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Abstract

Machine reasoning, which involves solving
complex problems through step-by-step deduc-
tion and analysis, is a crucial indicator of the
capabilities of Large Language Models (LLMs).
However, as the complexity of tasks escalates,
LLMs often encounter increasing errors in their
multi-step reasoning process. This study delves
into the underlying factors contributing to these
reasoning errors and seeks to leverage uncer-
tainty to refine them. Specifically, we introduce
Uncertainty-aware Adaptive Guidance (UAG),
a novel approach for guiding LLM reasoning
onto an accurate and reliable trajectory. UAG
first identifies and evaluates uncertainty sig-
nals within each step of the reasoning chain.
Upon detecting a significant increase in uncer-
tainty, UAG intervenes by retracting to a pre-
viously reliable state and then introduces certi-
fied reasoning clues for refinement. By dynam-
ically adjusting the reasoning process, UAG
offers a plug-and-play solution for improving
LLMs’ performance in complex reasoning. Ex-
tensive experiments across various reasoning
tasks demonstrate that UAG not only enhances
the reasoning abilities of LLMs but also con-
sistently outperforms several strong baselines
with minimal computational overhead. Further
analysis reveals that UAG is notably effective
in identifying and diminishing reasoning errors.

1 Introduction

The impressive advancements of Large Language
Models (LLMs) have recently brought about a
new era in machine reasoning (Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023; Jiang et al.,
2024; Sun et al., 2024c, inter alia). For challenging
scenarios, decomposing a problem into a series of
intermediate steps has been shown to significantly
improve the performance of LLMs (Cobbe et al.,
2021; Yu et al., 2023; Sun et al., 2024a).

† Corresponding Authors

Question: 
Janet’s ducks lay 16 eggs per day. She eats three for 
breakfast every morning and bakes muffins for her friends 
every day with four. She sells the remainder at the farmers' 
market daily for $2 per fresh duck egg. How much in dollars 
does she make every day at the farmers' market?

Correct Reasoning: 
[1] 16 eggs per day. [2] 3 for breakfast, 4 for muffins, and the 
rest for sale. [3] 16 - 3 - 4 = 9 eggs for sale. [4] 9 eggs for sale 
at $2 each is $18. [5] So the answer is $18.
Wrong Reasoning:
[1] 16 eggs are laid per day. [2] Janet eats 3 for breakfast every 
day. [3] 16 - 3 = 13 eggs are left. [4] 13 eggs are baked into 
muffins. [5] 13 x 4 = 52 muffins. [6] 52 muffins are sold for $2 
each. [7] 52 x 2 = 104 dollars. [8] So the answer is 104 dollars.
Correct NLL Distribution:

Wrong NLL Distribution:
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Figure 1: An example from the GSM8K dataset, where
the model displays higher uncertainty in the tokens
where the reasoning is incorrect (highlighted in red
boxes). Each step is delineated by periods.

However, as the difficulty of tasks escalates, the
reasoning chains inevitably become more complex
and lengthy (Zhang et al., 2023b). This poses a
challenge for LLMs in managing the accumulation
of errors across multiple intermediate steps (Chen
et al., 2022; Chu et al., 2023).

To mitigate the aforementioned issues, existing
studies have focused on addressing the challenges
from the perspective of alleviating uncertainty. For
example, self-consistency decoding (Wang et al.,
2023) samples multiple reasoning chains and em-
ploys a majority voting mechanism to mitigate the
inherent randomness. Tree-of-thought (Yao et al.,
2023) enables the exploration and evaluation of co-
herent thought units that serve as intermediate steps
in problem-solving. Furthermore, Xie et al. (2023)
conceptualize reasoning as a beam search, incorpo-
rating step-wise evaluation in the decoding process.
While these methods have shown promise in en-
hancing reasoning performance, their manipulation
of the reasoning process is conducted after the gen-
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eration of individual intermediate steps, lacking the
ability to make fine-grained, flexible adjustments
with each step to steer the model effectively. This
oversight has long been neglected in the study of
reasoning chains, yet it unveils a new pathway to
improve the reasoning capabilities of LLMs.

Delving into individual reasoning steps, our ob-
servation reveals that the model can exhibit signs of
uncertainty when faced with potential errors spon-
taneously. Figure 1 illustrates two distinct reason-
ing chains generated by LLaMA-2 (Touvron et al.,
2023b), where a gradual shift towards red hues in-
dicates an increase in the model’s uncertainty. This
increase in uncertainty is particularly notable when
the model is in the midst of an incorrect reasoning
step. For instance, the model erroneously interprets
that 13 eggs were “baked” instead of “left” in one
flaw, which leads to a cascade of subsequent errors.

Inspired by this, we propose a novel approach:
UAG, which integrates clues throughout the rea-
soning process based on the model’s fine-grained
uncertainty. UAG first guides the model in an au-
toregressive manner to conduct reasoning. Upon
detecting a significant rise in uncertainty within a
step, the erroneous step will be removed, and tar-
geted reasoning clues will be incorporated. Prior
research (Cao, 2023; Diao et al., 2023) indicate
that reasoning exemplars imbued with rich clues
can substantially assist models in completing com-
plex reasoning tasks. From a Bayesian perspective,
we infer the necessity of selecting examples based
on their relevance and originality. Furthermore,
we cluster these example samples to minimize the
search space and reduce computational costs. Our
empirical studies on various datasets, including
mathematical, commonsense, and symbolic reason-
ing, demonstrate that UAG significantly enhances
model performance on complex reasoning tasks.
Moreover, our method is plug-and-play, applicable
to various open-source LLMs such as LLaMA (Tou-
vron et al., 2023a) and Mistral (Jiang et al., 2023).

Our primary contributions are as follows:

• We conduct a pioneering study that explores
the underlying causes of errors in LLM rea-
soning, focusing on the role of uncertainty.

• We introduce the Uncertainty-aware Adaptive
Guidance (UAG), a novel technique that lever-
ages model uncertainty to evaluate and en-
hance the reliability of each reasoning step.

• Our experimental evaluations, conducted
across a diverse range of reasoning tasks,

show that UAG significantly outperforms a
series of strong baselines.

2 Related Work

2.1 Demonstration Guidance.

Recent advancements have emphasized the sig-
nificance of effective exemplar selection to guide
model reasoning (Zhang et al., 2022; Shum et al.,
2023; Paranjape et al., 2023; Su et al., 2023). Pi-
oneering this field, Zhang et al. (2023c) introduce
AutoCoT, a method that automates the creation
of exemplars by sampling a diverse array of prob-
lems and autonomously generating corresponding
reasoning chains (Wei et al., 2022; Kojima et al.,
2022). This approach eliminates the need for man-
ually crafting task-specific examples. Additionally,
some strategies leverage the intrinsic knowledge
of LLMs to enhance the accuracy and factuality
of reasoning processes through exemplar extrac-
tion (Wang et al., 2024).

In parallel, Diao et al. (2023) investigate the
application of active learning for selecting infor-
mative exemplars, which utilizes the model’s in-
herent uncertainties. Ye and Durrett (2023) fo-
cus on assessing the validity of reasoning chains
within exemplars by evaluating their log-likelihood
and performance accuracy on novel instances. Fur-
ther extending the utility of LLMs in reasoning, Li
and Qiu (2023) introduce memory-of-thought, a
novel approach that retrieves pre-established, high-
confidence thought processes to aid in current rea-
soning tasks. The potential for LLMs to utilize
their self-generated reasoning chains for continu-
ous self-improvement has been demonstrated in
recent studies (Huang et al., 2023; Zheng et al.,
2023; Lu et al., 2024; Madaan et al., 2023).

2.2 Decomposition and Validation.

Zhou et al. (2023) address the challenges that
LLMs encounter in complex reasoning tasks by ad-
vocating for the decomposition of these tasks into
simpler sub-questions. This concept aligns with
the modular decomposition strategy introduced by
Khot et al. (2023), which aims to optimize the han-
dling of individual subtasks effectively. Building
upon these foundations, Yao et al. (2023) innovate
further by integrating a verification process within
the decomposition framework. They conceptualize
reasoning as a tree search, allowing LLMs to tra-
verse various decision branches and perform both
forward and backward exploration at each node.
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Similarly, Besta et al. (2024) propose modeling
the reasoning process as a graph structure, which
offers a more dynamic framework for synthesizing
LLM thoughts. Further advancing evaluation tech-
niques, Yin et al. (2024) introduce a two-stage eval-
uation framework that incorporates local scoring
and global evaluation to enhance LLM decision-
making. Recent developments also include col-
laborative efforts, where problems are distributed
among multiple LLMs for resolution (Yin et al.,
2023a). Despite the innovative nature of these
methods, they inherently increase computational
demands, a consequence of the extensive decompo-
sition (Hao et al., 2023; Zhang et al., 2023a; Han
et al., 2023; Zhang et al., 2024), exploration (Liu
et al., 2023), and verification (Sel et al., 2023).

2.3 Decoding Enhancement.

In the realm of decoding strategies, Wang et al.
(2023) introduce self-consistency decoding, a sig-
nificant shift from traditional greedy decoding.
This method enhances reasoning capabilities by
generating multiple reasoning paths and selecting
the most consistent answer, effectively reducing
the randomness associated with single-sample de-
coding. Complementing this, Fu et al. (2023b)
advocate for guiding LLMs through more complex
reasoning processes by using exemplars that fea-
ture increased reasoning complexity.

Furthering this line, Xie et al. (2023) propose a
model akin to beam search that incorporates a self-
evaluation mechanism to refine the decoding pro-
cess. Building on this, Li et al. (2023a) introduce
contrastive decoding, which helps LLMs avoid ba-
sic errors common in smaller models by utilizing
model comparisons. This significantly enhances
the reasoning capabilities of LLMs, as echoed in
the work of O’Brien and Lewis (2023). Addition-
ally, Chuang et al. (2023) explore intra-model dy-
namics by contrasting outputs from later versus
earlier layers, aiming to cultivate more factually
accurate reasoning within LLMs. Despite these
advancements, these methodologies primarily rely
on the internal representations within models (Sun
et al., 2023; Stechly et al., 2023), often neglecting
the integration of external reasoning cues.

3 Preliminary

This section outlines the foundational concepts that
underpin our UAG method. Given a problem Q,
a LLM generates an answer A, constructing it to-

ken by token through a probabilistic approach as
described below:

P (A∣Q) = ∣A∣
∏
i=1

PM(ai∣Q, a<i), (1)

where PM(ai∣Q, a<i) represents the probability of
generating the i-th token of the answer, given the
problem Q and the sequence of previously gener-
ated tokens a<i.

CoT (Wei et al., 2022) involves supplementing
the problem Q with several demonstrations D that
include detailed reasoning processes. This method-
ology guides the model to first generate the ratio-
nale R, followed by the answer A.

P (R,A∣D,Q) = P (A∣D,Q,R)P (R∣D,Q),
(2)

Applying Bayesian theorem (Bayes and Price,
1763) allows us to further refine our understanding:

P (R,A∣D,Q) = P (D∣Q,R,A)P (R,A∣Q)P (Q)
P (D,Q)

= P (D∣Q,R,A)P (R,A∣Q)
P (D∣Q) ,

(3)

where a low P (R,A∣Q) indicates the model’s dif-
ficulty in generating the desired rationale R and
answer A without additional context. Our goal is
to enhance the probability of accurately generating
both the rationale and the answer by improving
P (R,A∣D,Q). According to Bayes’ Theorem,
this requires increasing P (D∣Q,R,A) while de-
creasing P (D∣Q).

Given that the answer A typically comprises
fewer tokens than the rationale R, our primary
focus is on optimizing the impact of the reasoning
process R. To this end, we define the following
criteria:

• Relevance: P (D∣Q,R,A) indicates that the
reasoning within D aligns closely with our
expected reasoning process, emphasizing the
relevance of the exemplified reasoning.

• Originality: P (D∣Q) suggests that the rea-
soning within D introduces novel concepts
or steps unknown to the model (Yin et al.,
2023b), highlighting the originality of the ex-
emplar’s reasoning process.
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𝑨: [1] 16 eggs are laid per day. [2] Janet eats 3 for breakfast every day. [3] 16 - 3 
= 13 eggs are left. [4] Janet bakes muffins with 4 eggs. [5] 13 - 4 = 9 eggs are left. 
[6] Janet sells 9 eggs at $2 per egg. [7] So she makes $18 per day.

𝑨: [1] 16 eggs are laid per day. [2] Janet eats 3 for breakfast every day. [3] 16 - 3 = 
13 eggs are left. [4] 13 eggs are baked into muffins. 

𝑸𝑫: Alfred is storing a tonne of maize each month for the next 2 years.  If 5 
tonnes …, how many tonnes of maize does he have at the end of the 2 years.
𝑨𝑫: Before his maize is stolen, the maize he stores at the end of 2 years is 
12*2=24 tonnes of maize. After his maize is stolen, he is left with …

𝑸: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning 
and bakes muffins for her friends every day with four. She sells the remainder at 
the farmers' market daily for $2 per fresh duck egg. How much in dollars does she 
make every day at the farmers' market?

𝑸𝑫𝟏: Natalia sold clips to 48 of her friends in 
April, and then she sold half as many clips…
𝑨𝑫𝟏: Natalia sold 48/2 = 24 clips in May. Natalia 
sold 48+24 = 72 clips altogether in April …

Uncertainty Identification

1 2 k

Demonstration Clustering

𝑸: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning 
and bakes muffins for her friends every day with four. She sells the remainder at 
the farmers' market daily for $2 per fresh duck egg. How much in dollars does 
she make every day at the farmers' market?

Relevance
Originality

𝑸𝑫𝟐: Weng earns $12 an hour for babysitting. 
Yesterday, she just did 50 minutes of …
𝑨𝑫𝟐: Weng earns 12/60 = 0.2$ per minute. 
Working 50 minutes, she earned 0.2 x 50 …

𝑸𝑫𝒌: At 30, Anika is 4/3 the age of Maddie. 
What would be their average age in 15 years?
𝑨𝑫𝒌: If Anika is 30 now, in 15 years, she'll be 
30+15 = 45 years old. At 30, Anika is 4/3 …

Adaptive Reasoning Adjustment

Figure 2: An overview of the Uncertainty-aware Adaptive Guidance (UAG) method. The process begins with the
model incrementally generating reasoning based solely on the question while monitoring the uncertainty of each
token. A significant increase in uncertainty signals potential errors, prompting a reversion to the last complete
sentence. Exemplars are then selected from a curated set of examples based on their relevance and originality to
assist in refining and completing the reasoning process.

4 Uncertainty-aware Adaptive Guidance

Uncertainty-aware Adaptive Guidance (UAG) aims
to enhance the reasoning capabilities of LLMs by
incorporating uncertainty awareness and adaptabil-
ity. As depicted in Figure 2, our method progresses
through three interconnected phases: Uncertainty
Identification, Adaptive Reasoning Adjustment,
and Demonstration Clustering. Each phase plays
a crucial role in refining the LLM’s reasoning pro-
cess, which we detail in the subsequent sections.

4.1 Uncertainty Identification

In complex reasoning tasks, LLMs generate rea-
soning chains R sequentially, one token at a time.
This generative process can be formally described
as follows:

P (R∣Q) = ∏
t

PM(rt∣Q, r<t), (4)

where P (R∣Q) represents the probability of gen-
erating the reasoning chain R given a question
Q, and PM(rt∣Q, r<t) denotes the probability as-
signed by the model M to the t-th token, given the
question and the preceding tokens r<t.

A significant challenge in LLM reasoning is the
unreliability and inaccuracy of generated reasoning
chains, often resulting from cumulative errors in
specific reasoning steps (Xie et al., 2023; Zhang
et al., 2023b; Wang et al., 2024; Hao et al., 2023).

The uncertainty during the decoding process typi-
cally reflects the model’s confidence level or lack
thereof (Manakul et al., 2023; Iter et al., 2023).

We define the uncertainty of generating the t-th
token as:

H(rt) = − logP (rt∣r<t), (5)

where p(rt∣r<t) is the probability that the LLM
assigns to the t-th token, given the previous tokens.
To assess changes in uncertainty, we utilize the
following difference function:

∆H(rt) = H(rt) −H(rt−1), (6)

where ∆H(rt) quantifies the uncertainty gap for
the t-th token relative to the t−1-th token. This met-
ric is crucial for highlighting fluctuations in model
confidence between decoding steps. Specifically, a
positive ∆H(rt) indicates rising uncertainty, sig-
naling challenging reasoning steps or potential mis-
takes. Conversely, a negative value indicates in-
creasing reliability in the sequence.

If the increase in ∆H(rt) exceeds a predefined
threshold θ, formally expressed as:

if ∆H(rt) > θ, (7)

this condition suggests a significant rise in uncer-
tainty, indicating a potential need for intervention,
such as introducing additional context or imple-
menting a corrective mechanism to steer the rea-
soning chain toward a more reliable trajectory.
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4.2 Adaptive Reasoning Adjustment

When faced with increased uncertainty, UAG aims
to rectify errors by eliminating erroneous reason-
ing steps and introducing supplementary reasoning
clues, as aligned with the relevance and originality
criteria defined in Section 3.

For refinement, we first backtrack within the rea-
soning chain to the last coherent step, denoted as
rm, where r≤m represents the most recently com-
pleted reasoning step (as illustrated in Figure 2).
To mitigate the uncertainty in the reasoning pro-
cess, guided by Eq 3, our objective is to carefully
select a demonstration to serve as external insights.
We aim to increase P (D∣Q,R,A) and decrease
P (D∣Q), where D comprises {Qd,Rd,Ad}.

Given that the model has not yet completed its
reasoning, we utilize the existing reasoning process
r≤m to calculate the relevance score SR as follows:

SR = logP (D∣Q, r≤m)
= logP (Qd,Rd,Ad∣Q, r≤m) (8)

A lower probability suggests higher originality;
hence, we calculate the originality score through
the negative log-likelihood of the probability:

SO = − logP (D∣Q)
= − logP (Qd,Rd,Ad∣Q) (9)

The selection score S is then computed as the
weighted average of the two scores:

S = λ1SR + λ2SO, (10)

where λ1 and λ2 are the weights assigned to the
relevance and originality scores, respectively.

Following this, we rank the demonstrations ac-
cording to the selection score S , ordered from high-
est to lowest as {S1,S2,S3, . . . }, corresponding to{D1,D2,D3, . . . }. We retain the initial reasoning
process r≤m and sequentially append each Di in
front of the problem Q. Our objective is to iden-
tify a Di such that, upon generating up to the next
step, the uncertainty remains consistently below a
predefined threshold θ:

∃Di ∶ ∀k,∆H(rm+k) ≤ θ, (11)

where k is the index of the tokens generated af-
ter appending Di. This ensures that the enhanced
reasoning process effectively mitigates uncertainty
and increases the reliability of the reasoning chain.

4.3 Optimizing Demonstration Selection
Through Clustering

Given the reasoning process for each question Q,
it becomes necessary to retrieve demonstrations D
when the uncertainty exceeds the predefined thresh-
old θ. This could lead to a high computational
overhead due to the extensive retrieval of demon-
strations. To address this, we propose a clustering
approach for organizing the demonstration set {D},
aimed at selecting representative exemplars effi-
ciently.

Initially, we compute a vector representation for
each demonstration Di using a sophisticated text
embedding model, text-embedding-3-large.
Subsequently, these vectorized demonstrations are
grouped into k distinct clusters using the k-means
clustering algorithm. This method efficiently
groups similar reasoning processes, enhancing the
efficiency of demonstration selection.

We structure each cluster Cj by sorting its
demonstrations according to their proximity to the
cluster’s centroid, prioritizing those closest as they
are most representative of the cluster’s reasoning
pattern:

Cj = [Dj
1,D

j
2, . . .], Cj ∈ K-Means({D}),

(12)

where each cluster Cj comprises demonstrations[Dj
1,D

j
2, . . .] that exhibit similar reasoning traits,

determined by the K-means clustering of the
demonstration set {D}.

This clustering-based approach not only stream-
lines the demonstration selection process but also
ensures that the model has access to a diverse yet
concise set of reasoning examples. It effectively
balances the need for a broad variety of reasoning
examples with computational efficiency, ensuring
that the reasoning process is both accurate and prac-
tical.

5 Experiments

5.1 Experimental Setup

In this section, we delineate and scrutinize the per-
formance of our proposed UAG, utilizing a vari-
ety of LLM backbones across a series of reason-
ing benchmarks. To evaluate the efficacy of UAG,
we primarily employ accuracy as the performance
metric. Furthermore, we undertake an analysis of

https://openai.com/index/new-embedding-models-and-
api-updates
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GSM8K MultiArith SingleEQ AddSub SVAMP AQuA Average Avg. #Tokens

Single Reasoning Chain

ZS-CoT 41.93 64.50 71.65 75.19 59.40 31.89 57.43 178.25
CoT 38.89 75.50 77.36 75.19 59.20 30.71 59.48 87.88
ComplexCoT 43.67 76.50 77.56 76.20 56.90 31.50 60.38 124.96
UAG 46.70 77.66 79.92 77.97 60.70 33.85 62.80 151.76

Multiple Reasoning Chains

ZS-CoT-SC 52.16 75.33 77.17 80.25 67.40 37.01 64.89 884.79
CoT-SC 47.08 85.00 85.43 79.24 67.40 36.22 66.73 442.23
ComplexCoT-SC 56.63 85.83 83.86 79.49 67.90 35.83 68.26 629.18
UAG-SC 58.07 87.66 86.41 81.26 67.60 39.76 70.12 772.53

Table 1: Results on Arithmetic Reasoning Tasks (Accuracy in %). The best result is highlighted in bold, while
the method with the lowest computational cost is denoted in green. We utilize the Mistral-7B (Jiang et al., 2023)
backbone for all methods to ensure a fair comparison. For brevity, Zero-Shot-CoT is abbreviated as ZS-CoT. In
multiple reasoning chains scenario, the self-consistency is applied to determine the final outcome. Additionally, we
report the average number of generated tokens ( #Tokens ) to compare the computational efficiency of each method.

CSQA StrategyQA BoolQ ARC10

20

30

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce

Zero-Shot CoT
CoT
UAG

10

20

30

40

50

60

70

80

90

100

Co
st

(a) Commonsense Reasoning

Date Penguin Colored Obj. Obj. Counting10

20

30

40

50

60

70

80

90

100
Pe

rfo
rm

an
ce

Zero-Shot CoT
CoT
UAG

10

20

30

40

50

60

70

80

90

100

Co
st

(b) Symbolic Reasoning

Figure 3: Performance comparison and cost curves on (a) commonsense reasoning and (b) symbolic reasoning. The
cost and performance of different methods correspond to each other. Histograms show the accuracy, while line
charts illustrate the cost.

the computational costs among different methods,
quantified by the number of tokens generated dur-
ing the reasoning process. Implementation details
and configurations of the various approaches can
be found in Appendix B.

Benchmarks. Our evaluation encompasses three
distinct categories of reasoning tasks, ensuring a
comprehensive analysis of UAG’s versatility and
effectiveness:

• Arithmetic Reasoning: This category includes
GSM8K (Cobbe et al., 2021), MultiArith (Roy
and Roth, 2015), SingleEq (Koncel-Kedziorski
et al., 2016), AddSub (Hosseini et al., 2014),
SVAMP (Patel et al., 2021), and AQUA (Ling
et al., 2017), which encompass a range of arith-
metic problem-solving tasks.

• Commonsense Reasoning: We employ Strate-
gyQA (Geva et al., 2021), CommonsenseQA
(CSQA; Talmor et al., 2019), BoolQ (Clark et al.,
2019), and AI2 Reasoning Challenge (ARC-c;

Clark et al., 2018) to gauge the model’s ability to
understand and apply commonsense knowledge.

• Symbolic Reasoning: This involves datasets de-
rived from BigBench (bench authors, 2023; Suz-
gun et al., 2023), specifically Date Understand-
ing, Penguins in a Table, Colored Objects, and
Object Counting, which test the model’s skill in
abstract and symbolic thought processes.

Following Zhang et al. (2023c), our experiments
are conducted in a “test question only” scenario,
where we lack access to correct answers and must
independently construct exemplars. Detailed de-
scriptions and statistics of these benchmarks are
provided in the appendix A.

Baselines. For an intuitive and comprehensive
performance comparison, we incorporate three
primary categories of baselines: (1) Zero-shot
CoT (Kojima et al., 2022) for reasoning without
exemplars; (2) CoT (Wei et al., 2022) for exemplar-
guided chain-of-thought prompting; and (3) Com-
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plexCoT (Fu et al., 2023b) for complexity-based
prompting. Furthermore, we also employ self-
consistency decoding (Wang et al., 2023) as a
strong baseline with multiple reasoning chains for
comparison. In our analysis, UAG’s performance
is contrasted not only with these baselines but
also with a variety of exemplar selection (Zhang
et al., 2023c) and decoding enhancement tech-
niques (O’Brien and Lewis, 2023; Chuang et al.,
2023) in Appendix C.4. For generation, we adhere
to the few-shot exemplars of baselines and use the
number of generated tokens as a metric to assess
the computational cost of each method.

Backbones. We derive embeddings for clustering
through text-embedding-3-large. In our eval-
uation, we utilize open-source models LLaMA-
2 (Touvron et al., 2023b) and Mistral (Jiang et al.,
2023), applying various prompting techniques such
as Zero-Shot CoT (ZS-CoT) (Kojima et al., 2022),
CoT (Wei et al., 2022), and ComplexCoT (Fu et al.,
2023b). Section 5.3 details our examination of the
scalability of our approach across various model
sizes, specifically using the 7B, 13B, and 70B pa-
rameter configurations of LLaMA-2. Additionally,
we integrate a Mixture of Experts model, Mistral-
8x7B (Jiang et al., 2024) to further diversify our
evaluations.

5.2 Main Results

Arithmetic Reasoning. In Table 1, we present
the results of arithmetic reasoning tasks. Our
method manifests substantial performance enhance-
ment across most benchmarks, in both single and
multiple chain scenarios. Notably, we observe ab-
solute increments in accuracy of 7.81%, 2.78%,
and 3.14% on GSM8K, AddSub, and AQuA bench-
marks, respectively, when compared to CoT ap-
proach (Wei et al., 2022). This disparity in per-
formance gains can be attributed to UAG’s strat-
egy of constraining the reasoning search space by
strategically eliminating uncertainty, as reflected in
its superior performance across tasks. This under-
scores the efficacy of introducing controllable ran-
domness in the UAG decoding process to expand
the search space. A more extensive comparison
of UAG against a broader spectrum of methods is
detailed in Appendix C, where we delve deeper
into the underlying factors contributing to UAG’s
enhanced performance.

Commonsense and Symbolic Reasoning. As
illustrated in Figure 3a and Figure 3b, UAG con-
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Figure 4: Performance comparison across models on the
AQuA dataset. UAG achieves consistent performance
improvement across various models.

sistently outperforms existing approaches across a
variety of tasks. For instance, on the BoolQ dataset,
our approach achieves an accuracy rate of 62.26%,
significantly surpassing the 58.07% accuracy of the
baseline method. Particularly noteworthy is our per-
formance on the StrategyQA and BoolQ datasets,
where we observe that the Zero-Shot CoT (Ko-
jima et al., 2022) struggled in guiding the model to
generate precise and accurate answers, leading to
significant performance declines.

Computational Cost. Despite the significant im-
provements our approach yields across various
benchmarks, a potential concern arises regarding
the computational overhead. Upon examining Fig-
ures 3a and 3b, we note that UAG, when applied to
commonsense and symbolic reasoning tasks, does
not incur substantial performance costs in com-
parison to CoT. For instance, in the Date Under-
standing dataset, UAG demonstrates only a 20%
increase in overhead relative to CoT, yet it achieves
an enhancement of over 3% in performance. Fur-
thermore, as illustrated in Table 1, in arithmetic
reasoning, UAG’s computational demand is com-
parable to ComplexCoT and is even more efficient
than the exemplar-free Zero-Shot CoT approach.
Notably, UAG’s mechanism of refining reasoning
based on finished reasoning steps ensures that the
additional computational overhead is minimal.

5.3 Further Analysis

Performance on various models. In Figure 4,
we compare the performance of UAG against other
baselines across different LLMs. UAG consistently
outperforms these baselines. Intriguingly, CoT
does not always outperform Zero-Shot-CoT (Ko-
jima et al., 2022), e.g., Zero-Shot-CoT outperforms
CoT on Mistral-7B, and this advantage is more
pronounced on Mistral-8x7B. Furthermore, an in-
creased number of exemplars does not uncondition-
ally enhance performance; in certain cases, such as
with Mistral, better results are achieved even with-

2407



GSM8K AQUA CSQA StrategyQA
30

40

50

60

70
Pe

rfo
rm

an
ce

UAG
Relevance Only
Originality Only
Random

Figure 5: Ablation Study on Relevance and Originality.
Performance impact across datasets when omitting ei-
ther relevance or originality.

out exemplars (Li et al., 2023b). In this scenario,
Mistral is even better without exemplar. This phe-
nomenon underscores UAG’s strategic advantage
in introducing the most appropriate exemplars on-
demand, which substantially contributes to the ob-
served performance improvements of our method.

Importance of Relevance and Originality. In
Section 3, we introduce the concepts of relevance
and originality, with exemplar selection criteria de-
tailed in Eq 10. An ablation study, as depicted
in Figure 5, evaluates the impact of these factors.
We modify the experiment by omitting the con-
dition in Eq 11 and employing random selection
for comparison. The results reveal that excluding
originality leads to an average performance drop of
5.73%, as the model then relies solely on question
relevance, often being misled by errors in analo-
gous questions (Zhang et al., 2023c). Conversely,
eliminating relevance also results in significant per-
formance decline, rendering the exemplar selec-
tion process ineffective. A further analysis of the
weights λ1 and λ2 is elaborated in Appendix C.1.
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Figure 6: Performance comparison of UAG and Auto-
CoT methods on various reasoning datasets.

Comparison to Existing Demonstration Selec-
tion Method. In Figure 6, we conduct an analysis
of our UAG method against another representative
demonstration selection strategy utilizing cluster-
ing, Auto-CoT (Zhang et al., 2023c), across vari-
ous reasoning datasets. This comparison, under the
same experimental setting, reveals a notable per-
formance enhancement by UAG over Auto-CoT in
each dataset. These findings indicate the superior-

ity of UAG, which dynamically selects appropriate
demonstrations based on uncertainty during the rea-
soning process, as opposed to Auto-CoT’s static
pre-selection approach.

6 Conclusion

In this paper, we start by observing the causes be-
hind LLM reasoning errors from the perspective of
uncertainty, paving the way for nuanced and adap-
tive modifications in the reasoning process. Driven
by this insight, we introduce the Uncertainty-aware
Adaptive Guidance (UAG). UAG strategically mit-
igates reasoning errors by identifying and elimi-
nating uncertainties with reasoning steps, concur-
rently leveraging exemplars chosen for their rele-
vance and originality to dispel uncertainty and steer
the subsequent reasoning trajectory. Comprehen-
sive experimental evaluations across a spectrum
of reasoning tasks demonstrate that UAG not only
surpasses several strong baselines but also exhibits
adaptability to a diverse array of models, underscor-
ing its efficacy and wide applicability in enhancing
LLM reasoning capabilities. Further analysis show-
cases the remarkable versatility of UAG, which can
function as a plug-and-play module and efficiently
identify and eliminate reasoning errors.

Ethics Statement

The development and deployment of Large Lan-
guage Models (LLMs), such as those described in
this paper, necessitate careful consideration of vari-
ous ethical concerns. We outline several key areas
of focus:
Data Privacy and Security. Our approach, in-
volving the enhancement of LLMs for reasoning
tasks, does not require the collection or processing
of personal data. The prompts and methods used
are devoid of personal information, aligning with
privacy preservation principles.
Impact on Workforce. The automation capabili-
ties of LLMs might affect employment in certain
sectors. It is important to consider the broader so-
cietal implications and support the workforce in
adapting to these technological changes.
Environmental Considerations. The computa-
tional resources required for training and running
LLMs have environmental impacts. We advocate
for the use of sustainable practices and the explo-
ration of energy-efficient models.
In conducting this research, we have adhered to
ethical guidelines and ensured compliance with
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the licensing requirements of the datasets used, as
detailed in Table 2. Our commitment to ethical
research extends beyond legal compliance, encom-
passing a broader responsibility to the societal im-
plications of our work.

Limitations

While our Uncertainty-aware Adaptive Guidance
(UAG) method demonstrates significant improve-
ments in reasoning tasks, it is important to acknowl-
edge certain limitations that point towards areas for
future development:

Applicability to Closed-Source Models. A no-
table constraint of our method is its limited appli-
cability to closed-source models. Models such as
ChatGPT and Claude, which do not provide ac-
cess to the probability distribution of tokens, pose a
challenge to the implementation of UAG. This lim-
itation restricts the versatility of our approach, as
it cannot be directly applied to these commercially
closed-source models.

Generalization to Broader Generative Tasks.
While our research has focused predominantly on
reasoning tasks, the potential of leveraging uncer-
tainty in LLMs extends to a wider spectrum of gen-
erative applications (Manakul et al., 2023), such as
code generation (Sun et al., 2024b). This includes
using uncertainty as a metric for evaluating model
hallucination (Ji et al., 2023), generation quality,
and other aspects of generative performance. How-
ever, our current scope has not encompassed these
areas, and we recognize this as an opportunity for
future research to expand the applicability and util-
ity of UAG in these domains.
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A Statistics and Details of Datasets

For our experimental analysis, we carefully se-
lected a diverse set of 14 datasets, encompassing
the domains of arithmetic reasoning, commonsense
reasoning, and symbolic reasoning. In Table 2, we
comprehensively detail each dataset, including its
source, type of answers it contains, the count of
Chain-of-Thought (CoT) (Wei et al., 2022) prompt
exemplars used, the size of the test sample, and the
applicable licenses.

B Implementation Details

Baseline Implementation. In our main exper-
iments, we employ three baselines: Zero-Shot
CoT (Kojima et al., 2022), CoT (Wei et al., 2022),
and ComplexCoT (Fu et al., 2023b). For Zero-
Shot CoT, we append “Let’s think step by step”
after each question. For both CoT and Complex-
CoT, we adhere to their original prompting exem-
plars. To maintain consistency, we standardize
the prompt format in ComplexCoT to match CoT,
replacing “Question:” and “Answer:” with “Q:”
and “A:”, respectively. The details of prompts
used are listed in Table 2. While CoT and Com-
plexCoT have the same number of prompts, each
example in ComplexCoT encompasses more in-
termediate steps. The experimental outcomes for
CD and DoLA were sourced from Chuang et al.
(2023) and O’Brien and Lewis (2023). For compar-
ison, we use the LLaMA-1 model (Touvron et al.,
2023a) and sample 20 reasoning chains for self-
consistency (Wang et al., 2023), aligning with their
settings.

Generation Settings In our experimental setup,
we adapt the generation temperature τ for differ-
ent tasks and baseline models. For the LLaMA
model, Zero-Shot-CoT shows optimal performance
at lower temperatures, specifically within τ ∈[0.1, 0.5]. This contrasts with CoT and Complex-
CoT, which perform better at higher temperatures
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Figure 7: Weight analysis of Relevance and Originality
on GSM8K and StrategyQA dataset.

(τ > 0.5), consistent with Xie et al. (2023). For
the Mistral model, a temperature control within
τ ∈ [0.3, 0.7] yields more favorable results. This
variance in optimal temperature settings can be at-
tributed to differences in model architecture and
the distribution of the training data.

In scenarios involving multiple reasoning paths,
we set the sampling temperature to 0.7 and set the
number of reasoning chains to 5 to explore the rea-
soning space thoroughly. A majority voting mech-
anism is employed post-answer generation for the
final decision (Wang et al., 2023). We note that
some special tokens, such as the “muffins” in Fig-
ure 1, exhibits high uncertainty, likely due to infre-
quent usage, but did not consider these as reasoning
errors if their uncertainty exceeded the threshold θ.

For different datasets, we follow the Auto-CoT
setup (Zhang et al., 2023c) with varying cluster
numbers; for mathematical reasoning, k = 8, while
for symbolic reasoning, k = 4 was uniform. In
commonsense reasoning, the cluster count was set
to 7 for CSQA and StrategyQA, and 5 for BoolQ
and ARC-c. To ensure precise answer extraction
and mitigate evaluation errors, as discussed in Sec-
tion 5.3, an exemplar was incorporated in the initial
stages for Mistral-7B, LLaMA models.

Hardware utilization included a single RTX4090
for running LLaMA-7B and Mistral-7B models,
two RTX4090s for LLaMA-13B, and two A100s
for LLaMA-70B and Mistral-8x7B. In the multi-
ple reasoning chains scenario, employing multiple-
sampling effectively reduces the randomness asso-
ciated with a single run. The UAG method is im-
plemented using PyTorch and Transformers, with
Copilot and ChatGPT assisting in code writing and
debugging.

Hyper parameter. We set the respective weights
of relevance and originality λ1 and λ2 to 0.5 and
0.5, respectively, and the ablation experiments for
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DATASET REASONING TASK ANSWER FORMAT # EX. # EVAL. LICENSE

GSM8K (Cobbe et al., 2021) Arithmetic Number 8 1,319 MIT License
MultiArith (Roy and Roth, 2015) Arithmetic Number 8 600 Unspecified
SingleEq (Koncel-Kedziorski et al., 2016) Arithmetic Number 8 508 Unspecified
AddSub (Hosseini et al., 2014) Arithmetic Number 8 395 Unspecified
SVAMP (Patel et al., 2021) Arithmetic Number 8 1,000 MIT License
AQUA (Ling et al., 2017) Arithmetic Multi-choice 4 254 Apache-2.0
StrategyQA (Geva et al., 2021) Commonsense T/F 6 2,290 MIT license
CommonsenseQA (Talmor et al., 2019) Commonsense Multi-choice 7 1,221 Unspecified
BoolQ (Clark et al., 2019) Commonsense T/F 4 3,270 CC BY-SA 3.0
ARC-c (Clark et al., 2018) Commonsense Multi-choice 4 299 CC BY-SA 4.0
Date Understanding (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Penguins in a Table (Suzgun et al., 2023) Symbolic Multi-choice 3 146 MIT license
Colored Objects (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license
Object Counting (Suzgun et al., 2023) Symbolic Multi-choice 3 250 MIT license

Table 2: Comprehensive statistics of datasets utilized in our experiments. # EX. indicates the number of Chain-of-
Thought (CoT) (Wei et al., 2022) prompting exemplars used for few-shot prompting. # EVAL. denotes the total
count of evaluation samples in each dataset.
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Figure 8: Threshold Analysis on GSM8K dataset.

this setting are shown in 5.3, which we analyze in
more detail in C.1. In the main experiment, we set
the threshold θ to 16, and we analyzed the different
threshold selections in C.2. In the clustering phase,
we use text-embedding-3-large to obtain the
corresponding embedding. We use NLL loss to
react to the uncertainty of the model and use the
model’s respective tokenizer to get the number of
generated tokens. Benefiting from the uncertainty
assessment, we are able to first complete inference
on a batch of confident samples. These samples are
used as examples to bootstrap questions that are
interrupted due to high uncertainty, similar to active
learning, allowing our approach to be applied in
test question only scenarios.

C Extended Analysis

C.1 Further Analysis of Relevance and
Originality

In Figure 7, we examine the influence of relevance
and originality weights on performance, utilizing
the Mistral-7B model. We maintain the constraint
λ1 +λ2 = 1, where λ1 varies from 0 to 1, denoting
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Figure 9: Threshold Analysis on StrategyQA dataset.

an increasing emphasis on relevance. Our findings
indicate that an increment in λ1 corresponds with
a gradual improvement in model performance, un-
derscoring the positive role of relevance in enhanc-
ing model reasoning. However, beyond λ1 > 0.6,
there is a notable decline in performance, suggest-
ing an overreliance on correlation and the detri-
mental impact of reasoning errors from similar
samples. The model exhibits optimal performance
when λ1 = λ2 = 0.5, striking a balance between
relevance and originality. This balanced setting is
adopted for our subsequent experiments, reflecting
its effectiveness in optimizing model performance.

C.2 Threshold θ

In Figure 8 and Figure 9, we delve into the in-
fluence of threshold θ on the performance in the
GSM8K and StrategyQA datasets. The histograms
display the distribution of samples requiring ex-
emplar introduction at various thresholds. The
accompanying curves illustrate the corresponding
accuracy at each threshold level. It is observed
that the model’s accuracy escalates with an in-
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Figure 10: Error Identification and Correction on
GSM8K dataset. UAG exhibits comparable error identi-
fication capabilities to ChatGPT.
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Figure 11: Performance comparison of UAG and
various Decoding Enhancement Methods on GSM8K
dataset. Using LLaMA-1 backbone (Touvron et al.,
2023a), UAG consistently enhances performance across
models of different parameter sizes.

crease in θ, peaking before a rapid decline post
θ > 16. To understand this phenomenon, we exam-
ine the frequency of samples meeting the criteria
of Eq 7 at varying thresholds, depicted through a
histogram. This analysis reveals a decrease in the
number of samples satisfying Eq 7 as θ ascends. A
lower θ entails a larger subset of samples undergo-
ing reasoning adjustment, which, given that many
samples are correctly inferred initially, could inad-
vertently introduce errors. Conversely, a higher θ
may fail to identify samples with reasoning errors,
gradually like an exemplar-free Zero-Shot-CoT ap-
proach (Kojima et al., 2022) and resulting in a
marked degradation in performance.

C.3 Correlation between Reasoning Errors
and Model Uncertainty

In Figure 1, we observe a correlation between
reasoning errors and model uncertainty, a phe-
nomenon previously substantiated by various stud-
ies (Yuan et al., 2021; Fu et al., 2023a; Manakul
et al., 2023). To delve deeper, we analyze 100
error-containing samples from the GSM8K and
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Figure 12: Error Identification and Correction on Strate-
gyQA dataset. UAG exhibits comparable error identifi-
cation capabilities to ChatGPT.
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Figure 13: Performance comparison of UAG and var-
ious Decoding Enhancement Methods on StrategyQA
dataset. Using LLaMA-1 backbone (Touvron et al.,
2023a), UAG consistently enhances performance across
models of different parameter sizes.

StrategyQA datasets, identified through labeled
correct answers, as illustrate in Figure 10 and
Figure ??. These samples are processed using
both ChatGPT and our UAG method for error lo-
calization and correction. Employing the reason-
ing process generated by Mistral-7B, we utilized
gpt-3.5-turbo-1106, following the method out-
lined in Xie et al. (2023). ChatGPT exhibits a
substantial error identification rate, correctly pin-
pointing 71% and 83% of errors in the datasets and
successfully amending 57% and 69%, respectively.
UAG demonstrates a comparable proficiency, cor-
rectly identifying 60% and 81% of the errors and
effecting corrections in 43% and 55% of the cases.
Notably, UAG capitalizes on the model’s inherent
uncertainty for judgment, obviating the need for
reevaluation. This approach not only significantly
reduces computational overhead but also remains
versatile across models of varying parameter sizes.
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Figure 14: Performance Comparison in Multiple Rea-
soning Chains Scenario. Adhering to the configuration
outlined by O’Brien and Lewis (2023), we utilize the
LLaMA-65B backbone (Touvron et al., 2023a).

C.4 Comparison to Decoding Enhancement
Method

In Section 2, we discuss a variety of reasoning
enhancement methods. Due to experimental con-
straints, it was impractical to compare our approach
with all notable methods. Consequently, we select
two representative decoding enhancement methods
for comparison: Contrastive Decoding (CD) (Li
et al., 2023a) and Decoding by Contrasting Lay-
ers (DoLA) (Chuang et al., 2023). Utilizing the
LLaMA-1 backbone (Touvron et al., 2023a), with
baseline results sourced from Chuang et al. (2023),
Figure 11 and Figure 13 illustrates that UAG con-
sistently outperforms the DoLA method across all
model sizes on both the GSM8K and StrategyQA
datasets. O’Brien and Lewis (2023) highlight that
meticulous hyperparameter selection can notably
enhance the performance of CD methods in rea-
soning tasks. In Figure 14, our comparison with
these carefully tuned CD results reveals that UAG
not only demonstrates comparable performance but
also exhibits a distinct edge in commonsense rea-
soning tasks. This comparison underscores UAG’s
ability to achieve significant performance improve-
ments across a broader array of tasks.
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