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Abstract

Low-rank approximations, of the weight and
feature space can enhance the performance of
deep learning models, whether in terms of im-
proving generalization or reducing the latency
of inference. However, there is no clear con-
sensus yet on how, when and why these approx-
imations are helpful for large language models
(LLMs). In this work, we empirically study the
efficacy of weight and feature space decompo-
sition in transformer-based LLMs. We demon-
strate that surgical decomposition not only pro-
vides critical insights into the trade-off between
compression and language modelling perfor-
mance, but also sometimes enhances common-
sense reasoning performance of LLMs. Our
empirical analysis identifies specific network
segments that intrinsically exhibit a low-rank
structure. Furthermore, we extend our investi-
gation to the implications of low-rank approx-
imations on model bias. Overall, our findings
offer a novel perspective on optimizing LLMs,
presenting the low-rank approximation not only
as a tool for performance enhancements, but
also as a means to potentially rectify biases
within these models. Our code is available at
GitHub.

1 Introduction

The mass adoption of Large Language Models
(LLMs) in various domains has brought to the fore-
front the critical need to understand and optimize
their structural and functional properties. This un-
derstanding is not only crucial from a theoretical
point of view, but also essential for practical, real-
world applications. LLMs, characterized by their
vast size and complexity, present significant chal-
lenges in terms of resource utilization and opera-
tional efficiency. In this context, model compres-
sion has become a crucial topic of research.

*These authors contributed equally to this work. Work
done while Nahush was an intern at Nyun AI

Compression of LLMs is not simply a matter
of reducing their size, but also about retaining
functionality and performance in a more resource-
efficient environment. Traditional compression
methods, such as quantization, pruning, distillation,
low-rank decomposition; have demonstrated con-
siderable success in making LLMs practical. How-
ever, parametric reduction of LLMs is non-trivial
owing to the massive compute required to re-train
or fine-tune compressed models. Therefore, tradi-
tional compression methodologies, such as pruning
and distillation, undergo substantial performance
degradation in a training-free compression regime.
We hypothesize that the unique advantage of low-
rank decomposition in providing direct control over
the low-rank factors contributes to a more effective
and training-free compression tendency in LLMs
and explore this hypothesis in depth.

In this work, we delve into the low-rank decom-
position properties of LLMs. We meticulously
examine and surgically decompose the individual
layers of these models with the aim of achieving
training-free compression while maintaining or, in
some cases, enhancing performance. This layer-
wise decomposition approach allows for granular
analysis of the model’s components, leading to a
more tailored and effective compression strategy.
Furthermore, we extend our study to investigate the
effects of low-rank decomposition on the intrinsic
biases inherent in LLMs. Bias in language models
is a topic of growing concern given the widespread
application of these models in society. By examin-
ing how decomposition influences these biases, we
contribute to the broader conversation on ethical
AI and responsible model deployment.

In summary, this work presents a comprehensive
study of low-rank decomposition in LLMs, explor-
ing its potential to achieve considerable compres-
sion levels and its impact on model performance
and biases. Through our empirical analyses, we
aim to provide insights that can guide future de-
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velopments in the field of language model opti-
mization. The contributions of this paper can be
summarized as follows:

• We introduce Surgical Feature-Space Decom-
position (SFSD), a simple method for efficient
LLM compression through precise layerwise
decomposition of latent features.

• Our research empirically demonstrates the ef-
fectiveness of reduced-rank approximations
on latent features in LLMs, showing its advan-
tages over traditional weight space approxi-
mations.

• We explore the impact of SFSD on the rea-
soning performance and perplexity of LLMs,
providing a comparative analysis with a re-
cent parametric and training-free structured
pruning method.

• We additionally study the influence of SFSD
on the bias of pre-trained LLMs, quantitative
change in sample predictions and general low-
rank structures; factors vital for understanding
and practical application of SFSD.

2 Related Work

This work focuses on surgically creating low-rank
approximations of the feature space for achieving
efficient and effective compression of LLMs. Fur-
ther, we also study the behavior of the resultant
models from a fairness perspective. In this regard,
we present below an overview of the existing works
related to these areas of research.

Surgical fine-tuning. Recent works have shown
that fine-tuning only specific layers of a deep neural
network improves adaptations to distribution shifts
(Lee et al., 2022). (Lodha et al., 2023) provided
strong empirical results on surgical fine-tuning of
the BERT (Devlin et al., 2019) model. Their results
show that fine-tuning only specific layers often sur-
pass downstream task performance on GLUE and
SuperGLUE (Wang et al., 2018, 2019) datasets.
(Shen et al., 2021) adopt an evolutionary search
mechanism to identify layer-specific learning rates
and freeze some layers in the process for better per-
formance on few-shot learning tasks. (Park et al.,
2024) perform layer wise auto-weighting using the
Fischer Importance Matrix for test-time adapta-
tion. In this process, their method even makes
certain layers nearly frozen to mitigate outliers.

These works have shown that for any given down-
stream task, fine-tuning and/or freezing only spe-
cific layers lead to better performance as compared
to the full model. We argue that not layers, but
sub-components in each layer identified through
traditional rank decomposition can be surgically
eliminated form deep neural networks with mini-
mal loss in performance.

Model compression. Model compression tech-
niques such as network pruning (Frankle and
Carbin, 2018; Liu et al., 2018; Tiwari et al., 2020;
Chavan et al., 2022a), knowledge distillation (Jiang
et al., 2023b; Dasgupta et al., 2023; Hsieh et al.,
2023), quantization (Dettmers et al., 2022; Xiao
et al., 2023; Lin et al., 2023), etc., have been proven
instrumental for the practical use of large-scale
deep learning models. With the advent rise of
LLMs, traditional compression methodologies of-
ten fail due to multiple factors including infeasibil-
ity for training-aware compression and huge hard-
ware costs among others. Specifically for LLMs,
fine-tuning/training-free methodologies have been
proposed in recent literature (Ma et al., 2023;
Dettmers et al., 2022; Chavan et al., 2024), how-
ever they either come with a substantial drop in
performance or only work on specific hardware
architectures. Additionally most training-free com-
pression methods for LLMs are not data aware
making them suboptimal for accurate task-specific
compression. In this work, we propose to use fea-
ture space decomposition for training-free compres-
sion on downstream tasks. Additionally, consistent
with previous studies that indicate that model com-
pression serves as an effective regularizer and often
improves performance at lower compression levels
(Frankle and Carbin, 2018; Chavan et al., 2022b),
this work also demonstrates a comparable trend in
the context of our proposed methodology. Overall,
our work aims to provide a zero-shot and training-
free compression method in contrast to existing
training-aware methods on smaller models. We
perceive quantization as orthogonal to our study
and we do not include any LLM distillation due
to the heavy fine-tuning requirements of the same
which defeats the motivation of this work.

Low Rank Approximation. Using low-rank de-
composition to compress traditional convolutional
neural networks (CNN) has been widely studied in
the literature (Denton et al., 2014; Jaderberg et al.,
2014; Zhang et al., 2016; Yu et al., 2017). More
recently, (Phan et al., 2020) attempted to stabilize
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the low-rank approximation by mitigating the de-
generacy in decomposition matrices. (Idelbayev
and Carreira-Perpinán, 2020) proposed a mixed
discrete-continuous optimization framework to esti-
mate the optimal layer-wise ranks for compression.
All these methods restrict to weight or CNN ker-
nel decomposition, making them oblivious to the
data domain, further necessitating the fine-tuning
stage of the decomposed networks. Similarly in
the domain of NLP, (Hajimolahoseini et al., 2021)
proposed progressive SVD-based approximation
of the GPT-2 model (Radford et al., 2019) with
re-training to achieve much better compression
rates as compared to distillation based compres-
sion methods. However, retraining remains piv-
otal to regaining performance drop during the data-
free weight decomposition stage. More recently,
(Li et al., 2023) approximate weight matrices as
low-rank and sparse approximations jointly. How-
ever, their method requires heavy fine-tuning on
each downstream evaluation task. (Chen et al.,
2021) proposed a data-aware low rank approxima-
tion method for model compression. They em-
ploy a dual SVD on model weights and inputs re-
spectively, and propose a closed form solution to
the data-aware low rank approximation problem.
Their motivation on having data-aware compres-
sion closely aligns with ours; however, they show
limited evaluation on discriminative language mod-
els.

Bias and Fairness. (Gallegos et al., 2023) provide
a detailed survey on bias and fairness in large lan-
guage models. In the context of this work, (Ramesh
et al., 2023) provided an initial study on the impact
of model compression on the fairness and bias of
language models. However, their study was only
restricted to discriminative models and tasks. Simi-
larly, (Gonçalves and Strubell, 2023) provided solid
observations like longer pre-training and larger
models have more social biases as compared to
the compressed counterparts, among others. (Shao
et al., 2023a,b; Kleindessner et al., 2023) have at-
tempted to mitigate model bias by eliminating low-
rank components of data and model weights that
contribute to a higher bias. In this work, we also
focus on understanding the effect of a low-rank
approximation on the biases of LLMs.

3 Low-Rank Decomposition of LLMs

Before describing low-rank decomposition of
LLMs, we first present here a brief understanding

of the LLM structure. Any LLM typically involves
a deep neural network architecture based on the
Transformer model. Without loss of generality,
any transformer model has Multi-Head Self Atten-
tion (MHSA) and Multi-Layer Perceptron (MLP)
blocks repeated across the model depth. We refer
to a combination of MHSA and MLP blocks as
a single module. Each MHSA block consists of
three linear transformation layers corresponding to
query, key and value. We denote the weight ma-
trices corresponding to them as Wq, Wk and Wv

respectively. Additionally, after the attention opera-
tion, an output linear transformation layer is present
with weight denoted as Wo. Similarly, MLP block
typically consists of a gate projection layer, an up
projection layer and a down projection layer. We
denote the weight matrices corresponding to them
as Wg, Wu and Wd respectively.

Combining the weights from the MHSA and
MLP blocks, the weight space of a LLM with L
such repeated blocks can be stated as

W =
L⋃

l=1

Wl = W1 ∪W2 ∪ . . . ∪WL

Here, Wl = {Wlq,Wlk,Wlv,Wlo,Wlg,Wlu,Wld}
denotes the weight space for the lth block.

3.1 Weight Space Decomposition
It refers to taking a simplified approximation of the
weight matrices that can lead to reduced computa-
tional complexity of the associated mathematical
operations. For the reduction of the weight space,
we employ Singular Value Decomposition (SVD)
on the individual weight matrices. For any par-
ticular Wi ∈ W where Wi ∈ Rd2×d1 , the SVD
formulation can be stated as:

Wi = UΣV T . (1)

where U ∈ Rd2×d2 ,Σ ∈ Rd2×d1 , and V T ∈
Rd1×d1 are the resultant matrices.

For any desired parametric budget β ∈ (0, 1),
the total number of final parameters should be β ×
d2 × d1 where d2 × d1 are the original number
of parameters. This information is then used to
calculate the rank of the system that would satisfy
the prescribed budget.

For a given rank r, we define Ur ∈ Rd2×r,Σr ∈
Rr×r, and V T

r ∈ Rr×d1 as the resultant matrices
that approximate Wi as:

W̃i = UrΣrV
T
r = WdWu (2)
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where Wd = UrΣr ∈ Rd2×r; Wu = V T
r ∈ Rr×d1 .

Based on this, the relation between the compression
budget and system rank can be stated as follows.

d2 × r + r × d1 = β × d2 × d1 =⇒
r = β × (d2 × d1)/(d2 + d1) = β × κ. (3)

Eq. 3 can be used to estimate the rank r for any
desired compression budget β.

3.2 Feature Space Decomposition
It is important to note that the above decomposition
is not data-aware, it can provide a general approxi-
mation of any given set of weights. The distribution
of input features of each layer follows a specific pat-
tern, which can be directly influenced by the input
samples (Schwarzenberg et al., 2021). Thus, fea-
ture space decomposition can help mitigate errors
introduced by general low-rank approximations.
Similar to PCA (Shlens, 2014), we employ Eigen-
value Decomposition on the covariance matrix of
the output features. Assuming Xi ∈ Rd1×D is the
input to any Wi ∈ W, where D is the number of
calibration data samples; the decomposition can be
stated as:

Yi = WiXi and ΣY = YiY
T
i

ΣY = V ΛV T

where V ∈ Rd2×d2 and Λ ∈ Rd2×d2 is a diago-
nal matrix. Assuming that r satisfies the budget
constraint β, Yi can be approximated as:

Ỹi = VrV
T
r WiXi = WdWuXi

where Wd = Vr ∈ Rd2×r and Wu = V T
r Wi ∈

Rr×d1 . To minimize the error introduced by the
low-rank approximation, we need to identify highly
stable eigenvectors that have a minimum output
variance across samples. Highly stable eigenvec-
tors can be replaced by a static bias term, while
unstable eigenvectors must be retained. Since
eigenvectors are orthonormal; the output can be
represented as Yi =

∑
k V

t
kVkWiXi. The output

variance of any given eigenvector Vk can be repre-
sented as:

Sk = V ar(Yi|Vk)

=
1

N − 1

D∑

j=1

(V t
kVkWiXj −

1

N

D∑

j=1

V t
kVkWiXj)

The lower the value of Sk, the higher the sta-
bility of the k-th eigenvector. Co-incidently, Sk is

numerically equal to the eigenvalue corresponding
to the k-th eigenvector. Hence, eigenvectors with
low eigenvalues can be replaced by a static bias
term, while eigenvectors corresponding to higher
eigenvalues are retained.

Low-rank bias compensation. In the case of fea-
ture space decomposition, we compensate for the
lost information by an additional bias term. Assum-
ing that Vrc denotes the eliminated eigenvectors,
we can approximate Yi by using the orthogornal
property of V :

Yi = Ỹi + VrcV
T
rcWiXi

We approximate VrcV
T
rcWiXi by taking a mean

over the calibration data samples:

bi = VrcV
T
rcWiX̄i (4)

Finally, Ỹi = WdWuXi + bi (5)

This bias compensation helps in approximating the
highly stable eigenvectors through a static bias cal-
culated over the calibration data samples without
any need to change the original layer. Note that
a similar bias compensation cannot be formulated
for weight space decomposition as it is data-free,
and no mean approximation can be carried out of
the stable singular vectors.

3.3 Surgical Rank Search

Algorithm 1 SFSD Rank Search
Require: Pre-trained model f , P (Performance

Metric), β ∈ {0.1, 0.2, . . . , 0.9}
Ensure: R

1: Initialize R as an empty list to store ranks
2: for each layer L ∈ f , starting from the last

layer do
3: for each budget βi in the set of β do
4: ri← Determine rank corresponding to βi

using Eq. 3
5: Li ← Decompose L with rank ri using

Eq. 5
6: Overwrite f with Li

7: if f meets or exceeds P then
8: Append r to R
9: break and proceed to the next layer

10: end if
11: end for
12: end for
13: return R
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Table 1: Performance of LLaMA-7B model, with weight space and activation space decomposition. Average
denotes average performance across the given downstream tasks.

Decomposition #Params (B) #MACS BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Baseline 6.7 423.93 75.04 78.67 76.22 70.00 72.85 44.88 69.61
Feature Space 5.4 339.99 74.34 74.86 66.72 67.40 66.33 39.42 64.68
Weight Space 5.4 339.99 62.20 62.57 43.91 58.80 44.95 30.03 50.41
LLM-Pruner 5.4 339.60 57.06 75.68 66.80 59.83 60.94 36.52 59.47
Feature Space 3.4 215.61 62.02 61.37 34.64 56.43 40.32 28.75 47.25
Weight Space 3.4 215.61 62.08 53.59 27.88 48.46 27.15 27.05 41.10
LLM-Pruner 3.4 206.59 52.32 59.63 35.64 53.20 33.50 27.22 43.58

We estimate the decomposition ranks for each
layer by employing a simple linear search mech-
anism. For each layer, we search for the lowest
possible value of β ∈ {0.1, 0.2, ..., 0.9} and the
corresponding rank r which satisfies a pre-defined
performance metric; more information on the rela-
tionship between different values of β, correspond-
ing rank r and the final budget is provided in the
Appendix B. We surgically follow this process for
each layer starting from the last layer and sequen-
tially moving to the previous layers. This order is
followed throughout our experiments on the basis
that the last layers are more susceptible to compres-
sion as compared to the earlier layers (Ma et al.,
2023). We employ two types of performance met-
rics for search, one targeted at preserving the gen-
eral Wikitext-2 (Merity et al., 2016) perplexity and
another targeted at maximizing the downstream
commonsense reasoning task performance. In both
cases, we used 20% data for search and finally eval-
uate the compressed models on the unseen 80%
data. The exact algorithm is outlined above. Once
we surgically decompose the network, each linear
layer is replaced by two low-rank linear layers op-
erating sequentially. Thus reducing the parameters
and FLOPs of the pre-trained network directly.

4 Experimental Analysis

Here, we offer various insights into the analysis of
LLMs, focusing specifically on experiments con-
ducted with LLaMA-7B (Touvron et al., 2023) and
Mistral-7B models (Jiang et al., 2023a). Our exper-
iments are centered on downstream common-sense
reasoning tasks, with detailed task descriptions
available in the Appendix A. Throughout our ex-
periments, we utilize a calibration dataset compris-
ing 512 samples, each with a maximum sequence
length of 128. Importantly, this data is randomly
selected from the train splits of the downstream
datasets, ensuring no data leakage. It is worth not-

ing that the results demonstrated at the ∼7B scale
tend to extrapolate more effectively to larger-scale
models (Frantar and Alistarh, 2023). Decompo-
sition is carried out on a CPU machine and rank
search is done on a single L4 GPU with 24GB of
VRAM for faster evaluations during search. It is a
possibility that a larger size of calibration data with
longer sequence lengths can further provide better
low-rank approximations.

4.1 Weight Space vs. Feature Space

First, we compare weight space and feature space
decomposition methods and determine the pre-
ferred choice for downstream tasks. To ensure
fairness in the comparison, no surgical strategy
is employed. We employ two parametric budgets
of 80% and 50% in line with existing works. To
achieve a parametric budget of 80% overall, we
decompose the last 12 out of 32 modules with a
constant β = 0.46; similarly for 50% budget, we
decompose last 24 of the 32 modules with a con-
stant β = 0.33. Note that the above choices are
made to avoid instability in the network due to com-
pression of the layers at the start of the network, as
also observed in pruning (Ma et al., 2023).

Table 1 presents the performance results for
weight space and feature space decomposition. It
is clearly evident that feature space decomposi-
tion can better retain the performance across down-
stream tasks. We additionally compare the de-
composition methods with LLM-Pruner (Ma et al.,
2023) to understand how they fair against struc-
tured pruning. From the results shown in Table
1, it is clear that feature space decomposition is
consistently superior over model pruning for the
same level of training-free compression. Note that
for these cases, β is constant across layers, yet fea-
ture space decomposition is still able to outperform
network pruning by large margins.
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4.2 Task-Specific Decomposition

Having demonstrated the superiority of feature
space decomposition, we employ here an end-to-
end surgical decomposition strategy across the com-
plete model. The extensive results are presented
in Figure 1. For each downstream task, we search
based on the 20% subset and report performance
on the 80% unseen subset.

At a relatively lower compression budget, SFSD
can retain and even surpass the performance of the
base model. This behaviour is consistent across the
LLaMA and Mistral models. This makes SFSD a
powerful tool for quickly gaining speedups without
compromising performance in task-specific envi-
ronments. Note that owing to the surgical task-
specific search mechanism, SFSD automatically
estimates and eliminates low-rank eigenvectors per
layer depending on the complexity of the target
task, while reducing the overall final parameter
count dynamically.

Further, we note that the plots shown in Figure 1
exhibit a generalization vs. compression trend sim-
ilar to those of classical pruning literature (Frankle
and Carbin, 2018). In most cases, models general-
ize better than the baseline model at minimal com-
pression levels and undergo performance degrada-
tion at higher levels of compression. Note that the
proposed approach operates without training and
gradients, with the potential for lost performance
to be regained through fine-tuning the preserved
eigenvectors. However, fine-tuning the resultant
models is outside the scope of this study.

4.3 Surgical Decomposition using Perplexity

We have demonstrated above the efficacy of SFSD
for task-specific compression. Next, we investigate,
how the compressed models obtained from SFSD
fair when no task-specific information is employed.
We present here insights obtained from SFSD-
based compression of the models using Wikitext-2
(Merity et al., 2016) perplexity as the performance
metric. Resultant models are then evaluated on
commonsense reasoning tasks and an average per-
formance over the six chosen tasks is presented.

The results for LLaMA-7B and Mistral-7B are
presented in Figure 2. In line with existing works,
the perplexity undergoes substantial degradation
as the compression level increases. However, it is
noteworthy that average downstream task perfor-
mance does not degrade substantially. This shows
that even if the perplexity deteriorates, the model

can retain common sense reasoning to a reasonable
extent. Note that across different parameter counts,
SFSD beats LLM-Pruner substantially on average
downstream task performance; 65.4 % vs. 59.5
% at 5.4B parameter count (80% budget) on the
LLaMA-7B model. Mistral-7B exhibits a slower
parameter reduction and hence a higher overall per-
formance. The relative drop in perplexity and aver-
age accuracy is similar to LLaMA-7B considering
the parameter reduction.

4.4 Effect on Model Bias

Table 2: ICAT Score for baseline and SFSD models.
Budget indicates the overall parametric budget post de-
composition. A higher ICAT score indicates a less bi-
ased model.

Model Budget Gender Profession Race Religion Overall

100% 56.85 66.75 60.81 75.02 63.14
LLaMA-7B

90% 58.50 68.08 62.60 78.85 64.84
80% 59.31 70.50 65.73 78.30 67.28

100% 52.03 66.43 62.63 79.79 63.45
Mistral-7B

90% 54.93 68.22 62.94 87.03 64.87
80% 59.05 68.12 65.99 84.68 66.90

For a holistic evaluation, we also analyse the
change in model’s bias post SFSD. We evaluate
the baseline model and the compressed models on
StereoSet (Nadeem et al., 2020) - a standard bench-
mark to measure stereotypical biases in pre-trained
language models. We use the generic perplexity-
based SFSD models as discussed in the previous
section. The Idealized Context Association Test
(ICAT) scores are presented in Table 2. A higher
ICAT score indicates a less biased model.

It is noteworthy that SFSD substantially re-
duces bias in the pre-trained LLMs across multiple
stereotypes. This observation is consistent across
LLaMA-7B and Mistral-7B. This makes SFSD an
attractive choice for compression since it reduces
intrinsic bias in LLMs in contrast to distillation
and pruning which have been shown to increase the
bias in pre-trained language models (Ramesh et al.,
2023).

5 Discussion and Analysis

5.1 Decomposed Model Visualisation

To further study the low-rank structures in SFSD
models, we plot the final parameter budget β av-
eraged across the six surgical searches shown in
Figure 1. A detailed visualization is provided in
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Figure 1: Surgical Feature Space Decomposition (SFSD) of LLaMA-7B and Mistral-7B models with task-spcific
accuracy used as rank search metric. Horizontal lines indicate the performance of the baseline pre-trained model.
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Figure 2: Surgical Feature Space Decomposition (SFSD) of LLaMA-7B and Mistral-7B models with perplexity
used as the rank search metric. The decomposed models are evaluated at regular interval on commonsense reasoning
tasks and average accuracy is reported.
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Figure 3: Final Parametric Budget β averaged across six commonsense reasoning tasks. 100% indicates an intact
layer exactly similar to the pre-trained model. LLaMA-7B consists of a total of 32 modules; with each module
having query (q), key (k), value (v), output (o), gate (g), up (u) and down (d) projection layers.

Table 3: Accuracy and disagreement between the 90%
budget model (LLaMA-7B) and the baseline predictions
across multiple datasets. Disagreement refers to % data
points whose predictions differ between the pre-trained
and the SFSD models.

Dataset SFSD (%) Pre-trained (%) Delta (%) Disagree. (%)

PIQA 77.26 78.67 -1.41 5.33
Winogrande 69.53 70.01 -0.48 9.16
BoolQ 73.24 75.05 -1.81 8.41
ARC-e 72.90 75.38 -2.48 8.80
ARC-c 40.35 41.80 -1.45 10.24
Hellaswag 54.37 56.96 -2.56 4.61

Figure 3. The module number indicates the loca-
tion of each module in the network architecture,
and the number inside each grid indicates the % of
parameters retained by SFSD as compared to the
original pre-trained model parameters.

Some intrinsic patterns can be seen across
datasets, and specifically some layers are consis-
tently intact with respect to the pre-trained model.
These layers are pivotal to model performance,
hence SFSD prefers to retain these layer completely.
We also see some layers undergoing extreme rank
reduction, and the average compression across the
datasets is relatively very high for them. We ob-
serve that compared to MLP layers, attention layers
(query, key and value) are more prune to compres-
sion through SFSD. More specifically, query pro-
jection either undergoes substantial compression
or stays completely intact. Additionally, the out-
put projection layer in MHSA undergoes minimum
compression and stays intact almost half the times.

5.2 Learning - Unlearning in SFSD

To study the drift in learning mechanism post
SFSD, we analyse the disagreement between base-

line pre-trained model and the corresponding
perplexity-based SFSD model. The disagreement
and the difference in performance of the two mod-
els are presented in Table 3. It is surprising to note
that the disagreement is much higher than the per-
formance difference, indicating that SFSD under-
goes substantial learning and unlearning process.
Specifically, for harder tasks like Arc-Challenge,
the disagreement is notably higher indicating that
SFSD is able to recover representations inherently
hidden in the network. However, this comes at the
cost of unlearning representations already present
in the pre-trained model. By designing search met-
rics targeted at unlearning or debiasing, SFSD un-
locks a promising direction to recover hidden rep-
resentations present in the network and mitigate
targeted biases.

5.3 Computational Efficiency

On average, it takes ~13 seconds for a single layer
of LLaMA-7B to decompose. Decomposing all
the 224 layers takes roughly ~45 minutes. These
numbers are reported on a 48 Core 128GB CPU-
only machine, thus eliminating the need for a GPU
altogether for decomposition. In the case of the
rank search mechanism, we employ a single 24GB
L4 GPU which is 2-3× slower and runs at a lower
batch size than a 40/80GB A100 machine. Never-
theless, rank search depends on the target data size,
with the smallest dataset - Winogrande taking ~8
hours while the largest dataset - Hellaswag takes
~36 hours for the complete rank search. Addition-
ally, not all layers require rank search and even a
search-free uniform rank across layers performs
better than LLM-Pruner.
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5.4 The Why, When and How of SFSD

Why? SFSD offers an alternative and efficient
method for model compression without the need
for fine-tuning. We demonstrate that feature space
decomposition is superior over weight space de-
composition, and SFSD performs feature decom-
position in a very effective manner. SFSD also
outperforms current structured pruning methods
on various commonsense reasoning tasks. Beyond
the standard performance measures, the resultant
compressed models obtained from SFSD exhibit
relatively lower intrinsic model bias, with regard
to ethical concerns. The multifold advantages of
SFSD over other compression methods clearly put
it forward as a preferred choice for building effi-
cient LLMs.
When? SFSD presents numerous advantageous
scenarios where its utility becomes very clear.
Firstly, its notably lower computational complexity
renders it as the preferred choice in contexts where
extensive re-training or fine-tuning of models isn’t
feasible. Despite the potential memory constraints
of full-scale decomposition, SFSD operates on a
layerwise basis, mitigating memory load signifi-
cantly. Moreover, SFSD proves beneficial when the
primary objective is to reduce model size without
sacrificing performance on reasoning tasks. Addi-
tionally, SFSD demonstrates marginal performance
enhancements even at modest compression levels,
making it a viable option for post-processing to
boost model performance. Lastly, SFSD serves
a crucial role in the development of compressed
LLMs, inherently mitigating model bias and ad-
dressing ethical considerations.
How? In simple terms, SFSD implemented layer-
wise eigenvalue decomposition in the feature space,
achieving bias compensation and low-rank approx-
imation. The approach involves surgical feature-
space decomposition, which enables the extrac-
tion of models with varying parameters from a pre-
trained LLM while minimizing performance drops.
The decomposition is started from the last layer
and moved iteratively towards the first. Detailed
description has been presented in Algorithm 1.

With our comprehensive exploration of SFSD’s
merits in terms of efficiency and ethical AI devel-
opment, we’ve firmly established its value in con-
structing effective LLMs. Its adaptability to various
contexts, including memory limitations and ethi-
cal considerations, underscores its significance and
potential impact. Consequently, SFSD emerges

as a promising method for compression of LLMs
without the need for extensive training, opening av-
enues for further research in efficient and ethically
conscious model optimization.

6 Limitations

While we have sufficiently demonstrated the effi-
cacy of SFSD in compressing and building efficient
LLMs, there are still a few limitations that need
to be overcome before SFSD can be looked at the
preferred full-blown solution for improving LLMs
from the efficiency perspective.

First is the scale of experimentation. While we
have observed ourselves from very early experi-
ments that SFSD works well on LLMs with pa-
rameters above 20B, the extensive experimentation
presented in the paper is on 7B models, and for
unhindered generalization, additional experiments
with more parameters might be needed.

Next, our rank search strategy is currently sur-
gical, and it is not clear yet whether it exploits the
best out of the proposed method. This might be
clearly limiting the extent of compression that can
be achieved with minimal performance drop, and a
better choice in terms of a first-principled approach
might be able to develop more efficient LLMs.
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Appendix

A Dataset Descriptions

In our analysis, we focus on two sets of data: the
calibration dataset selection and the test split of the
dataset which is used for the surgical rank selection
process.
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Dataset BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c

Search Split (20%) 654 367 2008 253 475 234
Eval. Split (80%) 2616 1470 8034 1013 1901 938

Table 4: Distribution of sample data used for search and evaluation on task-specific SFSD models.

A.1 Calibration Dataset

The model’s performance is dependent on the
choice of the calibration dataset, as it directly af-
fects the computation of the covariance matrix
through the activations of samples, which is sub-
sequently utilized in the eigenvalue decomposi-
tion process. We experimented with a variety
of calibration datasets including the six common-
sense reasoning tasks (BoolQ(Clark et al., 2019),
PIQA(Bisk et al., 2020), Arc-Challenge(Clark
et al., 2018), Arc-Easy(Clark et al., 2018), Wino-
grande(Sakaguchi et al., 2021), Hellaswag(Zellers
et al., 2019)), WikiText-2 (Merity et al., 2016),
and a combination of all the six aforementioned
common-sense reasoning tasks wherein each batch
in the calibration dataset contains an equal num-
ber of samples from each task. The samples for
the calibration dataset in each setting are chosen
from a distinct set, separate from the split used
for model evaluation and the presentation of our
results. Thus we ensure that there is no data leak
between the calibration dataset and the evaluation
split. In our initial experiments we observed that
the combination dataset has superior generalization
on downstream tasks as compared to a task-specific
calibration dataset, hence all our subsequent experi-
ments as well as the results mentioned in this paper
use models decomposed on the basis of the combi-
nation dataset. Further, the superior generalization
of the model with the combination dataset can be
attributed to the fact that our approach to obtaining
low-rank matrices benefits from greater variability
among the samples within the calibration batch.

A.2 Surgical Rank Search Dataset

In the task-specific compression for common sense
reasoning tasks, the test dataset is divided into two
parts: one containing 20% of the samples and the
other comprising 80% of the samples. In the rank
selection process for a specific layer,the objective
is to identify the minimum rank that ensures perfor-
mance maintenance across the chosen 20% valida-
tion split. The reported results for all task specific
compression experiments are on the disjoint 80%

split of the test dataset.
Additionally, the common sense reasoning scores
for a model compressed based on perplexity are
derived from the evaluation of the model on the
complete test split of the corresponding common
sense reasoning task.

B Layerwise Rank and Budget

Assuming a set of layerwise budgets β ∈
{β1, β2, ..., βN} where N is the total number of
linear layers. The final parametric budget can be

estimated by
∑N

i=1 βipi∑N
i=1 pi

, where pi denotes number

of parameters in the ith layer. Equation 3 can be
directly used to estimate the rank of any particular
layer given a value of β.
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