
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2375–2388
August 11-16, 2024 ©2024 Association for Computational Linguistics

MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter
Jitai Hao1 Weiwei Sun1,2 Xin Xin1 Qi Meng3

Zhumin Chen1 Pengjie Ren1 Zhaochun Ren4*

1Shandong University, Qingdao, China
2Carnegie Mellon University, Pittsburgh, United States

3Academy of Mathematics and Systems Science, Beijing, China
4Leiden University, Leiden, The Netherlands

jitaihao@outlook.com, {xinxin, chenzhumin, renpengjie}@sdu.edu.cn
sunnweiwei@gmail.com, meq@amss.ac.cn, z.ren@liacs.leidenuniv.nl

Abstract

Parameter-Efficient Fine-tuning (PEFT) facili-
tates the fine-tuning of Large Language Models
(LLMs) under limited resources. However, the
fine-tuning performance with PEFT on com-
plex, knowledge-intensive tasks is limited due
to the constrained model capacity, which orig-
inates from the limited number of additional
trainable parameters. To overcome this limi-
tation, we introduce a novel mechanism that
fine-tunes LLMs with adapters of larger size
yet memory-efficient. This is achieved by lever-
aging the inherent activation sparsity in the
Feed-Forward Networks (FFNs) of LLMs and
utilizing the larger capacity of Central Process-
ing Unit (CPU) memory compared to Graph-
ics Processing Unit (GPU). We store and up-
date the parameters of larger adapters on the
CPU. Moreover, we employ a Mixture of Ex-
perts (MoE)-like architecture to mitigate un-
necessary CPU computations and reduce the
communication volume between the GPU and
CPU. This is particularly beneficial over the
limited bandwidth of PCI Express (PCIe). Our
method can achieve fine-tuning results com-
parable to those obtained with larger memory
capacities, even when operating under more
limited resources such as a 24GB memory sin-
gle GPU setup, with acceptable loss in train-
ing efficiency. Our codes are available at
https://github.com/CURRENTF/MEFT.

1 Introduction

As Large Language Models (LLMs) scale up,
their fine-tuning becomes increasingly resource-
intensive (Touvron et al., 2023; Brown et al., 2020).
To address this, Parameter Efficient Fine-Tuning
(PEFT) methods, which add few trainable mod-
ules that only fraction of the LLMs’ full param-
eters (e.g., 0.1%), have shown promising results
on many scenarios, often competitive to full fine-
tuning (Houlsby et al., 2019; Hu et al., 2022; Li

*Corresponding author

0.1% 1.0% 10.0%
Percentage of Trainable Parameters (relative to Llama-7B)

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Ac
cu

ra
cy Parallel Adapter

LoRA
AdapterH
Full-finetune

Figure 1: Accuracy performance of different PEFT
methods on Natural Questions with the rise in the num-
ber of trainable parameters. The orange part denotes
that the model has reached its fine-tuning limit with a
24GB GPU. The blue part shows performance would be
decrease when trainable parameters are limited.

and Liang, 2021; Liu et al., 2022; Vucetic et al.,
2022). For instance, LoRA employs matrix de-
composition parameters to leverage the low-rank
characteristics of LLM parameters, while Parallel
Adapter introduces an additional FFN adapter that
operates parallel to original FFN layer.

However, the number of new parameters re-
quired can vary depending on the task. For
knowledge-intensive tasks, such as QA, it be-
comes necessary to fine-tune a greater number of
parameters to increase the model’s capacity for
new knowledge memorization (Tirumala et al.,
2022). Figure 1 illustrates the performance of
LLaMA-7B with Parallel Adapter on NQ datas-
det (Kwiatkowski et al., 2019). A clear upward
trend in answer accuracy is observed as adapter’s
parameter count increases. Concretely, for achiev-
ing optimal results, approximately 10% of the pa-
rameters are updated, which corresponds to more
than 24G of GPU memory usage (the orange part

2375

https://github.com/CURRENTF/MEFT

in the figure).
Therefore, reducing the memory cost when the

trainable parameters increase is important and has
attached research attentions. Among them, CPU-
offload (Ren et al., 2021) offloads model parame-
ters to CPU memory, which are then returned to
the GPU only when computation reaches the cor-
responding layer. However, CPU-offload transfers
all layer parameters, which is inflexible and incurs
a high communication overhead.

To address these challenges, we propose MEFT,
which introduces sparse activation to reduce mem-
ory usage. For a given input, sparse activation
implies that only a few neurons are activated, as
evidenced by various empirical results (Liu et al.,
2023b; Geva et al., 2021) and our pilot experiments
detailed at Section 2. Inspired by this, MEFT
places all trainable parameters in CPU memory
to leverage the advantage of the large capacity of
CPU memory. For a given input, MEFT retrieves a
few neurons from CPU memory that are highly rel-
evant to input, and moves them to GPU to complete
the computation. In this way, MEFT significantly
reducing GPU memory usage. Furthermore, to re-
duces the computational burden on the CPU, we
introduce a novel Mixture of Experts (MoE)-based
adapter to partition parameters. Specifically, given
an input, a router is used to activate a subset of the
large-scale network and conduct further computa-
tion only on these activated subset. This approach
effectively reduces the computational complexity
from O(dNM) to O(dN

√
M) to complete the re-

trieval of relevant parameters.
We conduct experiments on two models (i.e.,

LLaMA and Mistral) and four datasets (i.e., NQ,
SQuAD, ToolBench, and GSM8K). Experimental
results on knowledge-intensive tasks show that our
method achieves the best results under resource-
restricted conditions. Specifically, MEFT reduces
GPU memory usage by 50% (e.g., reducing from
48G to 24G) while achieving comparable bench-
mark results. Our method also outperforms other
PEFT methods like Parallel Adapter and LoRA
when using the same memory capacity.

In summary, our contributions are as follows:
(i) We propose MEFT, a novel method that utilizes
sparse activations and MoE for memory-efficient
fine-tuning (ii) MEFT reduces communication over-
head by artificially limiting number of activated
neurons copied to GPU memory from CPU mem-
ory. (iii) We propose a Key-Experts mechanism
to partition a large number of parameters, using a

router to allocate inputs to corresponding experts,
reducing unnecessary computations and lowering
CPU computational burden. (iv) Our experimen-
tal results on knowledge-intensive tasks using two
popular LLMs demonstrate that our method can
achieve the best results under resource-constrained
conditions, and the results are comparable to those
in relatively resource-rich situations.

2 Preliminary

PEFT concentrates on fine-tuning LLMs under
resource-restricted conditions. To examine perfor-
mances of different PEFT on knowledge-intensive
tasks, we fine-tune LLaMA-7B on Natural Ques-
tions with LoRA, AdapterH, and Parallel Adapter.
Figure 1 shows the results of the experiments. We
can see from the left blue part that it is challenging
to inject knowledge into the model when the num-
ber of trainable parameters is limited (e.g., 0.1%).
Parallel Adapter demonstrates the best scaling re-
sults, but for achieving optimal accuracy, approxi-
mately 10% of the parameters are updated. There-
fore, we argue that to memorize more knowledge
required by downstream tasks, the number of train-
able parameters needs to be increased accordingly.
Our study is based on Parallel Adapter due to its
superior performance. Next, we introduce Paral-
lel Adapter and our motivation for making it more
efficient.

Parallel Adapter In Transformer-based lan-
guage models, it has been discovered by re-
searchers that FFNs function as key-value mem-
ories (Geva et al., 2021; Dai et al., 2022a), where
each key corresponds to a text pattern, and each
value directs the distribution over the output vocab-
ulary. Based on this observation, Parallel Adapter
propose to extend the original FFNs by adding a
specific knowledge memories tailored for down-
stream tasks. Specifically, Parallel Adapter places
the adapter parallel to the FFNs, and the adapter
consists of two linear transformations, WA ∈
Rd×r and WB ∈ Rr×d, and a nonlinear activa-
tion function ReLU. The computation process of
the FFN integrated with the Parallel Adapter can
be articulated as follows:

FFNPA(h) = f(hWk)Wv + ReLU(hWA)WB,

where Wk ∈ Rd×n and Wv ∈ Rn×d are weights
of the original LLM, h is the input hidden state of
the FFN layer.

2376

0 1000 2000 3000 4000
Nueron IDs

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 V

al
ue

s

Sorted Average of Neuron Activations
Accumlated Neuron Activations

Figure 2: Sparsity analysis on Parallel Adapter with
4096 neurons. The neurons are sorted based on activa-
tion values. Only a subset of neurons (left part) exhibit
high activation value, while majority of neurons are un-
activated and not contribute to model’s predictions.

Sparsity in Parallel Adapter As shown in Fig-
ure 1, optimizing memory usage presents a chal-
lenge when implementing Parallel Adapter with
an increased number of parameters for knowledge-
intensive tasks. CPU-Offload is a straightforward
strategy, where parameters are stored on the CPU
and then transferred to the GPU as needed. How-
ever, this method transfers all layer parameters,
leading to inflexibility and high communication
overhead. In this work, we investigate the potential
of leveraging activation sparsity in Parallel Adapter.
We propose to activate only a select number of neu-
rons for specific inputs, allowing for the transfer of
only essential parameters, thereby reducing com-
munication overhead.

We conduct an analysis on sparsity within the
Parallel Adapter utilizing the LLaMA-7B model.
Specifically, we trained a Parallel Adapter model
with a bottleneck size of 4096 on the Natural Ques-
tions dataset. Then we extracted the activation of
the adapter’s FFNs layer on the test set (which
contains 4000 tokens) and calculated the average
activation values. We also computed the cumula-
tive activation values. Note that the neurons are
sorted based on their activation value, and the data
are normalized to the range [0, 1] for visualiza-
tion. Figure 2 shows the results. It can be seen that
the activation in the adapter is highly sparse, i.e.,
only a subset of neurons substantially contributes
to the model predictions, while the majority of neu-
rons are unactivated. Based on this observation,
our work focuses on developing strategies for the
effective selection of paramount parameters, and
copying only these essential parameters to the GPU
during training, thereby reducing the CPU-GPU

communication volume and VRAM usage.

3 Method

We propose MEFT, which dynamically loads pa-
rameters from CPU memory to GPU to train a
larger size Adapter. In Section 3.1, we introduce
Sparse Activation to reduce communication over-
head, followed by the Key-Experts mechanism in
Section 3.2 to reduce the computational complex-
ity of CPU operations. We further analyze the
efficiency of our method in Section 3.3.

3.1 Sparse Activation
Previous studies have identified contextual sparsity
within FFN blocks, attributed to the use of activa-
tion functions like ReLU or GeLU (Kurtz et al.,
2020). Notably, analyses on various downstream
tasks have demonstrated at least 95% sparsity on
FFN neurons, which further leads to sparse gradi-
ents. Based on these studies, we explore sparse
Adapter training, selectively updating only those
neurons that demonstrate higher activation.

Specifically, during the forward computation, K
keys in WA with the highest similarity to h are
retrieved and activated for each FFN layer:

S = TopK(hWA,K), (1)

where S denotes the indices of the selected keys.
Then we form WK

A , WK
B with related indices on

CPU.

WK
A = WA[S] ∈ Rd×K (2)

WK
B = (WT

B[S])
T ∈ RK×d (3)

Here, W[·] denotes the indexing operation that
extracts the corresponding values from matrix W.
We aim to extract relevant Keys and Values from
WA and WB , respectively.

We then move WK
A , WK

B to GPU as a copy-
adapter, then calculate it as widened FFNs.

FFNPA(h) = f(hWk)Wv + ReLU(hWK
A)WK

B

(4)
Finally, for backward propagation, only the gra-

dients of these activated neurons are updated, as
the non-activated neurons do not contribute to the
computation of FFNPA.

In this way, the majority of the Parallel Adapter’s
parameters remain stored in the CPU memory, and
only these activated neurons need to be copied to
GPU memory on-the-fly before each FFN computa-
tion. Given K ≪ r, where r is the total number of

2377

Copy-B'

Copy-A'

ReLU

Copy-Adapter

Hidden state as query

CPU MemoryGPU Memory

Copy

Forward Propagation

Copy

PC
Ie

Communication
Volume

Attention

Dropout

LayerNorm

Linear (Value)

Linear (Key)

Activation Function

LayerNorm

FFN

Layer i

Linear B

Trainable Adapter

Linear B

Trainable Adapter

sort by activation

activation

topk act small act

Backward Propagation

Copy-B'

ReLU

Copy-Adapter

Copy-A'

PC
Ie

Frozen

Router

Router

Figure 3: Overview of our MEFT. The dotted line divides the parameters into two parts, which would be placed on
the GPU (left part) and CPU (right part), respectively. Most of the trainable parameters will be allocated to the CPU.
During the forward propagation stage, the output of the attention block will be transferred to the CPU to efficiently
retrieve neurons highly related to the current context using a MoE-like structure, after which the activated neurons
will be transferred to the GPU. During the backward propagation, we transfer the gradients to the CPU and update
parameters on the CPU. The above block shown for one Transformer layer is repeated across all the layers.

neurons, the activation ratio is typically below 5%,
allowing us to significantly save GPU memory.

3.2 Key-Experts Mechanism
In sparse activation, the TopK operation that re-
trieves the most similar weights is executed on the
CPU, which may become the bottleneck of comput-
ing speed when r is large, given the CPU’s lower
TFLOPs. To alleviate this issue, we further propose
the Key-Experts mechanism to enhance computa-
tion efficiency.

The proposed mechanism is based on the idea
of mixture-of-experts, where the weights WA

and WB are divided into N partitions (experts):
WAi,WBi, i ∈ {1, 2, . . . , N}, and a router R(·)
is employed to route the input to some specific ex-
perts. Specifically, an expert Ei is an FFN that
consists of WAi and WBi. For an input token h,
the router R(·) calculates the score of each expert
to be selected:

pi(h) = Wg · h (5)

Then, the top-K experts with the highest scores
are selected; we use τ to denote the set of selected

indices. The reason why we didn’t use softmax to
get probabilities is explained in Appendix B.

Then the weights of these selected experts are
concatenated to W′

A and W′
B:

W′
A = Concat([WAi, i ∈ τ]) (6)

W′
B = Concat([WBi, i ∈ τ]) (7)

For this specific token, we can consider W′
A,W

′
B

as the WA,WB mentioned in the previous section,
but with a smaller size. We then retrieve the top-k
key-value pairs to obtain WK

A ,WK
B .

Then, we can compute FFNPA(h) as shown in
Algorithm 1.

3.3 Efficiency Analysis
While our method could reduce the GPU memory
usage as only a fraction of activated neurons are
placed on the GPU, the CPU-GPU communication
and the CPU computation may cause GPU wait-
ing. In this section, we analyze the communication
volume and the computational complexity of our
method.

Communication Volume As shown in Figure 3,
the parameter communication volume between the

2378

Algorithm 1 MEFT FFN Layer

Input: hidden state h, original FFN F , router
Wg, experts of keys {WA}, values WB , num
of experts K, num of key-value pairs K.
S ← ∅ // initialize S as an empty indices of kv pairs

for t in h do
p←Wg(t) // gating probabilities

τ ← TopK(p,K) // indices of topK experts

a← [] // initialize a as an empty array

for i in τ do
ai ← ReLU(hWAi) // sparse activation

a← Concat(a,ai) // gather activation

end for
I ← TopK(a,K)
S ← S ∪ I

end for
WK

A ,WK
B ← (WT

A[S])
T ,WB[S]

// move WK
A ,WK

B to GPU
return F (h) + ReLU(hWK

A)WK
B

CPU and GPU consists of two parts: forward and
backward propagation. In the following, we use B
to denote the batch size, l to denote the length of
sequences in the batch, and β as a sparsity factor
related to l.

• Forward. For each layer, the hidden state h
needs to be moved from GPU to CPU, which
causes B × l× d communication. Then, after
the parameter selection, the activated parame-
ters, with a size of 2× d× β ×K, are moved
from CPU to GPU. Here β is a sparsity factor
related to l1:β = ||Unique(TopK(hWA,K))||

K

• Backward. For each layer, the gradients of
the activated parameters calculated on the
GPU are moved to the CPU to update the
CPU counterpart. Thus the communication
volume is the size of the activated parameters,
i.e., 2× d× β ×K.

Therefore, the total communication overhead of
model training is:

cost = nl × (2× d× β ×K +B × l × d). (8)

Computational Complexity The additional
computation on the CPU includes computation on
the router and the TopK operation. Based on the

1In our experiments, we found that the tokens in a sentence
tend to activate similar experts, leading to a smaller β < 0.49
(experimental results when B = 2, l = 256).

proposed key-experts mechanism, the complexity
on the CPU is MNd + K rMd

N . Therefore, when
N approaches

√
r, we can achieve optimal com-

putational complexity O(dM
√
r). This significant

reduction in computation makes it well-suited for
CPU execution.

Empirical Results Our empirical results show
that when using LLaMA-7B as the base model,
with key-value pairs of size 6144, a batch size of
2, and a sequence length of 256, the total bidirec-
tional communication volume per batch is about
0.56M per iteration, whereM represents the total
number of trainable parameters added to Llama-7B.
In contrast, when using deepspeed-offload (Ren
et al., 2021) with the same trainable size, the Par-
allel Adapter requires a communication volume of
2M per iteration. Therefore, our method achieves
a 3.57× reduction in GPU-CPU communication.

Regarding training efficiency, empirical results
show that our method achieves at least 63% speed
compared to the baseline that excludes the time
cost of additional communication and CPU com-
putation. Moreover, there remains the potential
to further improve efficiency through engineering
methods as detailed in Appendix A.
4 Experimental Setup

4.1 Datasets
We consider four datasets for experiments: Natural
Question, SQuAD, ToolBench, and GSM8K:

• Natural Questions (Kwiatkowski et al., 2019)
is an open-domain question answering dataset.
We are considering a close-book setting, i.e.,
the models are trained to answer questions
without background passages (Wang et al.,
2021).

• SQuAD (Rajpurkar et al., 2016) is a reading
comprehension dataset, consisting of ques-
tions posed by crowdworkers on a set of
Wikipedia articles. The same close-book set-
ting like NQ is used in SQuAD too.

• ToolBench (Qin et al., 2024) is a tool learning
dataset, which includes 16K APIs and 432K
related queries. The task aims to predict the
name and info of APIs that solve the query.

• GSM8K (Cobbe et al., 2021) is a dataset of
8.5K high-quality diverse grade school math
word problems. We use MetaMathQA (Yu
et al., 2024) as training data for GSM8K.

2379

Model Method VRAM Param. NQ SQuAD Tool GSM8k

LLaMA-7B

Base Model - - 0.164 0.120 - 0.110

LoRA 24G 2% 0.305 0.162 0.102 0.367
AdapterH 24G 2% 0.377 0.190 0.645 0.525
Parallel Adapter 24G 2% 0.387 0.236 0.636 0.563
MEFT (Ours) 24G 10% 0.413 0.290 0.646 0.515

LoRA 48G 10% 0.293 0.126 0.152 0.311
AdapterH 48G 10% 0.391 0.230 0.662 0.506
Parallel Adapter 48G 10% 0.425 0.295 0.639 0.502

Full Fine-tune - 100% 0.413 0.313 0.796 0.602

Mistral-7B

Base Model - - 0.373 0.173 - 0.522

LoRA 24G 2% 0.381 0.170 0.345 0.715
AdapterH 24G 2% 0.415 0.156 0.582 0.707
Parallel Adapter 24G 2% 0.401 0.198 0.762 0.700
MEFT (Ours) 24G 10% 0.427 0.224 0.772 0.709

Table 1: Performance of different methods on downstream tasks. VRAM represents the GPU memory required
for training. Param. shows the percentage of trainable parameters of the model. "Base Model" indicates the
zero-shot performance of the original model on the tasks. The base model can’t answer APIs without fine-tuning on
ToolBench. Bold signifies the best result under 24GB VRAM.

4.2 Metrics

For NQ and SQuAD, we use Exact Match (EM) to
measure whether the standard answer appears in the
model’s output. For ToolBench, we use Intersec-
tion over Union (IoU) as the metric, taking the inter-
section and union of the APIs in the model’s answer
set Y and the ground truth set G, and then calculate
as: IoU = Y∩G

Y∪G . For GSM8k, we judge whether
the final answer given by the model (matched by
regular expression) is correct.

4.3 Implementation Details

We utilized the publicly pre-trained LLaMA-7B
(Touvron et al., 2023) and Mistral-7B (Jiang et al.,
2023) as the base model. All experiments are im-
plemented using PyTorch and the Hugging Face
Trainer, on machines with RTX-3090 or A40 GPUs.
During fine-tuning, we employ the Adam optimizer
for all experiments. For LLaMA-7B, we trained
models with the learning rate progressively increas-
ing over the initial 2% of the steps to 1e−4, and
then decaying linearly to 0. For Mistral-7B, we
trained models with a peak learning rate of 1e−6

to ensure numerical stability. For tasks NQ, Tool-
Bench, and GSM8k (MetaMathQA), we trained
models with an accumulated batch size of 64. We
set the number of activated key-value pairs K = 64
for all tasks, and the number of activated experts

K = 4
√
r. The training epochs for the tasks NQ,

SQuAD, Tool, and MetaMathQA (GSM8k) are set
to 4, 8, 1, and 1, respectively. Each experiment is
conducted on an RTX 3090, taking approximately
12 GPU hours, and the results are reported from
a single run. For task SQuAD, we used a higher
batch size of 256 for better performance across
all methods. For baselines with LLaMA-7B, we
tested their performance with the rank/bottleneck
size set to {32, 64, 128, 256, 512, 1024, 2048}
to achieve optimal performance. It’s important to
note that a rank larger than 512 and a bottleneck
size larger than 256 require 48 GB of GPU mem-
ory. For baselines with Mistral-7B, we tested the
rank/bottleneck size set to 32, 64, 128, and 256, but
only within a 24 GB setting. For most experiments
and hyperparameter studies, we report our results
from MEFT on Natural Questions.

5 Experimental Results

5.1 Main Results

Table 1 presents the main experimental results. Key
observations include: (i) In knowledge-intensive
tasks such as NQ, SQuAD, and Tool, our MEFT
model significantly outperforms other PEFT ap-
proaches when operating under same 24G GPU
memory constraints. For instance, MEFT achieves
0.413 and 0.427 EM scores on NQ using LLaMA-

2380

NQ SQuAD Tool GSM8k
Datasets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sc
or

e

PA w/ brutal offload
PA w/ SA
PA w/ KE
MEFT

Figure 4: Performance comparsion between MEFT
w/o KE and MEFT.

MEFT w/o
both

MEFT w/o
Sparse

MEFT w/o
KE

MEFT

Parallel
Adapter

GPU ComputeParams Transfer CPU Compute

Params Transfer CPU
Compute

GPU ComputeParams
Transfer CPU Compute

Params
Transfer

GPU Compute

GPU Compute

GPU Compute

326

440

520

652

804

CPU
Compute

Figure 5: Ablation study on latency(ms) per batch rela-
tive to Parallel Adapter.

7B and Mistral-7B models, respectively. These
scores are notably higher compared to those from
baseline methods like Parallel Adapter and LoRA.
This improvement is attributed to the effective
fit of a higher proportion of trainable parameters
(i.e., 10%) within the limited 24G GPU capac-
ity. Moreover, our method also achieves results
comparable to full-model fine-tuning. (ii) When
compared with other baselines that also incorpo-
rate 10% trainable parameters, MEFT achieves
comparable benchmark performance but only re-
quires 50% of the GPU memory. This demonstrates
MEFT’s enhanced efficiency in resource utilization.
(iii) For tasks that are not knowledge-intensive,
such as GSM8k, increasing the number of train-
able parameters does not yield better performance.
However, MEFT’s results on GSM8K indicate that
sparse training does not compromise performance
on these type of task. In addition, we conducted
experiments where LoRA is attached to FFNs and
the detailed results are available in Appendix C.1.

5.2 Ablation Study of Sparse Activation

It’s important to note that the main purpose of using
a mechanism similar to MoE (Mixture of Experts)
is to alleviate the computational burden on the CPU.
The experimental results show that MoE is not
the main source of performance improvement. As
shown in Figure 4, partitioned parameters WA have
minimal impact on knowledge-intensive tasks, even
improving performance on SQuAD and ToolBench.
The term "brutal offload" refers to the straightfor-
ward exchange of parameters between the CPU
and GPU. However, it exhibits slightly lower per-
formance on GSM8k, a task with a stronger logical
component. This suggests that logical tasks may

not require a large number of parameters.

5.3 Efficiency Results

To analyze the efficiency of our method, Figure 5
illustrates the training latency (wall time) per batch,
using a server with an RTX 3090 GPU and a 32-
core CPU that supports AVX. This figure presents
the time taken for training across various ablation
studies focusing on data transfer, CPU computa-
tion, and GPU computation. Specifically, “MEFT
w/o both” refers to offloading all trainable param-
eters to CPU and performing computations on the
CPU without any optimization, leading to the high-
est latency observed. “MEFT w/o Sparse” offloads
too but optimizes by transferring only necessary
neurons via PCIe, which cuts down on data transfer
time and slightly improves GPU computation effi-
ciency. “MEFT w/o KE” uses a mixture of experts
(MoE) approach for parameter management, reduc-
ing computational load but still involves complete
parameter transfer. “Parallel Adapter” performs
all operations on the GPU, thus achieving the best
latency.

5.4 Hyperparameters Studies

Given that numerous parameters may influence per-
formance on downstream tasks, we have tested
various hyperparameter settings on the model.

Number of additional key-value pairs refers to
the number of additional parameters that will be
trained. The results of LoRA, Adapter, and Parallel
Adapter on NQ are shown in Figure 1. It can be ob-
served that when the model needs to be adapted for
knowledge-intensive tasks, it often requires more
parameters. We also conducted additional tests on
the results of Parallel Adapter on SQuAD and Tool-

2381

8 32 128 512 2048
Activated key-value pairs per token.

0.36

0.38

0.40

0.42
Ac

cu
ra

cy

1024
4096

Figure 6: Accuracy on NQ respect to the number of
activated key-value pairs. Dotted line is the accuracy
when K= # key-value pairs.

101 102 103

Number of Key-Experts

0.22

0.24

0.26

0.28

0.30

0.32

Ac
cu

ra
cy

3600
6400

Figure 7: Accuracy on Natural Question respect to
the number of Key-Experts (Partitions).

KV pairs Param. SQuAD ToolBench

128 0.4% 0.106 0.604
512 1.6% 0.120 0.593
1024 3.2% 0.164 0.636
1536 4.8% 0.236 0.622
2048 6.4% 0.248 0.624
4096 12.8% 0.265 0.651
6144 19.2% 0.295 0.637

Table 2: The impact of increasing the number of addi-
tional key-value pairs per layer to performance.

Bench, as shown in Table 2. These results shows
that different datasets require different amounts of
additional parameters. SQuAD shows a consistent
improvement in performance with an increase in
the number of parameters. However, in the NQ re-
sults depicted in Figure 1, the best performance was
achieved when 3072 key-value pairs were added to
each layer. In contrast, in ToolBench, the best re-
sult is achieved when only adding 1024 key-value
pairs per layer.

Number of activated key-value pairs . We ex-
amined the impact of limiting the number of key-
value pairs a token can activate on the final per-
formance of the model. As shown in Figure 6,
suggest that artificially adding sparsity constraints
during training does not substantially affect the per-
formance of the model, when an appropriate value
of K is selected. And acceptable performance can
be achieved when a single token activates less than
3% of the parameters.

Number of Key-Experts refers to the number of
partitions in WA. When the number of key experts
per layer is equal to the number of additional key-
value pairs, each neuron belongs to an independent
expert, equivalent to not using MoE partitioning.
The results, shown in Figure 7, align with this the-
ory: the more experts there are (i.e., the more par-
titions), the better the outcome. At the same time,

1 2 4 8 16 32 64
Batch Size

20

30

40

50

Pe
rc

en
ta

ge
 o

f A
ct

iv
at

ed
 N

eu
ro

ns
 (%

)

Figure 8: Percentage of Activated Neurons vs. Batch
Size

we find that decent results can be achieved even
when the number of experts is small. Consider
the case where the number of experts is one, the
router ∈ Rd. The process of retrieving the relevant
neuron can be seen as h first dot-multiplying with
the router. At this time, all neurons are in expert
E0, which is to some extent equivalent to having r
partitions.

5.5 Impact of Batch Size

The batch size impacts the weights selected using
the top-k method, as the probability of choosing
the top-k key-value pairs based on activation values
varies among different samples within the batch.
Therefore, as the batch size increases, the propor-
tion of activated parameters increases, as shown
in Figure 8. It should be noted that our method
mainly considers the single-card situation. If a 7B
size model is being trained, without using other
memory-saving techniques, the maximum batch
size that can generally be selected is 4. There-
fore, the amount of communication reduced by our
method is quite substantial.

6 Related Work

Parameter-Efficient Fine-Tuning (PEFT) can
be categorized into four main types: (1) adapter-

2382

based tuning (Houlsby et al., 2019; Pfeiffer et al.,
2021), (2) prompt-based tuning (Liu et al., 2023a;
Li and Liang, 2021; Schick and Schütze, 2021; Gao
et al., 2021), (3) sparse tuning (Sung et al., 2021;
Vucetic et al., 2022), and (4) reparametrization-
based tuning (Hu et al., 2022; Edalati et al., 2022).
There are several studies that are relevant to our
work. He et al., 2022 utilized a unified perspective
of previous PEFT methods to propose the Parallel
Adapter, which has demonstrated superior perfor-
mance among most popular PEFT methods (Hu
et al., 2023). In our study, we found the Parallel
Adapter to be highly effective in knowledge mem-
orization. Wang et al., 2022 proposed AdaMix as
a method that tunes a mixture of adaptation mod-
ules but only with 0.1 - 0.2% of LLM’s parameters.
Furthermore, Zhang et al., 2023 preserved the WA

in the LoRA module (Hu et al., 2022) in a frozen
state, which resulted in reduced memory usage but
didn’t try to scale up.

Mixture of Experts is a computationally effi-
cient architecture that only activates a subset of a
large-scale neural network compared to a dense
model of the same size (Shazeer et al., 2017; Fedus
et al., 2022; Dai et al., 2022b). We leverage the
computational efficiency of MoE to alleviate the is-
sue of insufficient CPU FLOPs and take advantage
of the large memory capacity of the CPU to com-
pensate for its tendency to occupy more memory.

Additional minor related works can be found in
Appendix E.

7 Conclusion

In this paper, we found that the Parallel Adapter can
continuously improve performance on knowledge-
intensive tasks as parameters increase. We then pro-
posed a memory-efficient training method by lever-
aging sparsity and MoE. This method significantly
reduces the demand for GPU memory and reduces
the computational pressure on the CPU. Experi-
mental results show that our method achieves the
best results under resource-restricted conditions.

Limitations

Although we have tested the impact of the num-
ber of added key-value pairs, the number of key-
experts, and the size of K on the model’s perfor-
mance on knowledge-intensive tasks, the effect of
this method on the generalization ability of LLMs
has not been fully explored. Moreover, this method
also lacks testing in the scenario of continuous

learning, where it is also suitable. Additionally,
the amount of parameters recalled by this method
increases with the length of the training sequence,
which limits its applicability. We will further ex-
plore how to mitigate this phenomenon in our fu-
ture work.

Due to the absence of detailed memory manage-
ment and optimization of data transfer between the
CPU and GPU (such as custom CUDA streams),
the final efficiency of our method is currently not
optimal.

Ethics Statement

We acknowledge the importance of the ACM code
of Ethics and totally agree with it. We ensure that
this work is compatible with the provided code, in
terms of the publicly accessed datasets and mod-
els. In particular, this paper focus on the efficient
training of Large Language Models (LLMs). Prior
research indicates that LLMs can demonstrate bi-
ased responses and generate hallucinated informa-
tion, even when trained on specialized datasets.
Therefore, it’s crucial to reassess their applicability
depend on real-world scenarios.

Acknowledgements

This work was supported by the Natural Sci-
ence Foundation of China (62202271, 61902219,
61972234, 61672324, 62072279, 62102234,
62272274), the National Key R&D Program of
China with grants No. 2020YFB1406704 and
No. 2022YFC3303004, the Natural Science Foun-
dation of Shandong Province (ZR2021QF129,
ZR2022QF004), the Key Scientific and Techno-
logical Innovation Program of Shandong Province
(2019JZZY010129), the Fundamental Research
Funds of Shandong University, the Tencent WeChat
Rhino-Bird Focused Research Program (WXG-FR-
2023-07). All content represents the opinion of
the authors, which is not necessarily shared or en-
dorsed by their respective employers and/or spon-
sors.

References
Lewis Birch, William Hackett, Stefan Trawicki, Neeraj

Suri, and Peter Garraghan. 2023. Model leeching:
An extraction attack targeting llms. In Conference on
Applied Machine Learning for Information Security.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

2383

Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu,
Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshu-
mali Shrivastava, and Christopher Re. 2021. {MON-
GOOSE}: A learnable {lsh} framework for efficient
neural network training. In International Conference
on Learning Representations.

Beidi Chen, Tharun Medini, James Farwell, Sameh Go-
briel, Charlie Tai, and Anshumali Shrivastava. 2020.
Slide : In defense of smart algorithms over hardware
acceleration for large-scale deep learning systems.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022a. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang
Sui, Baobao Chang, and Furu Wei. 2022b. Stable-
MoE: Stable routing strategy for mixture of experts.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Lin-
guistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Shizhe Diao, Tianyang Xu, Ruijia Xu, Jiawei Wang,
and Tong Zhang. 2023. Mixture-of-domain-adapters:
Decoupling and injecting domain knowledge to pre-
trained language models’ memories. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
2022. Krona: Parameter efficient tuning with kro-
necker adapter. arXiv preprint arXiv:2212.10650.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120).

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. 2020.
Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on
Machine Learning.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Inter-
national Conference on Machine Learning.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,
and Roy Lee. 2023. LLM-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3).

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexan-
der Matveev, John Carr, Michael Goin, William Leis-
erson, Sage Moore, Nir Shavit, and Dan Alistarh.
2020. Inducing and exploiting activation sparsity for
fast inference on deep neural networks. In Interna-
tional Conference on Machine Learning.

2384

http://arxiv.org/abs/1903.03129
http://arxiv.org/abs/1903.03129
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2310.06825

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for
Computational Linguistics.

Baohao Liao, Shaomu Tan, and Christof Monz. 2024.
Make pre-trained model reversible: From parameter
to memory efficient fine-tuning. Advances in Neural
Information Processing Systems, 36.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023a. Gpt
understands, too.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, et al. 2023b. Deja
vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine
Learning.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4).

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35.

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin
Mehta, Carlo C del Mundo, Oncel Tuzel, Golnoosh
Samei, Mohammad Rastegari, and Mehrdad Fara-
jtabar. 2024. ReLU strikes back: Exploiting activa-
tion sparsity in large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua,
and Rong Jin. 2024. Jailbreaking attack against
multimodal large language model. arXiv preprint
arXiv:2402.02309.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
AdapterFusion: Non-destructive task composition
for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume. Asso-
ciation for Computational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021. {ZeRO-
Offload}: Democratizing {Billion-Scale} model
training. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21).

Timo Schick and Hinrich Schütze. 2021. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguistics.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representa-
tions.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. Advances in
neural information processing systems, 28.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Infor-
mation Processing Systems, 35.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems,
34.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. Advances in Neural Informa-
tion Processing Systems, 35.

2385

http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Danilo Vucetic, Mohammadreza Tayaranian, Maryam
Ziaeefard, James J Clark, Brett H Meyer, and War-
ren J Gross. 2022. Efficient fine-tuning of bert mod-
els on the edge. In 2022 IEEE International Sympo-
sium on Circuits and Systems.

Cunxiang Wang, Pai Liu, and Yue Zhang. 2021. Can
generative pre-trained language models serve as
knowledge bases for closed-book QA? In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computa-
tional Linguistics.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022. AdaMix: Mixture-of-
adaptations for parameter-efficient model tuning. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU,
Zhengying Liu, Yu Zhang, James Kwok, Zhenguo Li,
Adrian Weller, and Weiyang Liu. 2024. Metamath:
Bootstrap your own mathematical questions for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Zhanpeng Zeng, Michael Davies, Pranav Pulijala,
Karthikeyan Sankaralingam, and Vikas Singh. 2023.
Lookupffn: making transformers compute-lite for
cpu inference. In International Conference on Ma-
chine Learning.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. arXiv preprint arXiv:2308.03303.

A Implementation Detail and Possible
Optimization

A.1 Implementation Detail

Figure 9 shows the general time framework of
slow implementation and optimized implementa-
tion by Pre-Retrieval. We primarily use Python and
PyTorch to implement functions including model
forwarding, data transmission, and CPU retrieval
of relevant key-value pairs. Specifically, we use
Python’s multiprocessing API to start multiple pro-
cesses to read the hidden state transmitted from
the GPU, and utilize queues to complete data trans-
mission, achieving asynchronous data computation
and transmission, which prevents the GPU from
waiting for the CPU to read and calculate.

Common implementations of MoE (Mixture of
Experts) such as those in (Fedus et al., 2022; Dai
et al., 2022b) use a load balance loss to avoid imbal-
ance among experts. In our current implementation,
computations for different experts are carried out
sequentially on the CPU. Therefore, we have not
employed a load balance loss and its impact on
performance is unclear at this point.

A.2 Possible Optimization

However, there are still areas for optimization in
engineering, such as memory management during
data transmission, and the relatively low efficiency
of Python itself. Additionally, the current model
design results in some bubbles in the overall com-
putation process, causing the GPU to wait for the
CPU computation to finish.

B Negative Attempts

The softmax function is commonly used in MoE
(Mixture of Experts) to normalize the logits as-
signed to each expert by the tokens. However,
in our scenario, this approach actually led to a
decrease in model performance for the NQ and
SQuAD tasks during testing.

C Other Experiments

C.1 LoRA on FFN

Since FFNs are crucial to Transformers, we also
attempted to attach LoRA to FFNs. As shown in
Table 3, LoRA still cannot gradually improve per-
formance with the increase of trainable parameters.

2386

layer i layer i+1

Optimized
Implementation

Slow
Implementation

GPU origin FFN

hs GPU→CPU CPU FWD w CPU→GPU

GPU PA GPU origin FFN

hs GPU→CPU CPU FWD

GPU origin FFN+PA

hs(i) GPU→CPU CPU FWD w CPU→GPU

layer i layer i+1

GPU origin FFN+PA

hs(i-1) GPU→CPU CPU FWD w CPU→GPU

GPU Attn GPU Attn

GPU AttnGPU AttnGPU origin FFN+PA

layer i-1

hs(i+1) GPU→CPU

Figure 9: Slow Implementation and Optimized Implementation

Rank 4 8 16 64 128 256 512 1024
Acc 0.297 0.293 0.279 0.289 0.281 0.277 0.281 0.293

Table 3: Performance of LoRA-FFN on NQ.

D Potential Risks

LLMs’ stronger memory of knowledge could po-
tentially lead to a stronger memory of privacy or
other sensitive information. With the ongoing re-
search into language model attacks (Birch et al.,
2023; Niu et al., 2024), this enhanced memory of
knowledge by LLMs could result in greater leak-
age of private information, particularly if trained
on private datasets.

E Other Related Works

Other PEFTs . Additionally, Diao et al., 2023 at-
tempted to incorporate domain-specific knowledge
by adopting a mixture-of-adapters mechanism, but
only 0.7% of the trainable parameters of RoBERTa-
large (Liu et al., 2019) were utilized, limiting the
model’s capacity.

Sparsity of LLM has been partially explored
with the objective of accelerating inference.
SparseGPT (Frantar and Alistarh, 2023) demon-
strated that LLMs can be pruned to a sparsity level
of at least 50% with only a minimal loss in accu-
racy. The work of Mirzadeh et al. (2024) indicated
that the ReLU activation function, through sparse
activation, significantly reduces computation and
weight transfer. Deja Vu (Liu et al., 2023b) iden-
tified the presence of contextual sparsity for any
given input and illustrated that a sparsity level of at
least 95% can be achieved within the FFN Block.
We apply these findings on sparsity to the fine-
tuning process.

Memory Efficient Fine-tune Methods . The
main feature of QLoRA (Dettmers et al., 2023) is
to reduce memory usage by quantizing the model,
and quantization is orthogonal to our method, so
we can further quantize the parameters exchanged
between the CPU and GPU. Liao et al., 2024 pri-
marily reduces the memory usage of intermediate
activations by reversing the model. However, in the
scenarios we consider, when more trainable param-
eters are added, the memory consumed by these
parameters and their corresponding optimizer states
already exceeds the total. LST (Sung et al., 2022)
constructs a "bypass" based on the original large
model, making it unnecessary to perform backprop-
agation directly on the original large model. Deep-
speed’s Zero (Ren et al., 2021) uses offload tech-
nology to exchange parameters between the CPU
and GPU, which is similar to our method. How-
ever, our method utilizes sparsity, selecting relevant
parameters based on context to reduce the commu-
nication pressure between the CPU and GPU, and
uses the Mixture of Experts (MoE) to reduce the
computational pressure on the CPU.

Neural Memory proposed by Sukhbaatar et al.
(2015) consists of n key-value pairs, with both
key and value represented by a d-dimensional vec-
tor ki, vi ∈ Rd, forming K,V ∈ Rn×d. Then
MN(x) = softmax(x ·KT) · V is used to acquire
knowledge related to x. Geva et al. (2021) pro-
posed that the FFN Block in Transformers can emu-
late Neural Memory, suggesting that ki captures the
pattern of the input sequence, while the value repre-
sents the distribution of the token. Dai et al. (2022a)
demonstrated that factual knowledge is stored in
what they term ’knowledge neurons’, and that edit-
ing these neurons can modify the stored knowl-

2387

edge. Similarly, ROME (Meng et al., 2022) found
that knowledge is stored in the middle-layer feed-
forward modules. They used causal intervention
to identify decisive neuron activations. We lever-
aged the key-value format of knowledge neurons
in conjunction with the sparsity of LLMs, which
significantly reduced the memory overhead during
the fine-tuning phase.

Approximate Nearest Neighbor Search algo-
rithms sacrifice recall to improve the efficiency
of nearest neighbor searches. However, popular
methods such as HNSW (Malkov and Yashunin,
2018), Faiss (Johnson et al., 2019), and ScaNN
(Guo et al., 2020) have a low tolerance for fre-
quently updated vectors, as this affects the pre-built
retrieval structure. Since backpropagation will re-
sult in the update of all activated FFN neurons, we
did not use ANN. Although some studies (Chen
et al., 2020, 2021; Zeng et al., 2023) have achieved
comparable or even faster CPU training speeds than
the GPU by applying LSH, these methods are ap-
plicable to rather specific network configurations.
For instance, the method in Chen et al., 2020 is
only suitable when the network is very wide. Our
method, however, significantly reduces the overall
computation volume by partitioning the parame-
ter matrix in a way similar to MoE. We will delve
into the specifics in the following analysis. How-
ever, popular methods such as HNSW (Malkov and
Yashunin, 2018), Faiss (Johnson et al., 2019), and
ScaNN (Guo et al., 2020) have a low tolerance
for frequently updated vectors, as this affects the
pre-built retrieval structure. Since backpropagation
will result in the update of all activated FFN neu-
rons, we propose a Key-Experts (KE) mechanism
to tackle this issue.

2388

