, the confi-
dence is calculated as follows:

cθ(x, y) =
1

e

e∑

t=1

p(y|x; θt) (1)

Here, cθ is a function that calculates the confidence
of an example (x,y) by a classifier θ.

The variability is defined as the standard devia-
tion of the predicted probability for the assigned
label y over the training epochs. Specifically, vari-
ability is calculated as follows:

vθ(x, y) =

√∑e
t=1(p(y|x; θt)− cθ(x, y))2

e
(2)

The correctness is calculated as the fraction of
epochs in which the classifier predicts the assigned
label y correctly.

We train a ROBERTA (Liu et al., 2019) classifier
on the full SCINLI training set D, and plot 55K
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Figure 1: Data cartography of SCINLI. The colors and
shapes indicate the correctness of each example.

randomly selected examples in Figure 1 based on
their training dynamics. Note that, we plot only
55K examples (instead of all 101K) for clarity.

The plot shows that the examples with high
confidence and low variability (top left corner)
have a high correctness. That is, the model’s
prediction consistently matches with the assigned
label for these examples. Therefore, they are easy
to learn for the model, and the assigned labels are
more likely to be correct. In contrast, the examples
with low confidence and low variability (bottom
left corner of the plot) have a low correctness.
In other words, the model’s predictions disagree
with the assigned labels consistently. Thus, the
examples in this region are hard for the model
to learn, and the assigned labels are more likely
to be incorrect. The examples with a high
variability (right side of the plot) shows a moderate
correctness, and confidence. This indicates the
model is uncertain about these examples, and their
predictions occasionally match with the assigned
labels. In our approach, we employ a weighting
strategy that utilizes the information from the data
maps to assign importance weights to distantly
supervised examples during training.

4 Proposed Approach

We now present our co-training approach where
we train two classifiers simultaneously that capture
complementary information from the data. Un-
like the existing co-training approaches, we uti-
lize all examples in dataset Da, and do not filter
out anything. Rather, our approach assigns im-
portance weights to the automatically annotated
examples. Based on these weights, we decide the

impact of each automatically annotated example in
subsequent training of the classifiers. We devise
the weights of the automatically labeled examples
guided by the training dynamics of the classifiers
in the form of confidence and variability of each
example over the training epochs. Furthermore, in
contrast to the existing approaches which exchange
pseudo-labels between classifiers, we exchange the
weights calculated based on the historical behavior
of the classifiers in evaluating the quality of each
example. We ensure that the two classifiers learn
complementary information by employing a weight
calculation strategy that maintains their divergence.
An overview of our approach can be seen in Alg. 1.

4.1 Weight assignment

The two classifiers that we co-train are denoted
as θ1 and θ2. We now describe how we assign
importance weights to the automatically annotated
examples at each epoch to train the classifiers.

We calculate two sets of weights in our co-
training method based on the training dynamics
of the classifiers on the distantly supervised la-
bels. Specifically, for each ỹi in Da, we calcu-
late cθ1(x

i, ỹi), and cθ2(x
i, ỹi) using Eq. 1; and

vθ1(x
i, ỹi), and vθ2(x

i, ỹi) using Eq. 2. The
weights λi

1, and λi
2 for each example to be used

for subsequent training of θ2, and θ1, respectively
are calculated as follows:

λi
1 = cθ1(x

i, ỹi) + vθ1(x
i, ỹi) (3)

λi
2 = cθ2(x

i, ỹi)− vθ2(x
i, ỹi) (4)

Therefore, the weights for the easy examples (high
confidence, low variability) will be high for both
classifiers, and the weights for the hard (low con-
fidence, low variability) examples will be low
for both classifiers. For the ambiguous examples
where the variability is high, the weight for θ1 (i.e,
λi
2) will be low given that the classifiers show a

moderate confidence for these examples (see the
right side of Figure 1). For example, a confidence
of 0.4, and a variability of 0.3 results in low weight
of 0.1. On the other hand, if the variability is high,
the weight for θ2 (i.e, λi

1) will remain high even if
the confidence is moderate. For example, a confi-
dence of 0.4, and a variability of 0.3 results in high
weight of 0.7. We normalize the weights using a
min-max normalization method. Therefore, both
sets of weights are scaled to a range of 0 to 1.

Our weighting strategy ensures that a) the easy
examples which are likely to be correctly labeled,
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Algorithm 1 Weighted Co-training for Scientific NLI

Require: Human labeled set, Dl = {(xi, yi)}i=1,...,n; automatically labeled set, Da = {(xi, ỹi)}i=1,...,m; Maximum
training epochs E; learning rate η.

1: Train θ1, and θ2 on two randomly divided equal subsets of Dl; for each automatically annotated example i in Da, store the
probability p(ỹi|xi; θ1) and p(ỹi|xi; θ2) after each epoch.

2: for each (xi, ỹi) ∈ Da do
3: Calculate confidences cθ1(x

i, ỹi) and cθ2(x
i, ỹi), and variabilities vθ1(x

i, ỹi), and vθ2(x
i, ỹi) from the stored proba-

bilities using Eq. 1 and Eq. 2.
4: λi

1 ← cθ1(x
i, ỹi) + vθ1(x

i, ỹi); and λi
2 ← cθ2(x

i, ỹi)− vθ2(x
i, ỹi). ▷ Assign initial importance weights.

5: end for
6: Re-initialize θ1, θ2 ▷ Re-initialize the classifiers for co-training.
7: for e = 1 to E do
8: for each mini-batch B ∈ Da do
9: L1 ← 1

|B|
∑|B|

i=0 λ
i
2 ∗H(ỹi, pd(x

i; θ1)); L2 ← 1
|B|

∑|B|
i=0 λ

i
1 ∗H(ỹi, pd(x

i; θ2)). ▷ Calculate cross-entropy loss.
10: for each DS-LABELED example i ∈ B do
11: Update cθ1(x

i, ỹi) and cθ2(x
i, ỹi) using Eq. 1; update vθ1(x

i, ỹi) and vθ2(x
i, ỹi) using Eq 2.

12: λi
1 ← cθ1(x

i, ỹi) + vθ1(x
i, ỹi); and λi

2 ← cθ2(x
i, ỹi)− vθ2(x

i, ỹi). ▷ Update the weights.
13: end for
14: θ1 ← θ1 − η ∗ ∇L1; θ2 ← θ2 − η ∗ ∇L2 ▷ Update the parameters of θ1, and θ1
15: end for
16: end for
17: Fine-tune θ1, and θ2 on two randomly divided equal subsets of human annotated data with a learning rate lower than η.

participate in the training of both classifiers with
high weights; b) the hard examples which are likely
to be incorrectly labeled, participate in the train-
ing of both classifiers with low weights; and c)
the ambiguous examples for which the classifiers
are uncertain about the assigned labels, participate
in the training of one classifier with high weights,
and participate in the training of the other classi-
fier with low weights. This allows the classifiers
to remain divergent, and ensure that they capture
complementary information from the data. That is,
in contrast to prior methods (e.g., De-coupling and
Co-teaching+), we enforce divergence between the
classifiers by employing a contrasting usage of the
ambiguous examples for the classifiers.

4.2 Weighted Co-training

We co-train the two classifiers θ1 and θ2 in three
major steps. They are described below.

Step 1: Initial weight assignment. To assign
the initial weights to the automatically annotated
examples in Da, we train both classifiers θ1 and θ2
using two randomly divided subsets of equal size
of the human annotated set in Dl. At the end of
each epoch, we record the predicted probabilities
p(ỹi|xi; θ1) and p(ỹi|xi; θ2) for each example in
Da. We then calculate the confidences, and vari-
abilities based on the recorded probabilities using
Eq. 1 and 2, respectively. Based on these confi-
dences and variabilities, the initial weights for the
automatically annotated examples are then calcu-
lated using Eq. 3 and 4.

Step 2: Co-training epochs. We co-train θ1
and θ2 using Da. We do not include Dl in the
co-training epochs because assigning importance
weights to a combination of human labeled, and
automatically labeled examples results in an unfair
advantage to the former. Therefore, Dl is utilized
separately in an additional step.

Both classifiers are re-initialized before we start
the co-training epochs. At each epoch, the cross-
entropy loss for each classifier for an example is
scaled by its assigned weight by the other classifier.
In particular, for each mini-batch B, the losses L1

and L2 for θ1 and θ2 are calculated as follows:

L1 =
1

|B|

|B|∑

i=0

λi
2 ∗H(ỹi, pd(x

i; θ1)) (5)

L2 =
1

|B|

|B|∑

i=0

λi
1 ∗H(ỹi, pd(x

i; θ2)) (6)

Here, pd is the probability distribution over the
labels predicted by a classifier for an automatically
annotated example i in B, and H is the standard
cross-entropy loss.

After calculating the loss for both classifiers, we
update the confidences, and variabilities using Eq.
1, and 2. Note that the probabilities predicted by
the classifiers in the last epoch in Step 1, are used
as initial probabilities for both classifiers, and are
included in calculating the mean, and the standard
deviation in the co-training epochs. We then update
both sets of weights using Eq. 3 and 4, based on the
updated confidences and variabilities, to be used in
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the next epoch. Therefore, the classifiers co-train
each other by exchanging the complementary in-
formation from their respective training dynamics
over the epochs.

Step 3: Fine-tuning. The co-training epochs con-
tinue until we reach a pre-defined maximum epoch
E. We then fine-tune θ1 and θ2 using two randomly
divided subsets of equal size of Dl.

4.3 Classifier Ensembling
We ensemble the co-trained classifiers by perform-
ing an element-wise average of their softmax out-
put (i.e., the probability distribution). We then take
the argmax of the ensembled probability distribu-
tion to predict the labels for the test examples.

5 Experiments

This section describes the baselines, our models,
experimental settings, and results.

5.1 Baselines
The baselines that we consider for evaluating our
proposed method are described below.

FULLY-SUPERVISED (FS) This baseline trains
a fully supervised classifier using human labeled
or H-LABELED data. We explore two variants of
this baseline — FS (H-LABELED 1K), and FS
(H-LABELED 2K) which use 1, 000 randomly sam-
pled class-balanced H-LABELED examples, and all
2000 H-LABELED examples, respectively.

DISTANT SUPERVISION (DS) This is the dis-
tantly supervised counterpart of the FS base-
lines. We experiment with three variants — DS-
LABELED (1K), DS-LABELED (2K), and DS-
LABELED (101K) using randomly sampled 1000,
2000, and all 101, 412 examples in the SCINLI
training set, respectively.

BACK-TRANSLATION (BT) (Yu et al., 2018) A
data augmentation method based on machine trans-
lation where each example is translated to French
and then translated back to English to get their para-
phrased versions. The paraphrased and original
versions of the dataset are combined and models
are trained on this larger set. We explore back-
translation on top of both FS baselines.

DBST (Sadat and Caragea, 2022a) A self-
training method for NLI where examples are se-
lected based on whether the automatically assigned
label (e.g., distantly supervised label in SCINLI)
of each example matches with the predicted label

by the classifier and whether the confidence for the
predicted label is above a pre-defined threshold.

FIXMATCH (Sohn et al., 2020) A consistency
regularization method based on strong and weak
augmentations of unlabeled data. We use synonym
replacement as the weak augmentation, and back-
translation as the strong augmentation technique.
FixMatch does not consider the distantly super-
vised labels, and relies on the classifier prediction.

FLEXMATCH (Zhang et al., 2021a) FLEX-
MATCH is an SSL approach that uses FIXMATCH

as its backbone. In contrast to FIXMATCH, FLEX-
MATCH applies different confidence thresholds for
different classes based on their learning status.

SOFTMATCH (Chen et al., 2023) SOFTMATCH

also uses FIXMATCH as its backbone method.
However, instead of filtering out pseudo-labeled
examples, it assigns importance weights based on
the model confidence in the current training epoch.

CO-TRAINING A vanilla CO-TRAINING ap-
proach which does not make use of distantly su-
pervised labels, and exchanges a subset of the pre-
dictions selected based on a confidence threshold
between the classifiers for training them.

CO-TEACHING (Han et al., 2018) CO-
TEACHING is a method for learning from noisy
labels. It does not use any human annotated data,
and trains two classifiers simultaneously. The
classifiers exchange the small-loss examples (i.e.,
examples with low cross-entropy loss) which are
used for their training.

CO-TEACHING+ (Yu et al., 2019) This method
is similar to CO-TEACHING, except it enforces a
divergence between the classifiers by using only
the small-loss examples for which the classifiers
disagree in their predictions.

5.2 Our Models

We train the following models based on our pro-
posed approach.

Weighted Co-training (WCT) - cv WCT - CV

denotes the classifiers we train using our proposed
co-training approach described in Section 4.

Weighted Co-training (WCT) - cc A variant
of our proposed co-training approach where the
weights for the automatically labeled examples are
calculated only based on the confidences, and the
variabilities are not used.
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SciBERT RoBERTa

Method Macro F1 Acc Macro F1 Acc

DS-LABELED (1K) 61.21± 1.8 61.35± 1.7 63.29± 2.9 63.45± 2.6
FS (H-LABELED 1K) 65.31± 0.7 65.39± 0.6 67.70± 0.2 67.78± 0.2
BT (H-LABELED 1K) 64.13± 0.4 64.17± 0.3 67.73± 1.1 67.78± 1.1
DS-LABELED (2K) 64.74± 1.6 64.75± 1.4 67.01± 1.6 67.02± 1.4
FS (H-LABELED 2K) 67.46± 1.1 67.51± 1.1 70.13± 0.3 70.14± 0.2
BT (H-LABELED 2K) 68.12± 1.9 68.18± 1.9 70.23± 0.7 70.29± 0.7
DS-LABELED (101K) 77.53± 0.5 77.52± 0.5 78.08± 0.4 78.11± 0.4
DBST (Sadat and Caragea, 2022a) 73.61± 0.4 73.59± 0.5 73.74± 0.3 73.72± 0.3
FIXMATCH (Sohn et al., 2020) 68.21± 0.8 68.21± 0.8 71.27± 0.2 71.32± 0.2
FLEXMATCH (Zhang et al., 2021a) 68.60± 0.9 68.56± 0.8 71.64± 0.3 71.65± 0.4
SOFTMATCH (Chen et al., 2023) 68.77± 1.3 68.70± 1.3 71.80± 0.2 71.65± 0.4
CO-TRAINING 68.29± 1.7 68.28± 1.7 70.35± 0.2 70.47± 0.2
CO-TEACHING (Han et al., 2018) 78.06± 0.3 78.05± 0.3 78.72± 0.4 78.77± 0.5
CO-TEACHING+ (Yu et al., 2019) 76.27± 0.3 76.24± 0.3 76.47± 0.4 76.45± 0.5
WCT - CC 78.35± 0.5 78.36± 0.5 79.12∗ ± 0.2 79.15∗ ± 0.1
WCT - CV 78.55∗ ± 0.4 78.57∗ ± 0.4 79.62∗# ± 0.3 79.65∗# ± 0.3

Table 1: The Macro F1 and Accuracies of different methods on SCINLI. Best scores are in bold. * and # indicate
statistically significant improvements over DS-LABELED (101K) and CO-TEACHING (our best performing baseline),
respectively, according to a paired t-test with p < 0.05.

5.3 Experimental Settings

Dataset We consider the full SCINLI training set
containing 101K examples as our dataset D. We
then employ three expert annotators to manually
curate 2, 000 examples from D which are used as
the human labeled set, Dl. A detailed description
of our manual data annotation method is available
in Appendix A. We then remove any example that
was extracted from the same paper as the exam-
ples in Dl from D. This resulted in 97K examples
which are used as Da in our approach.
Implementation Details We experiment with the
base variants of both SCIBERT (Beltagy et al.,
2019) and ROBERTA (Liu et al., 2019) for the
baselines and our models. More implementation
details are available in Appendix B. Each experi-
ment is run three times with different random seeds.
The average and standard deviations of the Macro
F1 and accuracy of different methods are in Table
1. Our findings are described below.

5.4 Results & Observations
Weighted co-training vs. distant supervision
and data augmentation. As we can see from
the results, WCT - CV shows significant improve-
ments over the DS-LABELED (101K) baseline. In
addition, our proposed approach substantially out-
performs all FS, and BT baselines. These improve-
ments in performance illustrate that, our proposed
co-training approach is successful in reducing the
impact of noisy labels on classifier training, result-
ing in a better performance.

Weighted co-training vs. co-teaching. Compar-
ing WCT - CV and CO-TEACHING, we can see
that WCT - CV shows better performance. Further-
more, in contrast to our method, the improvement
shown by CO-TEACHING over the DS-LABELED

(101K) is not statistically significant. We can also
see that CO-TEACHING+ which aims at maintain-
ing the divergence between the classifiers by using
only disagreement data for training the classifiers,
shows a poor performance. These observations il-
lustrate that a) using only the predictions from the
current epoch is myopic, and valuable information
from the prior epochs is lost; and b) while the dis-
agreement data possibly improves the divergence
of the classifiers, the agreement data also contains
diverse patterns, and are necessary.

WCT - CV vs. WCT - CC While WCT -
CC shows a higher Macro F1 than all other base-
lines, it shows a lower performance compared with
WCT - CV. Note that WCT - CC uses only con-
fidence to assign the weights to the automatically
labeled examples for both classifiers. That is, un-
like WCT - CV, WCT - CC does not enforce a di-
vergence between the classifiers by using contrast-
ing weights for the ambiguous examples. There-
fore, our weighting strategy in WCT - CV indeed
improves the divergence between the classifiers,
which results in improved performance.

Weighted co-training vs. vanilla co-training.
The results show that the CO-TRAINING baseline
which does not make use of the distantly super-
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Approach SciBERT RoBERTa

SIMPLE FT - ENSEMBLED 78.03 78.52
WST - ENSEMBLED 78.46 79.33
WST - R 78.25 78.50
WCT - CV BOTH 2K 78.29 79.35
WCT - CVH 78.31 79.29
WCT - CV 78.55 79.62∗#

Table 2: Macro F1 scores from the ablation experiments
compared with WCT - CV. * and # indicate statistically
significant improvements over SIMPLE FT - ENSEM-
BLED and WST - R, respectively, according to a paired
t-test with p < 0.05. The improvements of WCT - CV
over other ablations are not statistically significant.

vised labels, and uses the most confident classifier
predictions, achieves a much lower Macro F1 than
the DS-LABELED (101K) baseline. In addition,
it only shows marginal improvements over the FS
baselines. Therefore, distantly supervised labels
contain strong signals which can be beneficial for
model training, rather than using model predictions
which can be unreliable, especially in the initial
training epochs.

Weighted co-training vs. other SSL approaches.
We can see that the SSL approaches—FIXMATCH,
FLEXMATCH, and SOFTMATCH show a much
lower performance than DS-LABELED (101K).
Note that these single-classifier (pseudo-labeling)
approaches do not utilize the distantly supervised
labels, and rely only on the classifier prediction
similar to vanilla co-training. Given their suscep-
tibility to error accumulation, and the challenging
nature of the scientific NLI task, they fail to show
any promising performance. DBST on the other
hand utilizes the signal from distant supervision in
addition to model prediction. Consequently, DBST
shows improved performance over the other SSL
baselines. However, it filters out examples based on
a confidence threshold, resulting in a much lower
performance compared to WCT - CV.

6 Analysis
Our analysis consists of two parts. First, we per-
form various ablation experiments (§6.1). Next,
we analyze the generalizability of our co-training
approach to other NLP tasks (§6.2). We also an-
alyze the robustness of WCT - CV by evaluating
its out-of-domain performance using MSCINLI
(Sadat and Caragea, 2024) in Appendix C.

6.1 Ablation Experiments
Simple fine-tuning vs. co-training We perform
an experiment where we first train two classifiers

on Da and then continue fine-tuning them on two
randomly divided subsets of Dl. This approach is
denoted as SIMPLE FT - ENSEMBLED. We com-
pare the performance of this approach with the
performance of WCT - CV and show the results
in Table 2. As we can see, the performance of
SIMPLE FT - ENSEMBLED is substantially lower
than WCT - CV illustrating the necessity of SSL
methods such as our proposed co-training method.

Ensembled self-training vs. co-training To
evaluate the necessity of co-training two classi-
fiers by exchanging information between them, we
explore a method where we also train two clas-
sifiers simultaneously but do not exchange any
information. We denote this method as WST -
ENSEMBLED which stands for WEIGHTED SELF-
TRAINING - ENSEMBLED. Table 2 shows that
WST - ENSEMBLED obtains a lower Macro F1
than WCT - CV. Thus, co-training the classifiers
by exchanging their knowledge is clearly more ad-
vantageous than simple ensembling.

Self-training with random weighting strategy
vs. co-training To further evaluate the benefit of
training two classifiers with co-training, we experi-
ment with a weighted self-training method where
we train a single classifier and randomly decide
between Eq. 3 and Eq. 4 to assign the weight of
each automatically annotated example. This self-
training method is denoted as WST - R. As we can
see in Table 2, the performance of the WST - R is
lower than WCT - CV. This is because, similar to
other SSL baselines, WST - R is more susceptible
to error accumulation due to its reliance on a single
classifier whereas, our co-training approach aims
to learn complementary information from the data,
which results in the classifiers being able to filter
out different types of noise. Consequently, WCT -
CV outperforms WST - R.

Multi-set vs. single-set co-training To under-
stand the necessity of using different splits of hu-
man labeled data to train the two classifiers in our
co-training approach, we explore a method named
WCT - CV BOTH 2K. This method is similar to
WCT - CV except it uses all 2, 000 human labeled
examples to train both classifiers. We can see that
the WCT - CV BOTH 2K shows a lower Macro
F1 than WCT - CV illustrating that training the
classifiers using two different splits of human la-
beled data enforces the classifiers to further capture
complementary information.
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Approach ANLI R3 Dynasent R1

15% CORRUPTED 42.34 78.39
SIMPLE FT - ENSEMBLED 43.37 79.47
CO-TEACHING 43.83 78.72
WCT - CV 44.43∗ 79.91∗#

Table 3: Macro F1 of different methods for other tasks.
* and # indicate statistically significant improvements
over 15% CORRUPTED and CO-TEACHING, respec-
tively, according to a paired t-test with p < 0.05.

High weighting vs. fine-tuning with human la-
beled To evaluate the necessity of utilizing au-
tomatically labeled and human labeled examples
using separate steps (Step 2 and 3 of our approach,
described in Section 4.2), we perform an experi-
ment where we combine the human labeled exam-
ples with large weights (1.0) with the automatically
labeled examples in our co-training epochs in Step
2. This approach is denoted as WCT - CVH.

As we can see in Table 2, WCT - CVH shows a
≈ 0.4% drop in performance compared with WCT
- CV with ROBERTA. Inspecting the weights for
the automatically annotated examples in WCT -
CVH, we find that in the early co-training epochs,
their average weight is 0.5. This is because the
classifiers in the early epochs tend to be less confi-
dent about their predictions which results in more
than half of the automatically annotated examples
having a weight less than 0.4. Because of the dis-
proportionately high weights for the human labeled
examples (1.0), the training of the classifiers be-
come focused on them, and the automatically an-
notated examples remain underutilized due to their
smaller weights, losing the benefits of increased
data diversity. Consequently, we see a drop in the
overall performance.

6.2 Generalizability Analysis
To evaluate the generalizability of our proposed co-
training approach, we experiment with a challeng-
ing NLI dataset from the general domain — ANLI
(Nie et al., 2020) and a challenging sentiment anal-
ysis dataset — Dynasent (Potts et al., 2021). In
particular, we choose the Round 3 (R3) subset of
ANLI and Round 1 (R1) subset of Dynasent. We
choose these particular subsets because their train-
ing sets contain a large number of examples (100K
in ANLI R3, 90K in Dynasent R1). The experi-
mental settings for these two datasets are described
below.

We simulate a ‘potentially noisy’ setting simi-
lar to SCINLI by randomly corrupting 15% of the

labels in the training sets of these datasets. 2, 100
non-corrupted class-balanced examples are used
as Dl, and rest of the examples are used as Da.
We train ROBERTA models in four settings: 1)
15% CORRUPTED—the full training set after cor-
rupting 15% of the labels ; 2) SIMPLE FT - EN-
SEMBLED—same method used in Section 6.1; 3)
CO-TEACHING—our best performing baseline; and
4) WCT - CV—our proposed approach. Each ex-
periment is run three times and the average of the
Macro F1 scores are reported in Table 3. We find
that:

Our co-training approach improves the perfor-
mance for both ANLI and Dynasent. WCT
- CV shows better performance than 15% COR-
RUPTED, SIMPLE FT - ENSEMBLED, and CO-
TEACHING for both ANLI and DYNASENT. There-
fore, while the primary objective of our proposed
method is to improve the performance in scien-
tific NLI, we can see that it can be useful for other
challenging tasks.

7 Conclusion & Future Work
In this paper, we propose a novel co-training ap-
proach for scientific NLI. In contrast to the ex-
isting approaches, we assign importance weights
to automatically annotated examples based on the
historical training dynamics of the classifiers. In-
stead of filtering out examples based on an arbitrary
threshold, we decide the impact of the automati-
cally annotated examples in subsequent training
based on their assigned weights. We encourage
divergence between the classifiers by assigning a
contrasting weight to the ambiguous examples to
train each classifier. Our experiments show that
the proposed approach obtains substantial improve-
ments over the existing approaches. In the future,
we will explore methods to further harness the train-
ing dynamics of the classifiers in improving the
performance of SSL methods.
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Limitations

Our proposed approach shows promising perfor-
mance in learning from noisy labels, but it requires
a small human annotated training set. Manually
annotating a small training set is significantly more
feasible, and cheaper than manually removing the
noisy examples from a large dataset. Nevertheless,
one has to carefully consider the expense incurred
for the small human annotated training set, and the
obtained performance gain to employ our proposed
method for other datasets and/or tasks.

Furthermore, since our approach trains two clas-
sifiers simultaneously, it requires a higher amount
of computational resources. For example, we uti-
lize two NVIDIA RTX A5000 GPUs to train the
classifiers using our proposed approach whereas
the single classifier based methods that we explored
as our baselines are trained with a single GPU.
While the necessity of higher amount of resources
is a common constraint among all dual classifier
based methods (e.g., CO-TEACHING), the trade-off
between the performance gain with our approach
and the additional computational costs should be
carefully considered.
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Class #Annotated Agreement

Contrasting 624 93.4%
Reasoning 624 82.4%
Entailment 624 80.1%
Neutral 624 94.6%
Overall 2, 496 87.6%

Table 4: Number of manually annotated examples and
the agreement rate between the gold labels and automat-
ically assigned labels for each class.

A Details on Data Annotation
We randomly sample a small subset of examples
balanced over the classes from the full SCINLI
training set and ask three expert annotators to an-
notate the label based on only the available context
in the two sentences in each example. A gold label
is assigned to each example based on the majority
consensus of the annotated labels. If the annotators
cannot reach a majority consensus, no gold label
is assigned. The examples for which the human
annotated gold label match with the distantly su-
pervised automatically assigned label are selected
to be in the human annotated training set. We
iteratively continue sampling examples from the
SCINLI training set and annotating them until we
have 2000 human annotated training examples bal-
anced over the classes. The annotated data will be
made available for academic research purposes at
our GitHub link2.

Agreement Rates We iteratively sample exam-
ples from SCINLI training set until we had at least
500 examples from each class in the human anno-
tated training set. In total 2, 496 examples are an-
notated among which 2, 187 had a match between
the gold label and the automatically assigned label
based on distant supervision. We then randomly
down-sample the classes with higher support to 500
examples to balance the datasets. The annotators
achieved a Fleiss-k score of 0.68. The class-wise
agreement rate can be seen in Table 4.

Annotator Details Undergraduate students were
hired as annotators from the authors’ institution.
The annotators were trained for several iterations
until their annotations reached a satisfactory agree-
ment with the authors. The trained annotators then
start their final annotations for constructing the hu-
man annotated training set. The compensation was
set at the hourly rate of $15.

2https://github.com/msadat3/weighted_
cotraining

B Implementation Details

We use the ‘scibert-scivocab-cased’ and the
‘roberta-base’ variants of SCIBERT and
ROBERTA, respectively for all our baselines
and proposed methods. We use the huggingface3

implementation for both models. The premise and
hypothesis for each example are concatenated with
a [SEP] token and the [CLS] token’s representa-
tion is sent through a fully connected layer with
softmax activation to predict the class. For all
methods (baselines and proposed), the batch size
is set at 64. We use an Adam optimizer (Kingma
and Ba, 2014) to train the models and set the
learning rate at 2e − 5. We use a learning rate of
2e − 6 for fine-tuning the models in the last step
of our proposed approach (Step 3 in Section 4.2).
For backtranslation, we use a transformer based
sequence-to-sequence model4. The confidence
threshold for DBST, FIXMATCH, and the base
threshold for FLEXMATCH is set at 0.9. For the
consistency regularization based algorithms such
as FIXMATCH, FLEXMATCH, and SOFTMATCH,
we use a ratio of 1 : 7 between labeled and
unlabeled data. The weight for the supervised loss
for the consistency regularization methods is set at
0.8, and that of the unsupervised loss is set at 0.2.
For both CO-TEACHING and CO-TEACHING+,
we set the estimated noise rate, ϵ = 0.15. For the
DS, BT, FS, and the consistency regularization
baselines, we train the classifiers for a maximum
of 10 epochs. For the other experiments, we set the
number of maximum epochs at 5. Early stopping
is employed with a patience of 2. Macro F1 score
on the development set is used as the stopping
criteria for early stopping.

We use a single NVIDIA RTX A5000 GPU for
the experiments involving a single model training
(e.g., DBST, FixMatch etc.), and two NVIDIA RTX
A5000 GPU for the dual model training experi-
ments (e.g., co-training, weighted co-training, co-
teaching). Each co-training experiment takes ≈ 5
hours to complete.

C Robustness Analysis

We assess the robustness of our proposed approach
by experimenting with out-of-domain (OOD) test
sets from MSCINLI (Sadat and Caragea, 2024)

3https://huggingface.co/docs/transformers/
index

4https://huggingface.co/Helsinki-NLP/
opus-mt-en-ROMANCE
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MODEL HARDWARE NETWORKS SWE SECURITY NEURIPS OVERALL

DS-LABELED (101K) 75.60± 0.8 72.70± 0.5 74.36± 0.3 74.99± 0.3 78.35± 1.0 75.19± 0.5
CO-TEACHING 75.06± 2.8 74.03± 0.7 74.07± 1.2 74.27± 1.1 77.77± 0.8 75.04± 1.2
WCT - CC 77.41± 0.5 76.24± 0.3 75.68± 0.4 75.34± 0.7 79.38± 0.1 76.80± 0.1
WCT - CV 77.32± 0.3 76.12± 0.3 76.44± 0.4 76.46± 0.7 79.97± 0.5 77.11± 0.1

Table 5: Domain-wise and overall Macro F1 scores (%) of DS-LABELED (101K) and CO-TEACHING baselines compared with
our methods WCT - CC and WCT - CV trained using SCINLI and tested on MSCINLI.

<human>: Consider the following two sentences:
Sentence1: <sentence1>
Sentence2: <sentence2>
Based on only the information available in these two sentences, which of the following options is
true?
a. Sentence1 generalizes, specifies or has an equivalent meaning with Sentence2.
b. Sentence1 presents the reason, cause, or condition for the result or conclusion made Sentence2.
c. Sentence2 mentions a comparison, criticism, juxtaposition, or a limitation of something said in
Sentence1.
"d. Sentence1 and Sentence2 are independent.
<bot>:

Table 6: Prompt template used for our experiments with LLM. Here, <X> indicates a placeholder X which is
replaced in the actual prompt.

PROMPT TYPE CONTRASTING REASONING ENTAILMENT NEUTRAL MACRO F1

ZERO-SHOT 45.55 37.72 15.61 18.50 29.34
FEW-SHOT 57.70 37.18 51.51 63.90 52.57

Table 7: Class-wise F1 and overall Macro F1 of Zero-shot and Few-shot prompting with Llama-2-13b-chat for
SCINLI test set.

that covers the following domains from computer
science: “Hardware”, “Networks”, “Software & its
Engineering”, “Security & Privacy”, and “NeurIPS”
which is related to machine learning. Particularly,
we evaluate the following models that are trained
using the training set of SCINLI (that covers com-
putational linguistics only) on the MSCINLI test
set: DS-LABELED (101K), CO-TEACHING, WCT
- CC, and WCT - CV. The domain-wise and over-
all Macro F1 of these methods for MSCINLI are
reported in Table 5. We find the following:

Our proposed approach is robust in an OOD
setting. As we can see, for most of the domains
in MSCINLI, CO-TEACHING fails to show any im-
provement over DS-LABELED (101K). In contrast,
WCT - CC outperforms DS-LABELED (101K)
in all domains resulting in an overall increase of
1.61%. In addition, WCT - CV improves the OOD
performance further over WCT - CC and shows an
improvement of 1.92% in Macro F1 over the DS-
LABELED (101K) baseline. These results illustrate
that, our proposed approach not only improves in-
domain performance, but also trains robust models

that perform well for OOD datasets.

D LLMs for SciNLI

We experiment with Llama-2-13b-chat-hf (Tou-
vron et al., 2023) for SCINLI. We design a prompt
template that first presents the two sentences from
each example, and asks a multiple choice ques-
tion with the class definitions as the choices. The
prompt template can be seen in Table 6. Note that
we omitted the special tags needed to prompt the
LLM (e.g., [INST]) in the Table for brevity. We
perform experiments with the LLM in 2 settings:

• Zero-shot: no exemplars are shown to the
LLM.

• Few-shot: one exemplar from each class is
prepended to the prompt.

The results from these experiments can be seen in
Table 7. As we can see, the FEW-SHOT perfor-
mance is substantially higher than the ZERO-SHOT

performance. Nevertheless, the Macro F1 of even
the FEW-SHOT setting is only 52.57% illustrating
that making use of LLMs for reducing the noise in
the SCINLI trainign set is not viable approach.
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