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Abstract

Recent advancements in long-context model-
ing have enhanced language models (LMs) for
complex tasks across multiple NLP applica-
tions. Despite this progress, we find that these
models struggle with multi-hop reasoning and
exhibit decreased performance in the presence
of noisy contexts. In this paper, we introduce
Reasoning with Attributions, a novel approach
that prompts LMs to supply attributions for
each assertion during their reasoning. We vali-
date our approach through experiments on three
multi-hop datasets, employing both proprietary
and open-source models, and demonstrate its ef-
ficacy and resilience. Furthermore, we explore
methods to augment reasoning capabilities via
fine-tuning and offer an attribution-annotated
dataset and a specialized training strategy. Our
fine-tuned model achieves competitive perfor-
mance on multi-hop reasoning benchmarks,
closely paralleling proprietary LMs such as
ChatGPT and Claude-instant1.

1 Introduction

The field of long-context modeling has garnered
significant attention due to its importance in ap-
plications that demand extensive comprehension
and generation capabilities (Lewis et al., 2020; Liu
et al., 2023b). Techniques for long-context mod-
eling (Chen et al., 2023a; Peng et al., 2023; Chen
et al., 2023b) have been proposed with encouraging
results on established benchmarks (An et al., 2023;
Bai et al., 2023).

Nevertheless, we have identified a gap in the
performance of these models when it comes to
multi-hop reasoning tasks, where a model must
navigate and synthesize information from disparate
sources to answer complex questions. Evidence
from key benchmarks such as LongBench (Bai

*Corresponding author.
1The dataset, model, and code are publicly available at

https://github.com/LaVi-Lab/LongContextReasoner.

et al., 2023), as well as our experimental results in
Section 4.3, indicate that these long-context LMs
underperform compared to leading multi-hop rea-
soning systems (Zhang et al., 2023). The reasons
for this shortfall in multi-hop reasoning effective-
ness are not yet fully understood.

We contend that the limitations in multi-hop rea-
soning observed in long-context LMs stem from
two main issues: The inability to discern perti-
nent information within noisy contexts (Liu et al.,
2023a) and the struggle to incorporate knowl-
edge within the context effectively, particularly for
smaller-scale models (Zheng et al., 2023a). To
address these challenges, we introduce Reasoning
with Attributions, a methodology that compels LMs
to substantiate their reasoning by linking assertions
to relevant context segments, such as citations (Gao
et al., 2023) or direct quotations (Menick et al.,
2022). This approach not only guides LMs to
perform targeted information retrieval to identify
the position of relevant contexts, thereby reducing
noise, but also ensures their responses are well-
grounded in the source material. Our preliminary
and comprehensive experimental findings, detailed
in Sections 2.1 and 4.3, confirm the efficacy and
resilience of this method across various multi-hop
reasoning benchmarks.

Despite these advancements, smaller long-
context LMs exhibit continued difficulties in rea-
soning. We explore the potential for these models
to improve through learning to reason and attribute
simultaneously. Utilizing ChatGPT (Brown et al.,
2020) to annotate the multi-hop reasoning dataset
MuSiQue (Trivedi et al., 2022), we create a spe-
cialized dataset MuSiQue-Attribute for fine-tuning
models in this dual capacity. We propose a potent
learning strategy that leverages multi-task learning
and data augmentation to fully exploit these anno-
tations. Our experiments with five long-context
LMs across three multi-hop reasoning datasets and
two general instruction-following datasets reveal
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that our fine-tuned Vicuna-7B model (Zheng et al.,
2023b) surpasses similar-scale baselines by a sub-
stantial margin, i.e., more than 20 points on aver-
age, and even outperforms ChatGPT and Claude-
instant on MuSiQue, albeit with a slight trade-off in
other capabilities. This study illuminates a promis-
ing avenue to enhance the multi-hop reasoning ca-
pabilities of long-context LMs through a focus on
attributions.

Our contributions can be summarized as follows:
• We introduce Reasoning with Attributions, an

innovative reasoning paradigm that enhances
both the performance and robustness of long-
context LMs in multi-hop reasoning tasks.

• We provide MuSiQue-Attribute, an attribution-
annotated multi-hop reasoning dataset to sup-
port further research in this domain.

• We develop a bespoke learning strategy that in-
corporates novel auxiliary tasks for multi-task
learning and employs tailored data augmenta-
tion techniques.

• Through rigorous testing on three multi-hop
reasoning datasets and two general instruction-
following benchmarks with both proprietary
and open-source models, we demonstrate that
our fine-tuned Vicuna-7B model achieves
comparable multi-hop reasoning performance
to ChatGPT with minimal impact on other
capabilities. Additionally, our model shows
resilience against varying degrees of contex-
tual noise, underscoring the effectiveness of
our methods.

2 Reasoning with Attributions

2.1 Pilot Study

The challenge of large language models becoming
mired in irrelevant contexts, known as the “Lost in
the Middle” phenomenon, has been documented
across various NLP tasks, such as multi-document
QA (Liu et al., 2023a) and mathematical reason-
ing (Shi et al., 2023). This issue is also apparent
in multi-hop reasoning, which we illustrate later in
Figure 2. Prior research has noted this problem but
has not decoded the underlying mechanisms. For
example, while Liu et al. (2023a) found that intro-
ducing the query before the context can aid in better
information retrieval from the context, they did not
achieve an improvement in QA performance us-
ing this query-aware approach. As we suggest in
Section 1, the reasons might extend beyond mere
retrieval challenges to include complications in ef-

Instruction: Write an accurate and concise answer for . . .

<Retrieve for the question>
Document [1](Title: David Myles (musician)): . . .
Document [2](Title: Jamal Plays Jamal): . . .
Document [3](Title: Top and Bottom Brass): . . .
(Other retrieved documents are omitted.)

Question: What is the genre of the record label of the
band that performed on the Crush Tour?

Answer:

CoT:
The Crush Tour is performed by the band Bon Jovi. The
record label of Bon Jovi is Island Records. The genre of
Island Records is jazz. The answer is: jazz ✔

CoC:
The Crush Tour is performed by the band Bon Jovi [8].
The record label of Bon Jovi is Island Records [17]. The
genre of Island Records is jazz [19]. The answer is: jazz
✔

CoQ:
The Crush Tour is performed by the band Bon Jovi (“The
Crush Tour is a third concert” [8]). The record label of
Bon Jovi is Island Records (“Bounce is the eighth studio
album by American” [17]). The genre of Island Records
is jazz (“The Antidote is the debut album by English jazz”
[19]). The answer is: jazz ✔

Table 1: An example of CoT and two of our reasoning
with attribution methods: CoC and CoQ. We highlight
the differences between these methods, e.g., answers
are marked in green, citations are marked in orange and
quotes are marked in blue.

fectively applying the retrieved knowledge.
To tackle the issues outlined earlier, we intro-

duce Reasoning with Attributions, a strategy that
mandates language models to link the claims made
during reasoning to specific sections of the pro-
vided context. This implicit requirement effectively
decomposes a complex multi-hop question into two
more manageable tasks: Pinpointing pertinent in-
formation within the context and constructing well-
founded claims based on that information.

We adapt the concept of Chain-of-Thought
(CoT) (Wei et al., 2022) reasoning to create two
distinct variants aligned with our attribution-based
approach: Chain-of-Citation (CoC) and Chain-
of-Quote (CoQ). In CoC, models are prompted to
reference citations corresponding to each step of
the reasoning chain. CoQ goes further by requiring
models to include direct quotations from the cited
material for each reasoning step. An illustrative
example highlighting the nuances between these
methods is provided in Table 1.

The results of our preliminary study (Please
refer to Section 4 for the setup), detailed in Ta-
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Model
MuSiQue 2Wiki HotpotQA

EM F1 EM F1 EM F1

ChatGPT (gpt-3.5-turbo-1106)

+ AO 15.8 26.9 46.2 57.2 51.0 65.4
+ CoT 36.2 50.1 55.2 70.1 56.8 71.2
+ CoC 37.0 51.0 55.4 71.1 58.6 73.4
+ CoQ 36.4 51.3 54.0 68.7 55.4 70.2

Claude-instant (claude-instant-1.2)

+ AO 26.2 39.4 47.0 57.5 54.4 68.4
+ CoT 26.0 37.9 40.8 52.3 20.2 26.3
+ CoC 32.2 46.2 53.4 67.0 54.2 68.3
+ CoQ 30.2 45.9 49.8 62.1 50.8 65.0

Table 2: Exact-Match (EM) and F1 scores of ChatGPT
and Claude-instant with 5-shot prompting on multi-hop
reasoning datasets, e.g., MuSiQue, 2WikiMultiHopQA
(2Wiki for short) and HotpotQA. The best results are in
bold. AO means models predict answers only.

ble 2, compare the efficacy of CoT, CoC, and
CoQ when applied to two proprietary long-context
LMs: ChatGPT (Brown et al., 2020) and Claude-
instant (Bai et al., 2022). Without further notice,
ChatGPT always refers to gpt-3.5-turbo-1106
and claude-instant-1.2 for Claude-instant in
this work. The findings suggest that both CoC and
CoQ generally yield improvements over CoT, in-
dicating that attribution-based reasoning enhances
the precision and coherence of the models’ reason-
ing processes. CoQ appears to slightly underper-
form CoC, likely due to the increased complexity
of producing exact quotations.

It is noteworthy that even in instances where CoT
reduces the Answer Only (AO) performance, CoC
is able to not only mitigate this decline but also
surpass the AO baseline. This demonstrates the po-
tential of CoC as a robust reasoning method. The
success of our approach with various open-sourced
models is further elaborated upon in Section 4.3.
Based on these insights, we adopt CoC as our pri-
mary reasoning format in subsequent sections.

2.2 Dataset Curation
Our analysis, evidenced by the data in Tables 2 and
5, confirms that while reasoning with attributions
holds promise, smaller open-source long-context
language models significantly underperform com-
pared to their proprietary counterparts in multi-hop
reasoning tasks. To address this, we investigate
whether training these models to perform attribu-
tions can boost their reasoning capabilities.

A hurdle in this process is the lack of attribution
annotations within existing multi-hop reasoning

Error Type Portion

Incorrect Answer 58.44%
Non-Existent Attributions 12.56%
Incorrect Citations 9.80%
Repeated Citations 6.35%
Extreme Quotes 10.55%

Table 3: Incidence rates of different error types.

Entry Value

#Max Words per Sample 3385
#Mean Words per Sample 1809.10
#Averaged Words per CoT Step 11.64
#Averaged Words per Quote 16.60
#Totoal Samples 1358

2-Hop Samples [%] 82.18%
3-Hop Samples [%] 14.06%
4-Hop Samples [%] 3.76%

Table 4: Statistics of MuSiQue-Attribute.

benchmarks. To bridge this gap, we have gener-
ated new annotations by prompting ChatGPT with
5-shot CoQ. This has been done to create CoT with
attributions for 5,000 instances randomly selected
from the answerable training set of the MuSiQue
dataset (Trivedi et al., 2022). Although CoC gener-
ally outperforms CoQ, we chose CoQ for annota-
tion because it provides more detailed information.
This richness is beneficial not only for evaluating
the quality of the annotations but also proves ad-
vantageous for the fine-tuning processes discussed
in Section 3.

After generating the annotations, we imple-
mented a filtering process to exclude annotations
with any of the following errors (Please refer to
Appendix E for implementation details):

• Incorrect Answer: The model’s predicted an-
swer does not align with the reference answer,
which typically indicates an erroneous CoT.

• Non-Existent Attributions: Fabricated cita-
tions or quotes that do not correspond to the
actual context are indicative of model halluci-
nation.

• Incorrect Citations: Citations do not match
the manually identified supporting facts, sug-
gesting flawed attributions.

• Repeated Citations: Redundant citations con-
travene the multi-hop requirement of sourcing
from multiple documents.

• Extreme Quotes: Quotes that are either too
terse (under five words) or excessively lengthy
(spanning an entire document) lack utility.

Table 3 presents the substantial incidence rates
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Figure 1: Comparison of the proposed auxiliary tasks.

of each error type, which could negatively impact
fine-tuning effectiveness. After filtering, we ob-
tain a training dataset of 1,358 samples, referred
to as MuSiQue-Attribute. The statistics of the
MuSiQue-Attribute training set are outlined in Ta-
ble 4. It is important to note that the hop distribu-
tion in MuSiQue-Attribute is skewed. This skew-
ness arises both because generated CoT for ques-
tions with more hops is more prone to errors and
because such questions represent a smaller fraction
of the original MuSiQue training set. Additionally,
we conducted a human evaluation of the MuSiQue-
Attribute quality in Appendix A.

3 Learning to Attribute in Reasoning

One intuitive approach to enhancing the multi-hop
reasoning capabilities of LMs is to fine-tune them
on our curated MuSiQue-Attribute, thereby teach-
ing them to integrate attribution into their reasoning
processes, specifically to generate CoC. Despite
the simplicity of this method, our subsequent anal-
ysis in Section 4.4 demonstrates that this direct
approach fails to produce robust results.

Multi-Task Learning. Beyond simply fine-
tuning LMs on the MuSiQue-Attribute to learn to
attribute in reasoning (denoted as LA), we propose
three auxiliary tasks that serve as simplified analogs
of LA. These tasks are designed to train LMs in
conjunction with LA to enhance their proficiency
in attribution-based reasoning:

• Answer Prediction (AP for short): This task
focuses on direct answer prediction without
the need for an explicit reasoning process. AP
is intended to help LMs internalize the rea-
soning needed for straightforward questions
where CoT is not required.

• CoT Generation (CG for short): In the CG
task, models are trained to generate a CoT
before providing an answer. This is aimed at

developing LMs’ abilities to reason explicitly
and methodically across multiple pieces of
information for complex questions.

• Quotes Identification (QI for short): This
task trains models to pinpoint critical quotes
for reasoning. QI is designed to fine-tune the
ability of LMs to filter out irrelevant details
and zero in on the pertinent segments of text,
thereby sharpening the accuracy of reasoning.

Figure 1 illustrates the distinctions between our
primary LA task and the three auxiliary tasks.

Data Augmentation. A recognized limitation of
direct fine-tuning on our MuSiQue-Attribute is the
potential for models to develop biases, such as fa-
voring certain locations of relevant documents (Liu
et al., 2023a), sensitive to a fixed number of docu-
ments, or accommodating only a narrow range of
noise levels. To counteract these biases, we have
devised the following data augmentation strategies:

• Distractor Sampling: By randomly select-
ing a varying number of irrelevant documents,
we modify the positioning of relevant docu-
ments and the total document count within the
context. This approach also mimics the fluc-
tuating noise levels encountered in real-world
scenarios, training language models to cope
with noisy contexts effectively.

• Document Shuffling: Reordering the docu-
ments helps to remove any superficial posi-
tional cues that could lead to reasoning bias.
For example, this ensures that models do not
learn to associate the sequence of relevant doc-
uments with a fixed reasoning chain sequence.

These data augmentation strategies are applied in
sequence for each training instance.

4 Experiments

4.1 Datasets
Our method’s effectiveness in multi-hop reasoning
is assessed on the following datasets: HotpotQA
(Yang et al., 2018), 2WikiMultiHopQA (2Wiki
for short) (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2022). For each question, we provide a con-
text composed of shuffled relevant and irrelevant
documents. These irrelevant documents are the
official retrieved distractor documents. We adopt
the development and test sets from Trivedi et al.
(2023) for evaluation, which contains 100 and 500
examples respectively. The results we present are
the mean values from three separate trials, each
with a distinct random seed.
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Model
MuSiQue 2Wiki HotpotQA

Overall 2-Hop 3-Hop 4-Hop Overall Compositional Inference Comparison Bridge-Comparison Overall Bridge Comparison

5-
Sh

ot

ChatGPT
+ AO 15.8 16.1 14.3 17.4 46.2 19.0 68.1 30.5 71.4 51.0 49.0 60.2
+ CoT 36.2 34.6 38.3 37.0 55.2 24.1 89.1 28.4 90.5 56.8 56.1 60.2
+ CoC 37.0 37.0 37.0 37.0 55.4 27.8 89.1 28.4 88.6 58.6 57.5 63.6

Claude-instant
+ AO 26.2 25.2 27.3 27.2 47.0 19.0 68.9 32.5 70.5 54.4 52.7 62.5
+ CoT 26.0 27.2 27.9 19.6 40.8 20.3 80.7 15.7 58.1 20.2 23.5 4.5
+ CoC 32.2 32.7 30.5 33.7 53.4 36.7 90.8 22.3 81.9 54.2 55.3 48.9

LongChat
+ AO 6.7 7.0 4.1 10.1 26.8 12.0 3.4 48.7 47.3 32.3 34.0 24.6
+ CoT 9.7 12.1 6.7 8.3 27.1 17.8 7.2 43.7 40.6 38.5 38.2 40.2
+ CoC 11.0 13.3 8.7 8.7 24.5 19.0 5.9 42.9 27.9 39.1 38.9 39.8

LongLoRA
+ AO 0.2 0.4 0.0 0.0 7.7 9.0 4.6 13.2 1.3 16.9 16.3 19.3
+ CoT 0.0 0.0 0.0 0.0 15.1 5.9 0.8 28.9 27.3 11.4 11.0 13.3
+ CoC 0.0 0.0 0.0 0.0 8.3 3.2 1.3 15.7 14.6 4.4 4.0 6.4

Vicuna
+ AO 0.1 0.1 0.0 0.0 20.5 5.2 5.1 31.9 47.6 22.3 24.2 13.6
+ CoT 0.0 0.0 0.0 0.0 27.7 14.7 7.6 48.5 43.5 30.5 32.0 23.1
+ CoC 0.0 0.0 0.0 0.0 28.4 20.6 7.2 49.3 35.2 33.1 34.7 25.8

0-
Sh

ot

AttrLoRA
+ AO 32.9 35.7 27.1 34.8 49.2 48.7 28.7 54.9 59.0 51.5 51.0 54.2
+ CoT 37.9 41.6 35.5 31.9 46.8 48.4 25.3 53.5 52.4 50.9 51.2 49.2
+ CoC 38.1 42.7 35.7 29.7 47.4 46.0 27.4 57.7 53.3 52.1 52.6 49.6

Table 5: Exact-Match (EM) results on three multi-hop reasoning datasets. The best small-scale long-context LM
results are in bold and the best baseline results are underlined.

To understand the broader impact of enhancing
multi-hop reasoning on LMs’ overall capabilities,
we also conduct evaluations on general instruction-
following benchmarks, namely MT-Bench (Zheng
et al., 2023b) and AlpacaEval (Li et al., 2023c).

4.2 Models

The following long-context baselines are chosen in
our experiments.

• ChatGPT (Brown et al., 2020). We choose
gpt-3.5-turbo-1106, which supports a win-
dow size of 16K tokens.

• Claude-instant (Bai et al., 2022). We choose
claude-instant-1.2, which has a window
size of 100K tokens.

• LongChat (Li et al., 2023a). We use
longchat-7b-16k, a 7B fine-tuned LLaMA
model (Touvron et al., 2023a). It has a win-
dow size of 16K tokens.

• LongLoRA (Chen et al., 2023b). We use
LongAlpaca-7B-16k, which has a window
size of 16K.

• Vicuna (Zheng et al., 2023b). We
use vicuna-7b-v1.5-16k, a 7B fine-tuned
LLaMA-2 model (Touvron et al., 2023b). It
supports a window size of 16K tokens.

We prompt all models with 5-shot to evaluate
their multi-hop reasoning performance. These 5
demonstrations are randomly sampled from the 20
annotated training examples provided by Trivedi

et al. (2023). If the input length exceeds the win-
dow size, we drop the last demonstration until the
input length fits. The prompts we used are pre-
sented in Appendix D.

Our model AttrLoRA is fine-tuned on
vicuna-7b-v1.5-16k with LoRA (Hu et al.,
2022), following hyper-parameters used in
FastChat (Zheng et al., 2023b). For its training data,
we perform augmentations to double the training
data for all tasks in Section 3 except for the QI task.
Note that we subsample same-sized instruction-
tuning data from the Alpaca dataset (Taori et al.,
2023) and mix it with the reasoning data. These
instruction-tuning data serve the purpose of mini-
mizing the risk of hampering other abilities Vicuna
already possesses before fine-tuning.

4.3 Main Results

Effectiveness and Robustness of Reasoning with
Attributions. The results in Table 5 underscore the
efficacy of our CoC prompting across three multi-
hop reasoning datasets, benchmarked against five
baselines. In 77% of the evaluated cases (disre-
garding instances of near-zero model performance)
CoC outperforms CoT. Notably, Claude-instant ex-
hibits strong results with AO, and its performance
diminishes when CoT is used. However, CoC not
only mitigates this decline but also attains results
on par with AO, demonstrating the robustness of
attribution-based reasoning. For a detailed analysis
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Figure 2: Exact-Match (EM) results of different models under various noise levels in three multi-hop reasoning
datasets. Note that all models except our AttrLoRA use 5-shot prompting. A higher noise ratio indicates more
distractors, i.e., irrelevant documents, are presented in the context of both the test instance and the demonstrations.

Model MT-Bench
(Score)

AlpacaEval
(Win Rate)

ChatGPT 8.245 9.178%
Claude-instant 8.131 15.664%
Vicuna 6.068 5.415%

+ Alpaca Data 4.850 3.287%
AttrLoRA 4.978 3.106%

Table 6: Results on general instruction-following bench-
marks. “+ Alpaca Data” is a Vicuna-7B model contin-
ued fine-tuning on Alpaca data.

of CoC’s robustness, particularly against varying
degrees of contextual noise, see Appendix C.

Performance of AttrLoRA Against Proprietary
Models. Table 5 presents a zero-shot performance
comparison between our AttrLoRA and five-shot
outcomes from various baselines. AttrLoRA sur-
passes baselines of comparable scale by an aver-
age margin of over 20 points. It exceeds the per-
formance of two notable proprietary models on
MuSiQue and delivers closely competitive results
on the other two benchmarks.

In particular, AttrLoRA with AO achieves supe-
rior results on 2Wiki and surpasses CoT on Hot-
potQA. This can be attributed to the relative sim-
plicity of these datasets, where explicit reasoning
does not significantly enhance performance. For
instance, CoT’s advantage is noticeably smaller
on these datasets compared to MuSiQue for both
the ChatGPT and Claude-instant. Additionally, ac-
cording to Jiang and Bansal (2019), over half of
the “bridge-type” questions in HotpotQA contain
shortcuts, which can locate the answer by keyword
matching, circumventing the need for the intended
two-hop reasoning. Similarly, 2Wiki’s predictable
nature, due to its question construction from a lim-
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Figure 3: Multi-hop reasoning performance vs. citation
precision and recall of AttrLoRA.

ited set of rules, simplifies the task for LMs. An-
other contributing factor is that AttrLoRA is trained
on MuSiQue-Attribute, which does not encompass
the full range of question types found in 2Wiki and
HotpotQA, such as “comparison-type” questions.
Resilience of AttrLoRA to Noisy Contexts. A
key aspect of AttrLoRA is its robustness to contex-
tual noise. To investigate this, Figure 2 illustrates
AttrLoRA’s performance against varying degrees
of synthesized noise. This synthesized noise is im-
plemented by adding varied numbers of random
irrelevant documents to the context. The data indi-
cates that while the performance of baseline mod-
els markedly declines with increased noise, e.g.,
Vicuna drops by over 30 points on MuSiQue, Attr-
LoRA shows greater resilience, with a reduction of
only about 10 points.
Impact of Attribution Learning on General Abil-
ities. Our investigation extends beyond multi-hop
reasoning to examine how attribution learning af-
fects AttrLoRA’s general instruction-following ca-
pabilities post-fine-tuning, as compared to the Vi-
cuna baseline. The results in Table 6 from two
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Model MuSiQue 2Wiki HotpotQA

Vicuna (5-Shot) 0.00 28.4 33.1
+ AP 32.3 47.8 52.1
+ CG 37.3 45.3 50.7
+ LA 37.3 46.9 52.1
+ QI 38.1 47.4 52.1

Table 7: Ablation study on multi-task learning.

Model MuSiQue 2Wiki HotpotQA

Vicuna (5-Shot) 0.00 28.4 33.1

+ AP 27.4 44.9 50.9
+ Augmentation 32.3 47.8 52.1

+ CG 28.1 37.7 49.4
+ Augmentation 30.5 37.3 50.4

+ LA 29.1 38.8 49.0
+ Augmentation 30.1 37.1 49.9

Table 8: Ablation study on data augmentation.

instruction-following benchmarks reveal that fine-
tuning slightly compromises abilities beyond multi-
hop reasoning in a 7B model due to capacity con-
straints. However, a closer analysis reveals that
over 98% of the performance decrease is attributed
to fine-tuning with Alpaca data (“+ Alpaca Data”),
while multi-hop reasoning data incurs less than a
2% detriment. This is because the quality of Al-
paca data is inferior to Vicuna’s, with the former
being single-turn GPT-3 synthesized and the latter
comprising multi-turn human-bot conversations.

4.4 Analysis
Attribution Quality of AttrLoRA. Drawing from
the insights of Gao et al. (2023), we scrutinize
the citation precision and recall for AttrLoRA, as
presented in Figure 3. The model demonstrates
high precision, indicating its proficiency in cor-
rectly attributing statements to pertinent documents.
Nonetheless, the moderate recall highlights that At-
trLoRA does not consistently identify all relevant
documents, a potential consequence of the discon-
nected reasoning patterns observed in MuSiQue-
Attribute (detailed in Appendix A). Further explo-
ration of the correlation between attribution quality
and reasoning performance is in Appendix B.
The Effectiveness of Multi-Task Learning. Our
ablation study in Table 7 assesses our multi-task
learning approach. Results indicate a marked en-
hancement in Vicuna’s reasoning capabilities upon
fine-tuning with our dataset (“+ AP”). However, ex-
plicitly training Vicuna to generate CoT (“+ CG”)
yields mixed outcomes: It benefits performance on

MuSiQue 2Wiki HotpotQA

0 20 40 60 80 100
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E
M

Figure 4: The impact of scaling fine-tuning data size.

MuSiQue but adversely affects results on 2Wiki
and HotpotQA. This discrepancy can be attributed
to the relative ease of the latter datasets, where sim-
pler questions and shortcuts reduce the effective-
ness of complex reasoning strategies, as discussed
in Section 4.3. Importantly, integrating the LA task
(“+ LA”) mitigates the performance drops associ-
ated with CoT and notably boosts MuSiQue scores.
This implies that attributions are instrumental in en-
abling the model to reason over complicated ques-
tions without compromising its ability to handle
simpler queries. Finally, the addition of the QI task
(“+ QI”) appears to further refine the model’s multi-
hop reasoning proficiency, underscoring the value
of our multi-task learning framework.
The Effectiveness of Data Augmentation. We ex-
plore the impact of our data augmentation strategy,
intentionally omitting the QI task, as it alone is in-
sufficient for training models to conduct multi-hop
reasoning. The data in Table 8 demonstrates that in-
cluding augmented data generally enhances model
performance across various datasets. However, aug-
menting CG and LA data does not yield improve-
ments on 2Wiki. In this case, the model readily
learns from a limited amount of annotated data due
to the simplicity of the automatically generated
questions within 2Wiki. Conversely, on MuSiQue
and HotpotQA, which feature more complex and
varied human-crafted questions, the model benefits
from exposure to a larger dataset to accommodate
the diversity of question formulations.
The Effectiveness of Scaling Fine-Tuning Data.
In Figure 4, we investigate how the expansion of
fine-tuning data influences model performance. It
is evident that incorporating additional data steadily
enhances performance on MuSiQue and 2Wiki,
while optimal results are attained with just 60% of
our data for HotpotQA. This fact suggests that more
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Question: Who is the mascot of the university related to
Randy Conrads?

Question: What is the record label of the co-writer and recording
artist of Permission to Fly?

Document [4](Title: Benny Beaver): Benny Beaver
is the official mascot of Oregon State University and
winner of the 2011 Capital One Mascot of the Year write
- in campaign. . . .

Document [8](Title: No Ordinary Girl): No Ordinary Girl is the de-
but album by Jordan Pruitt, released in the United States on February
6, 2007 by Hollywood Records. The album debuted and peaked at
number sixty-four . . .

Document [7](Title: Randy Conrads): Randy Conrads
attended Oregon State University, graduating in 1972
with a bachelor’s degree in industrial engineering. . . .

Document [19](Title: Permission to Fly): Permission to Fly is the
second and final studio album by American singer-songwriter Jordan
Pruitt. On July 22, 2008, the album was released . . .

(Other irrelevant documents are omitted.) (Other irrelevant documents are omitted.)
Vicuna: the university. ✘ Vicuna: The answer is: The answer is a question. ✘
AttrLoRA: Randy Conrads attended Oregon State Uni-
versity [7]. The mascot of Oregon State University is
Benny Beaver [4]. The answer is: Benny Beaver ✔

AttrLoRA: The co-writer and recording artist of “Permission to Fly”
is Jordan Pruitt [19]. The record label of Jordan Pruitt is Hollywood
Records [8]. The answer is: Hollywood Records ✔

Table 9: Two examples from MuSiQue test set where Vicuna fails and AttrLoRA succeeds. We manually annotate
quotes in blue and citations in orange. Correct predictions are marked by ✔ and incorrect ones are by ✘.

complex question answering, involving additional
reasoning steps like MuSiQue and 2Wiki, demands
a larger dataset. An intriguing discovery is that us-
ing a mere 20% of our data achieves approximately
85% of the peak performance. This highlights the
efficiency of fine-tuning: Even a modest subset
of multi-hop reasoning examples can significantly
boost the model’s reasoning capabilities.
Case Study. Table 9 presents a comparative
case study where Vicuna and AttrLoRA are both
prompted to generate CoC. Within the provided ex-
amples, AttrLoRA successfully produces coherent
CoT and precisely attributes each claim. In con-
trast, Vicuna yields answers without engaging in
an explicit reasoning process.

5 Related Work

Multi-Hop Reasoning. Multi-hop reasoning in
open-domain question answering requires the syn-
thesis and analysis of disparate facts across various
documents to formulate a response. Key datasets
in this field include HotpotQA (Yang et al., 2018),
2Wiki (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2022), which predominantly adopt a read-
ing comprehension framework with pre-retrieved
documents supplied by the creators. Traditional
approaches often utilize a selector-reader model
(Zhang et al., 2023; Zhu et al., 2021), where the
selector is tasked with pinpointing relevant docu-
ments from the provided set, and the reader con-
structs an answer based on these selections.

Recent advances, however, pivot towards a
paradigm that leverages long-context LMs (Khot
et al., 2023; Trivedi et al., 2023). In this approach,
the role of the selector is phased out, and instead,
the entirety of the retrieved documents is processed
by a long-context LM, which acts as the reader.

Our study aligns with this emergent research trend,
particularly focusing on the use of attributions to
enhance the performance of multi-hop reasoning
within this long-context LM framework.

Context Utilization. The recent advent of long-
context LMs has shown promise (Li et al., 2023a;
Zheng et al., 2023b; Chen et al., 2023b). However,
these models often struggle with noisy contexts.
Shi et al. (2023) demonstrate that superfluous sen-
tences can significantly disrupt mathematical rea-
soning. Liu et al. (2023a) identify a relevant docu-
ment position bias in multi-document QA. Wu et al.
(2024) show that LMs could be easily distracted by
retrieved irrelevant inputs.

To mitigate the impact of irrelevant context, Shi
et al. (2023) prompt models to disregard such in-
formation and adopt self-consistency techniques
(Wang et al., 2023). Creswell et al. (2023) suggest
a two-stage approach that focuses on fact selection
prior to reasoning. Echoing this approach, Yu et al.
(2023) introduce Chain-of-Note which entails re-
viewing document relevance before providing an
answer. Meanwhile, Yoran et al. (2023) examine
automatic data generation for training more robust
models. Our research contributes to this domain
by investigating the use of attributions as a novel
method for effective context utilization.

Language Models Attribution. Attribution in
language models constitutes a nascent area of study,
primarily aimed at identifying and mitigating hallu-
cination (Li et al., 2023b). A line of research con-
centrates on post-retrieval answering: Models pro-
vide responses based on retrieved results with cited
attributions (Nakano et al., 2021; Menick et al.,
2022; Gao et al., 2023). Our research emerges
from this foundation but diverges in its applica-
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tion; We focus on multi-hop reasoning rather than
hallucination reduction. Moreover, we delve into
optimizing training methodologies to maximize the
efficacy of scarce attribution annotations.

6 Conclusion

This study demonstrates that long-context LMs
face challenges with multi-hop reasoning within
noisy contexts. We introduce a reasoning paradigm
that incorporates attributions, which significantly
improves the reasoning capabilities of long-context
LMs. Alongside, we contribute a new dataset anno-
tated with attributions and study training strategies
tailored for multi-hop reasoning. Our comprehen-
sive experiments across five models and five bench-
marks validate the superiority of our approach in
enhancing multi-hop reasoning performance.

Limitations

The proposed reasoning with attributions method
currently leverages citations and quotations, leav-
ing room for future exploration of other attribu-
tion forms, such as URLs. This work concentrates
on refining training strategies, yet the potential of
custom model architectures for this task remains
untapped. Additionally, our approach relies on
contexts pre-supplied by dataset creators. Emerg-
ing research suggests that language models inte-
grated with search engines can achieve enhanced
outcomes. A promising avenue for further research
lies in developing models that not only manage
noisy contexts more effectively, as demonstrated
in our work, but also actively engage with search
tools to improve information retrieval.
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Entry Pearson Spearman Kendall

MuSiQue

EM vs. P 0.887∗ 0.951∗ 0.826∗

EM vs. R 0.484∗ 0.481∗ 0.411∗

2Wiki

EM vs. P 0.917∗ 0.896∗ 0.766∗

EM vs. R -0.172 -0.052 0.024

HotpotQA

EM vs. P 0.865∗ 0.868∗ 0.741∗

EM vs. R -0.275 -0.038 0.023

Table 10: Correlation coefficients between citation pre-
cision (denoted as P) or recall (denoted as R) and the
multi-hop reasoning performance (EM). ∗ denotes sta-
tistically significant (p < 0.05).

A Human Assessment of
MuSiQue-Attribute

We recruit a student possessing expertise in NLP
and holding a Master’s degree in Computer Sci-
ence to annotate 100 random samples from our
MuSiQue-Attribute. The tool we used for anno-
tations is shown in Figure 5. The annotation re-
sults reveal that 19% of the CoT annotations ex-
hibited reasoning issues despite correct final an-
swers, a problem referred to as reasoning unfaith-
fulness (Creswell and Shanahan, 2022). These erro-
neous CoTs fall into three categories: 5.26% with
Disordered Steps where reasoning steps are im-
properly arranged, 78.95% with Missing Steps
indicating omitted essential reasoning steps, also
known as disconnected reasoning (Trivedi et al.,
2020), and 10.53% with Incorrect Steps con-
taining invalid reasoning steps. Our assessment
also identified that 9% of questions in the dataset
allowed for shortcuts (Jiang and Bansal, 2019), en-
abling models to find answers by keyword match-
ing without reasoning.

The study further showed that within incorrect
CoT annotations, 47.37% pertained to 2-hop ques-
tions, 36.84% to 3-hop, and 15.79% to 4-hop ques-
tions. Considering the distribution of hops in our
dataset, the unfaithfulness issue affected 11.84% of
2-hop CoTs, 38.89% of 3-hop CoTs, and 50% of
4-hop CoTs, suggesting a decrease in reliability of
LMs with the increase in reasoning steps required.

B Attribution Quality and Reasoning
Performance

Figure 6 presents a visualization of the relationship
between citation precision or recall and multi-hop

Model
MuSiQue 2Wiki HotpotQA

CoT CoC CoT CoC CoT CoC

LongChat 22.3 21.5 6.9 7.2 9.7 9.7
LongLoRA 24.7 14.2 16.4 11.5 33.5 21.2
Vicuna 32.9 33.3 10.1 7.5 16.3 12.1
AttrLoRA 12.1 11.7 7.9 5.4 6.0 5.9

Table 11: The performance range of different models in
three multi-hop reasoning benchmarks when the noise
ratio of the context goes from 0% to 100% and models
are prompted with CoT or CoC. The more robust results
are highlighted in bold.

reasoning performance. Our analysis identifies a
notable positive correlation between citation pre-
cision and multi-hop reasoning capabilities. Ta-
ble 10 provides statistical support for this obser-
vation, with correlation coefficients indicating a
significant positive correlation. These results sug-
gest the potential of using citation precision as a
reference-free proxy for assessing multi-hop rea-
soning performance, which could be facilitated by
Natural Language Inference (NLI) methods (Gao
et al., 2023).

C Robustness to Noisy Context

We assessed the resilience of CoT and CoC against
varying degrees of contextual noise by evaluat-
ing the performance variability of different models
across multi-hop reasoning benchmarks. Table 11
indicates that in 84% of the cases, CoC exhibits a
smaller performance range compared to CoT. No-
tably, even in instances where CoC demonstrates
a greater range, the disparity with CoT remains
marginal. These findings suggest that CoC is gen-
erally more robust to noisy contexts than CoT.

D Prompting Details

In this section, we highlight some details when
prompting long-context LMs with various strate-
gies, e.g., AO, CoT, CoC and CoQ.

• Each prompting strategy has its own instruc-
tions.

• For CoT, CoC and CoQ, we add “Think step-
by-step.” to the end of the question.

• For few-shot prompting, we put demonstra-
tions to different turns as the dialogue history.

• Each demonstration is formatted according to
Table 1.

The instruction for AO is (unique descriptions
are underlined):
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Figure 5: Screenshot of our human annotation tool.
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Figure 6: Attribution quality (citation precision and citation recall) vs. the multi-hop reasoning performance (EM).
Data are collected from different trails of LongLoRA, LongChat, Vicuna and AttrLoRA.

Write an accurate and concise answer
for the given question using only the
provided search results (some of which
might be irrelevant). Do not say anything
other than the answer itself.

The instruction for CoT is (differences to AO are
underlined):

Write an accurate and concise answer
for the given question using only the
provided search results (some of which
might be irrelevant). Start with an accu-

rate, engaging, and concise explanation
based only on the provided documents.
Must end with “The answer is:”. Use an
unbiased and journalistic tone.

The instruction for CoC is (differences to CoT
are underlined):

Write an accurate and concise answer
for the given question using only the
provided search results (some of which
might be irrelevant) and cite them prop-
erly. Start with an accurate, engaging,
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and concise explanation based only on
the provided documents. Must end with

“The answer is:”. Use an unbiased and
journalistic tone. Always cite for any
factual claim.

The instruction for CoQ is (differences to CoC
are underlined):

Write an accurate and concise answer
for the given question using only the
provided search results (some of which
might be irrelevant) and cite them prop-
erly. Start with an accurate, engaging,
and concise explanation based only on
the provided documents. Must end with

“The answer is:”. Use an unbiased and
journalistic tone. Always cite and ex-
tract word-for-word quotes for any fac-
tual claim.

E Filtering Implementation

The implementation of each filtering strategy is
detailed as follows:

• Incorrect Answer: Leveraging the evaluation
script from QuAC2, we normalize both model
predictions and official reference answers. We
filter out data instances where the model pre-
diction does not exactly match the answer.

• Non-Existent Attributions: Utilizing regu-
lar expressions, we extract all citations and
verify if the predicted citations are present
in the context. Each quote is checked for its
exact presence in the cited document, and in-
stances with fabricated citations or quotes are
removed.

• Incorrect Citations: We assess the correct-
ness of predicted citations using officially an-
notated supporting documents, ensuring the
cited document is among the supporting docu-
ments. Any example with at least one incor-
rect citation is deleted.

• Repeated Citations: Regular expressions are
used to extract all citations, and we check
for duplicates. Examples with any duplicate
citations are discarded.

2https://s3.amazonaws.com/my89public/quac/
scorer.py

• Extreme Quotes: We extract all quotes using
regular expressions and tokenize them with
NLTK3. Examples are kept only if all quotes
contain more than five words but do not span
entire cited documents.

F Training and Inference Cost

For fine-tuning using LoRA (Hu et al., 2022), we
employed ZeRO-3 (Rajbhandari et al., 2021) opti-
mization and gradient checkpointing (Chen et al.,
2016) techniques. The model was trained on 8
NVIDIA A100 80GB GPUs for no more than 14
hours. Approximately 4M parameters were tuned,
constituting 6.22% of the total parameters. For in-
ference, each test set was processed in about 30
minutes using a single NVIDIA A100 80GB GPU.

3https://www.nltk.org/
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