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Abstract
Disentangled latent spaces usually have better
semantic separability and geometrical proper-
ties, which leads to better interpretability and
more controllable data generation. While this
has been well investigated in Computer Vision,
in tasks such as image disentanglement, in the
NLP domain sentence disentanglement is still
comparatively under-investigated. Most previ-
ous work have concentrated on disentangling
task-specific generative factors, such as senti-
ment, within the context of style transfer. In this
work, we focus on a more general form of sen-
tence disentanglement, targeting the localised
modification and control of more general sen-
tence semantic features. To achieve this, we
contribute to a novel notion of sentence seman-
tic disentanglement and introduce a flow-based
invertible neural network (INN) mechanism in-
tegrated with a transformer-based language Au-
toencoder (AE) in order to deliver latent spaces
with better separability properties. Experimen-
tal results demonstrate that the model can con-
form the distributed latent space into a better
semantically disentangled sentence space, lead-
ing to improved language interpretability and
controlled generation when compared to the
recent state-of-the-art language VAE models.

1 Introduction

Most previous work on controlled text generation
have concentrated on style transfer tasks: modify-
ing sentences with regard to markers of sentiment,
formality, affirmation/negation (John et al., 2019;
Bao et al., 2019; Hu and Li, 2021; Vasilakes et al.,
2022; Gu et al., 2022; Liu et al., 2023; Gu et al.,
2023) (Figure 1 top). Disentanglement of language
generative factors over Variational Autoencoder
(VAE) spaces has been a key mechanism to deliver
this type of generative control (John et al., 2019;
Bao et al., 2019; Vasilakes et al., 2022). Recently,
Zhang et al. (2022) demonstrated that a more gen-
eral form of semantic control can be achieved in the
latent space of Optimus (Li et al., 2020b), the first
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Figure 1: Top: attribute space geometry. Bottom: gen-
eral semantic geometry, where left: distributional se-
mantic space of Optimus (Li et al., 2020b), right: our
compositionality-induced semantic space where the ge-
ometrical location of sentence vectors can be located by
the intersection of role-content clusters.

standard transformer-based VAE, where a BERT
(Devlin et al., 2018) encoder and a GPT2 (Radford
et al., 2019) decoder are connected within a VAE
bottleneck. Using representations of conceptually
dense explanatory sentences (Jansen et al., 2018b),
they showed that sentences (e.g. animals require
oxygen for survival), can be represented within
a space which can be organised around the asso-
ciations between predicate, arguments and their
associated token content: ARG0-animals or VERB-
require, is geometrically resolved to a hypersolid
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over the latent space. Nevertheless, the ability to
learn and control such separation is still limited as
different semantic factors of the sentence are still
overlapped and entangled in the latent space (e.g.,
V-eat and V-require in Figure 1 bottom left), indi-
cating distributional sentence semantics cannot be
currently localised and controlled from the perspec-
tive of formal semantics (i.e., predicate-argument
structures, compositionality) (Marcus, 2003; Nefdt,
2020; Dankers et al., 2022).

This work aims to improve the localisation and
semantic control of latent sentence spaces, by de-
livering a model which can better separate and
control syntactic-semantic features (e.g. predicate-
argument) and their associated lexical semantics
content. This type of representation can provide
the foundation to shorten the gap between deep
latent semantics and formal linguistic representa-
tions (Gildea and Jurafsky, 2000; Banarescu et al.,
2013; Mitchell, 2023), integrating the flexibility of
distributional-neural models with the properties of
linguistically grounded representations, facilitating
both interpretability and generative control.

To deliver this type of semantic control within
the distributional sentence space, following the
methodological framework introduced by (Zhang
et al., 2022), we target on improving the semantic
separability of sentences by focusing on explana-
tory sentences 1, rather than synthetic or style trans-
fer datasets (Hupkes et al., 2020; Yanaka et al.,
2021), in which the semantic structure of sentences
can be isolated and controlled. Inspired by the
work of Esser et al. (2020), we integrate a flow-
based invertible neural network (INN) (Dinh et al.,
2014) as a plug-in control component to learn the
bijective transformation between the distributional
hidden space of the transformer-based language au-
toencoder (BERT-GPT2) and the smooth Gaussian
space of the INN (Figure 2). Specifically, we first
pre-train an autoencoder (AE) to learn sentence rep-
resentations from the transformers’ latent spaces.
Then, we freeze the AE weights and train the INN
to map the AE representations to a Gaussian space.
Since INN models define a bijective transforma-
tion, we can control the autoencoder generation by
manipulating the INN latent spaces, which is more
efficient and significantly less resource intensive
than re-training a language AE end-to-end.

More importantly, we propose a supervised train-

1The rationale for choosing explanatory sentences and their
semantic details are provided in Appendix A.

ing strategy within the INN setting to learn a latent
space with improved semantic separability, namely:
the semantic role-content pairs and their associ-
ated clusters can be better separated over the latent
space modelled by the INN (Section 4.1). In this
case, we can improve localised control over the de-
coding process due to the reduction of overlapping
(ambiguous) regions. A more separable and geo-
metrically consistent sentence space can be then
operated over to improve the generative control
with support of geometric operators, such as inter-
polation (Bowman et al., 2016) (Section 4.2). The
contributions of this work are summarised below:

1. We approach sentence disentanglement and
generation control from the point of view of Argu-
ment Structure Theory (AST), bridging latent space
features with a canonical, linguistics-informed, se-
mantic representation of sentences. 2. We find that
integrating a flow-based INN mechanism into a
transformer-based language-AE architecture is an
effective mechanism for transforming the hidden
space of the autoencoder into a smooth Gaussian
latent space for representing sentences. 3. We
propose a supervised training strategy for INNs to
learn a controllable semantic space with higher dis-
entanglement and separability of semantic features,
when compared to previous work. 4. Using this
mechanism, we systematically employ geometrical
data augmentation strategies to assist on sentence
representation disentanglement.

Interpreting and controlling sentence generation
from the perspective of the geometric manipulation
of the latent space is still largely unexplored within
NLP. To the best of our knowledge, this is the first
work which focuses on the introduction of invert-
ible NN-based mechanisms to support latent spaces
with better separated argument structure/semantic
features, allowing for a more universal form of
sentence generation control.

2 Preliminaries

In this section, we first introduce the formal seman-
tics and define the sentence representation model
based on Argument Structure Theory (AST), link-
ing with the associated disentanglement/generative
factors and then proceed with the description of the
proposed flow-based INN mechanism.

Controllability and interpretation in formal se-
mantics. Formal semantics, which provides a
canonical, granular, and rigid representation, have
been investigated for thousands of years, with well
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established theoretical frameworks such as Mon-
tague Semantics (Dowty et al., 2012), Davidsonian
Semantics (Davidson, 1967), Neo-Davidsonian Se-
mantics (Lasersohn, 2016), etc. One typical char-
acteristic of these formal semantics is the locali-
sation or composition property. For example, in
the sentence, animals require oxygen for survival,
the words are functionally combined into sentence
semantics:

λx(animals(x) → require(x, oxygen)) (1)

Where x is the variable representing any entity
within a logical structure. In this case, we can lo-
calise the sentence semantics by replacing x with
birds, fishes, etc. This localised process indicates
the interpretation in Cognitive Science (Smolen-
sky, 2006; Lees, 1957). Disentanglement (Bengio,
2013) can potentially provide such localisation in
the context of distributional latent representations,
which has been widely investigated to localise im-
age generation (Esser et al., 2020; Jeon et al., 2019;
Liu et al., 2021). Therefore, we link several key
notions—disentanglement, formal semantics, and
localization—to investigate formal control and in-
terpretability in language models.

Sentence semantic disentanglement. AST
(Jackendoff, 1992; Levin, 1993; Rappaport Hovav
and Levin, 2008) provides a model for representing
sentence structure and meaning of sentences in
terms of the interface between the their syntactic
structure and the associated semantic roles of
the arguments within those sentences. It delin-
eates how verbs define the organisation of their
associated arguments and the reflection of this
organisation in a sentence’s syntactic realisation.
AST abstracts sentences as predicate-argument
structures, where the predicate p (associated with
the verb) has a set of associated arguments argi,
where each argument has an associated positional
component i and a thematic/semantic roles ri,
the latter categorising the semantic functions
of arguments in relation to the verb (e.g. agent,
patient, theme, instrument). In the context of this
work, the AST predicate-argument representation
is associated with a lexical-semantic representation
of the content ci of the term ti.

In this work, we simplify and particularise the
relationship between the argument structure and
the distributional lexical semantic representation as
a role-content relation, where the structural syntac-
tic/semantic relationship is defined by its shallow

semantics, i.e. as the composition of the content of
the terms, their position in the predicate-argument
(PArg) structure (argi) and their semantic roles
(SRs) (ri: pred, arg). Therefore, this work uses
the notion of sentence semantic disentanglement
as the cluster separation of the content under the
PArg/SRs structure (the corresponding role in role-
content), aiming to induce a latent space which
geometrically encodes the AST structure, better
disentangling and separating role-content clusters.
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Formally, a sentence s (e.g., see above) consists
of a sequence PArgs/SRs and word content associ-
ations. Upon encoding in latent space, this can be
described as:

sem(s) = t1(c1, r1)︸ ︷︷ ︸
i.e.,ARG0−animals

⊕ · · · ⊕ ti(ci, ri)︸ ︷︷ ︸
PRP−survival

where ti(ci, ri) = ci ⊗ ri represents the semantics
of term ti with content ci (i.e., animals) and SRL ri
(i.e., ARG0) in context s, ⊗: connects the meanings
of words with their roles, using the compositional-
distributional semantics notation of (Smolensky
and Legendre, 2006; Clark et al., 2008). ⊕: con-
nects the lexical semantics (word content + struc-
tural role) to form the sentence semantics. This
work applies distinct symbols aiming to emphasise
the disentanglement aspects associated with the
AST structure. If the sentence representation can
be semantically disentangled under ⊕, the sem(s)
can be decomposed into:

sem(s) = {t1(c1, r1)} ⊕ · · · ⊕ {ti(ci, ri)}
where each set represents a specific role-content
cluster resolved to a hypersolid over the latent
space, in this case, given a set of N sentences
within the same predicate cluster t(c, r) (i.e., V-
require) but different sem(s), those sentence vec-
tors can represent t(c, r) features independently of
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other features (i.e., ARG0-animals), forming the
t(c, r) cluster:

{sem(s1), ..., sem(sN )} = {t(c, r)}×N ⊕ {...}
Therefore, we can evaluate the disentanglement
(i.e., natural clustering property (Bengio, 2013)) of
sentence semantics by evaluating the density within
{t(c, r)} set(cluster) (classifier recall) and the sep-
aration between different {t(c, r)} set(clusters)
(classifier accuracy) with downstream classifiers
based on the manifold hypothesis for classifica-
tion (Rifai et al., 2011), rather than disentangle-
ment metrics, which usually calculate the separa-
tion between latent dimensions, commonly used
in the image domain (Higgins et al., 2017; Kim
and Mnih, 2018; Chen et al., 2018; Ridgeway and
Mozer, 2018). Next, we will introduce the INN-
based mechanism which is used to learn this se-
mantically disentangled space.

Invertible Neural Networks (INNs). Flow-
based INNs (Dinh et al., 2014, 2016) are a class of
neural networks that models the bijective mapping
between the observation distribution p(x) and the
latent distribution p(z). We use T to represent the
forward mapping (from p(x) to p(z)) and T ′ to rep-
resent the backward mapping (from p(z) to p(x)),
respectively. Unlike VAEs that approximate the
prior distribution to multivariate Gaussian distribu-
tions, INNs exactly use multivariate Gaussian dis-
tributions. These are trained by the following objec-

tive function: L = −Ex∼p(x)

[
T (x)

]2
+log |T ′(x)|

where T (x) learns the transformation from x to
z ∼ N(0, 1). |T ′(x)| is the determinant of the
Jacobian for T (x), which indicates the extent in
which the transformation locally expands or con-
tracts the space. The term log |T ′(x)| ensures the
integration of the probability density function to
be one. The forward and reversed mapping can be
implemented via the coupling layer (Dinh et al.,
2014; Kingma and Dhariwal, 2018).

The rationale for choosing flow-based INNs lies
on the fact that they learn the bijective transforma-
tion between the latent and observed spaces, which
can be used to guide the autoencoder generation by
manipulating the INN latent space, which is more
efficient and has lower computational demand than
re-training a language VAE. Besides, flow-based
INNs that learn the prior distribution (i.e., Gaus-
sian) exactly, can theoretically prevent the informa-
tion loss from variational inference (ELBO) where
the prior is approximated from posterior P (z|x).
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Figure 2: Transforming the representations of explana-
tory sentences from a language autoencoder (BERT-
GPT2), into asemantically separable latent space with
the support of the INN mechanism, where a sentence
representation can be decomposed into a predicate-
argument-level semantics (role-content).

3 Proposed Approach

We encode each sentence x with a frozen autoen-
coder (e.g., Bert-GPT2) and consider its sentence
representation E(x) as the input of INNs (Figure
2). We propose two training strategies to map the
hidden representations into the Gaussian space.

3.1 Training Strategy
Unsupervised INN. Firstly, we train the INN-
based model unsupervised, which minimises the
negative log-likelihood of the marginal distribution
of latent representation z = E(x):

Lunsup = −Ex∼p(x)

[
T (E(x))

]2
+ log

∣∣T ′(E(x))
∣∣

As the minimisation leads to a bijective mapping be-
tween the distributed representation and the disen-
tangled latent representation (multivariate Gaussian
space), it allows for a more semantically consistent
representation of the geometric (role-content) clus-
tering properties of its latent space, allowing for
a more consistent traversal and interpolation (Li
et al., 2020b) over the sentence space (Figure 1).

Cluster-supervised INN. According to the find-
ings of (Zhang et al., 2022), the content of the
predicate-argument structure/semantic roles can be
disentangled over the latent space approximated to
multivariate Gaussian learned using the Language
VAE setting. Using the same foundation, we train
the INN component to learn the embeddings, by
minimising the distance between points in the same
role-content regions and maximising the distance
between points in different regions, based on the
explanation embeddings and their corresponding
central point from the language autoencoder model.

2116



For example, given a sentence "animals require
food for survival" and its central vector of ARG0-
animals, the training moves the sentence represen-
tation closer to the ARG0-animals region centre in
the INN latent space. Specifically, during the cal-
culation of the posterior, we replace the mean and
variance of the standard Gaussian distribution by
the centre point of its cluster and a hyper-parameter,
which should be less than one, respectively. In this
case, each role-content cluster in the latent space
will be mapped to a space where each cluster will
have its embeddings more densely and regularly
distributed around its centre. The objective func-
tion can be described as follows:

Lsup =− Ex∼pcluster(x)

[
T (E(x))− µcluster

]2

1− σ2

+ log
∣∣T ′(E(x))

∣∣

where T (E(x)) learns the transformation from x to
z ∼ N(µcluster, 1− σ2). σ2 is a parameter which
can be empirically determined (in this particular
context the optimal value was found to be 0.6).
Additional details are provided in Appendix A.

3.2 Geometrical Data Augmentation
Data augmentation, which captures and augments
a common or distinct feature across different sam-
ples, has been considered a common technique to
assist disentanglement, such as in Graph (Li et al.,
2021) and Image (Liu et al., 2022) representations,
but is still limited in the context of sentence genera-
tion. In this work, we consider the vector arithmetic
and traversal operators as a systematic mechanism
to support data augmentation (via semantically con-
trolled sentence generation) for each role-content
cluster, described as follows:

(1) v = average(E′(xi), E′(xj))

(2) vneighbour = v[i] ∼ N(0, 1)∀i∈{0,..,size(v)}
(3) xnew = D′(vneighbour)

where xk ∈ S (original corpus), E′ and D′ are the
encoder and decoder of Optimus fine-tuned over
S. average operation aims to modify the sentence
while maintaining the target role-content common
to both xi and xj (Zhang et al., 2022). The term
v[i] ∼ N(0, 1) is introduced to resample each di-
mension of v in the latent space (i.e., traverse its
neighbour) and xnew = D′(vneighbour) generates
a new sentence. Finally, we only keep the sen-
tences holding the target role-content, where the

PArgs/SRs of x are annotated via the AllenNLP
(Gardner et al., 2018) semantic role labeller. Table
1 lists randomly selected examples from augmented
explanations. Full details and the supporting abla-
tion study are provided in Appendices A and D.

Role-content Augmented sentences

ARG0-animal
an animal requires energy to move
an animal requires shelter
an animal can use its body to breathe

ARG0-human
humans usually use gasoline
humans use coal to make food
humans depend on pollinators for survival

PRED-are
wheels are a part of a car
lenses are a part of eyeglasses
copper and zinc are two metals

PRED-mean
summit mean the top of the mountain
colder mean a decrease in heat energy
friction mean the product of a physical change

Table 1: Augmented explanations. We also provide
more examples in Table 11 for qualitative evaluation.

4 Experiments

For the experiments, we start by focusing on the
effect of the supervised INN mechanism to exam-
ine its impact on the sentence semantic separability
of the distributional latent space defined in Section
2 (detailed in Section 4.1). Next, we examine the
localised semantic generation control enabled by
such semantic separability via latent interpolation
(Section 4.2). Further details of the AutoEncoder
model and dataset are provided in Appendix A.

4.1 Disentanglement Encoding Evaluation
We examine the latent space separability (i.e.,
natural clustering property (Bengio, 2013)) of
our supervision approach on different predicate-
argument/semantic roles. In the context of this
work, the thematic roles’ labels are not referred to
control the generation. Instead, we use the pred-
icate argument position markers, e.g. including
ARG0, ARG1, PRED(V), where each category has
a) four possible word contents (ci), or b) the same
content (i.e., animal) with different argument/roles,
including ARG0,1,2. We provide the reconstructed
examples of INNs in Table 24.

Disentanglement between ARG0 clusters. For
ARG0, we choose human, animal, plant, and some-
thing due to having the highest frequency in the
original dataset, and evaluate model performance
from two directions, including forward and back-
ward mapping. Within forward mapping, we as-
sess the disentanglement of the latent space of the
INN model from two perspectives (visualisation
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and classification metrics). Figure 3 displays the
distributions of four role-content clusters over the
latent space. As we can observe, after the cluster-
supervised training strategy, the embeddings are
more concentrated at the center of their cluster, and
there is a clear boundary between clusters, indi-
cating a better disentanglement when compared to
Optimus and unsupervised INNs.

Figure 3: ARG0: t-SNE plot, different colour represents
different content regions (blue: animal, green: human,
red: plant, purple: something) (left: Optimus, middle:
unsupervised, right: cluster supervised), same order for
remaining visualizations. We also provide the PCA plot
in Figure 10, both visualization shows that supervised
embeddings concentrate on the respective cluster center.

We then quantitatively evaluate the disentangle-
ment of ARG0-content clusters. We consider clas-
sification task metrics (accuracy, precision, recall,
f1) as proxies for evaluating region separability,
effectively testing cluster membership across dif-
ferent clusters. We choose a non-parametric down-
stream classifier (i.e., kNN) to quantitatively evalu-
ate the separation of clusters and parametric down-
stream classifiers, including Naive Bayes (NB) and
Support Vector Machine (SVM), to assess both
separability and representation capability of latent
sentence spaces (Rifai et al., 2011; Conneau et al.,
2018). The configuration of the downstream classi-
fiers are detailed in Appendix A.

As shown in table 2, all classifiers trained over
supervised latent representations outperformed the
unsupervised INN (U) and Optimus (O), indicating
that the cluster-supervised approach leads to better
disentanglement and representation. Moreover, (O)
demonstrates superior performance compared to
(U) for the KNN-based evaluation. However, it ex-
hibits lower performance than (U) in NB and SVM.
This suggests that the INN-AutoEncoder configura-
tion can more effectively capture sentence seman-
tics (from the point-of-view of AST+distributional
content), in the context of a reconstruction task
since the VAEs’ training process is prone to experi-
encing posterior collapse.

As for the evaluation of the backward mapping,
we calculate the ratio of generated sentences that

ARG0: disentanglement proxy metrics
classifier train accuracy precision recall f1 score

KNN
O 0.972 0.973 0.972 0.972
U 0.938 0.938 0.938 0.938
C 0.979 0.979 0.979 0.979

NB
O 0.934 0.934 0.933 0.933
U 0.958 0.958 0.958 0.958
C 0.978 0.978 0.978 0.978

SVM
O 0.970 0.970 0.970 0.970
U 0.972 0.972 0.972 0.972
C 0.980 0.980 0.980 0.980

Table 2: Disentanglement of ARG0 between Optimus
(O), unsupervised INN (U), and cluster-supervised INN
(C) where KNN: k-neighbours, NB: naive bayes, SVM:
support vector machine. The abbreviations are the same
for the remaining tables. Cluster supervision displays
consistent improvement with different classifiers.

hold the same role-content as the inputs (hence-
forth called the invertibility ratio). We randomly
selected 100 embeddings as inputs and showed the
corresponding ratios in Table 3. We can observe
that both unsupervised and supervised cases can
achieve high invertibility ratios, indicating that the
INN mechanism provides stable invertibility with
or without cluster supervision.

ARG0: invertibility ratio (backward: T ′)
train human animal plant something

U 0.980 0.890 0.990 1.000
C 1.000 0.860 0.990 0.950

Table 3: Invertibility test for ARG0, Both INNs with
AutoEncoder setup can achieve high ratios, indicating
stable invertibility with or without cluster supervision.

Disentanglement between PRED clusters.
Next, we analyze the disentanglement between
predicate (PRED) clusters. As shown in Figure 4,
although the disentanglement of PRED clusters
is not as high as ARG0, the latent space with
cluster supervision still performs better than both
the unsupervised case and the Optimus model.
In Table 4, the supervised INN model achieves
better disentanglement, and both unsupervised
and supervised could obtain a higher ratio. We
also provide the experimental results of ARG1
disentanglement in Appendix B.

Disentanglement between ARG0,1,2 clusters.
The experiments up to this point investigated the
separation between the same pred-argument type
but different content clusters. Next, we explore the
separability of different pred-argument types with
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Figure 4: PRED: t-SNE plot (blue: are, green: cause,
red: is, purple: require). PCA plot is in Figure 12.

PRED: disentanglement proxy metrics (forward: T )
classifier train accuracy precision recall f1 score

KNN
O 0.911 0.914 0.910 0.911
U 0.869 0.873 0.865 0.868
C 0.922 0.927 0.918 0.922

NB
O 0.865 0.866 0.866 0.865
U 0.873 0.874 0.871 0.872
C 0.903 0.903 0.902 0.903

SVM
O 0.902 0.902 0.903 0.902
U 0.905 0.906 0.902 0.904
C 0.910 0.912 0.909 0.910

Table 4: Forward evaluation for predicate clusters, the
invertibility ratio and statistical significance test are pro-
vided in Table 14 and 18.

the same content. We thus focus on the animal clus-
ter, and investigate the disentanglement between
ARG0-animal, ARG1-animal, and ARG2-animal.
As illustrated in Figure 5, the animal clusters with
different pred-argument types can be separated af-
ter cluster-supervised training, which indicates that
the INN model can capture the difference between
the same content with different pred-argument type
in the case of similar topic, indicating the INN-
based approach could jointly learn separable em-
beddings w.r.t. role-content and content alone.

Figure 5: Animal: t-SNE plot (blue: ARG0-animal,
green: ARG1-animal, red: ARG2-animal), PCA plot is
provided in Figure 13.

Table 5 and 15 show the disentanglement metrics
and the invertibility ratio, respectively. Similarly to
the previous experiment, the supervised case out-
performs both the unsupervised and the Optimus
models. Both INNs can achieve an invertibility
ratio of at least 90%.

Animal: disentanglement metrics (f1 score)
train KNN NB SVM

O 0.960 0.928 0.946
U 0.958 0.930 0.947
C 0.967 0.937 0.950

Table 5: Forward evaluation for Animal, we only show
f1 since the same value across different metrics. Results
indicate improved separation across role clusters.

4.2 Disentanglement Decoding Evaluation

Finally, we evaluate the disentangled sentence ge-
ometry from the perspective of sentence generation.
We specifically focus on linear interpolation as it
can provide more efficient traversal between sen-
tences and clusters than other traversal approaches
(e.g., Ornstein-Uhlenbeck), commonly used in the
NLP domain (Li et al., 2020b) and in the evaluation
of disentanglement (Bengio, 2013).

Interpolation localisation. Firstly, we evaluate
the localisation of latent interpolation that inter-
polates a path zt = z1 · (1 − t) + z2 · t with t
increased from 0 to 1 by a step size of 0.1, where
z1 and z2 represent the latent representations of
source and target sentences. As a result, 9 sen-
tences are generated on each interpolation step. On
a latent space with better token-level role-content
separation, given two sentences with the same role-
content as endpoints, we can observe that the inter-
mediate sentence can hold the same role-content
during interpolation.

In terms of qualitative evaluation, Table 6 pro-
vides the interpolation paths of cluster-supervised
INN and Optimus, as for Optimus, we can observe
that the intermediate explanations could transition
smoothly from source to target for argument. How-
ever, the predicate is more abruptly changed, in-
dicating lower predicate-content disentanglement
(e.g., predicate-require and predicate-eat). Instead,
the supervised INN can fix the predicate-require
during interpolation, indicating better separability
between different predicate-content results in better
generation control. More examples are provided
in Table 22 and 23. We then quantitatively evalu-
ate the localisation of interpolation. We randomly
select 200 sentence pairs from the dataset holding
the same role-content and report the ratio of inter-
mediate sentences with the same role-content as
inputs. As illustrated in Figure 6, the intermedi-
ate sentences from the supervised INN can better
hold the same role-content as inputs, especially for
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interpolation localisation: predicate-require

source: humans require freshwater for survival

Optimus:
1. humans require water and food through fossil fuels
2. humans require water for survival
3. humans produce small amounts of consumer food
4. human has a positive impact on a plant’s survival
5. humans convert food into animal prey
6. humans make food for themselves by eating
7. animals require food for survival
8. animals require nutrients from the air
9. humans eat plants for food
10. animals require food for survival

Cluster-supervised INN:
1. humans require water for survival
2. nonhumans require water for survival
3. animals require water and food
4. animals require water to survive
5. animals require water to live
6. animals require food for survival
7. animals require food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food to survive

target: animals require food to survive

Table 6: Interpolation examples, indicating the cluster-
supervised INN can provide better localised/symbolic
semantic control. We also report the interpolations of
AutoEncoder and unsupervised INN in Table 21.

ARG0-animal ARG0-human PRED-require PRED-cause
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ra
tio

Interpolation Controllability

supervised INN
vanilla Optimus
unsupervised INN

Figure 6: Interpolation control evaluation, we can ob-
serve that supervised INN with better semantic separa-
bility can lead to better localised semantic control.

predicate which usually has a lower effect on dis-
tributional sentence semantics (Zhang et al., 2022),
indicating that our supervision can lead to better
latent space separability and generation control.

Interpolation smoothness. Moreover, we quan-
titatively evaluate the latent space geometry via
interpolation smoothness metrics (IS, Zhang et al.
(2024)), which calculates the ratio between the

Evaluation Metrics avg IS↑ max IS↑ min IS↑
DAE (Vincent et al., 2008) 0.144 0.330 0.055
AAE (Makhzani et al., 2015) 0.142 0.284 0.054
LAAE(Rubenstein et al., 2018) 0.172 0.347 0.056
DAAE (Shen et al., 2020) 0.055 0.061 0.023
β-VAE (Higgins et al., 2016) 0.198 0.379 0.041
AdaVAE (Tu et al., 2022) 0.085 0.105 0.050
Della (Hu et al., 2022) 0.253 0.416 0.155
Optimus (Li et al., 2020b) 0.220 0.525 0.130
AutoEncoder (Bert-GPT2) 0.259 0.585 0.165
INN (U) (our) 0.251 0.540 0.159
INN (C) (our) 0.282 0.607 0.206

Table 7: Geometrical examination via IS metric.

ideal semantic distance (i.e., the aligned seman-
tic distance between source and target sentences)
and the actual semantic distance (i.e., the sum of
semantic distance between adjacent sentences dur-
ing interpolation). A higher ratio indicates that the
actual path aligns better with the ideal path, sug-
gesting better semantic-geometric properties. The
metric is defined as:

IS = E(s0,...,sT )∼P
δ(align(s0, sT ))∑T

t=0 δ(align(st, st+0.1))

where s0, ..., sT is the sequence of sentences during
interpolation, δ and align are sentence similarity
and alignment functions, respectively, which are
performed via Word Mover’s Distance (Zhao et al.,
2019). We choose the standard language VAE base-
lines (i.e., the prior is the std. Gaussian distribu-
tion). Their implementation details are provided
in Appendix A. We randomly sample 200 sentence
pairs and report the IS metric. As illustrated in
Table 7, our model can deliver smoother interpo-
lations comparatively to the baselines, indicating
semantic disentanglement can lead to better latent
space geometry.

5 Related Work

Sentence representation. Sentence representa-
tions are usually trained in supervised (Conneau
et al., 2017; Reimers and Gurevych, 2019), con-
strastive (Giorgi et al., 2021; Yan et al., 2021;
Chuang et al., 2022), or generation-oriented (Wang
et al., 2021; Wu and Zhao, 2022; Chuang et al.,
2022) fashion. Recent work (Huang et al., 2023)
explored the compositional sentence representation
for improved explainability and generation. How-
ever, these works still lack the emphasis on the
geometric interpretation and control of the underly-
ing sentence space, which this work focused on.
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Sentence disentanglement. In the Natural Lan-
guage Generation domain, most previous investi-
gations explored the disentanglement between two
specific linguistic perspectives, such as sentiment-
content (John et al., 2019; Li et al., 2022), semantic-
syntax (Bao et al., 2019), and negation-uncertainty
(Vasilakes et al., 2022), or syntactic disentangle-
ment (Mercatali and Freitas, 2021; Felhi et al.,
2022). In this work, we provide a formal-
geometrical lens, with the support of argument
structures as a sentence representation model, for
sentence disentanglement targeting for localised
semantic control. This work is the first integra-
tion of flow-based INN mechanisms to improve
disentanglement, separation and semantic control
of sentence spaces.

INNs in NLP. Şahin and Gurevych (2020) con-
centrate on modelling morphological inflection and
lemmatization tasks, utilizing INN to learn a bi-
jective transformation between the word surface
and its morphemes. Li et al. (2020a) proposed
BERT-flow, transforming sentences from a BERT
sentence space to a standard Gaussian space. Ding
and Gimpel (2021) deployed flow-based INN to en-
rich VAE prior distribution, while Gu et al. (2023)
use flow mechanisms to control attributes in style
transfer tasks. This work focused on semantic sepa-
rability, geometrical operations and control over the
distributed representation of sentences. Moreover,
this work is the first to explore geometrical data
augmentation to support semantic disentanglement.

6 Conclusions and Future Work

This work focused on an INN-based mechanism
to support better disentangled and separated latent
sentence spaces over language autoencoders. By
aligning the predicate-argument structure of sen-
tences to the latent representations, we aimed to
build a bridge between the formal and distributional
semantics perspectives for sentence representation.
We define the sentence semantic disentanglement
from the perspective of formal semantics, align-
ing the predicate-argument structure to disentan-
glement and cluster separation properties, and ex-
ploiting the invertibility and bijection properties of
INNs to facilitate such alignment. Experimental re-
sults indicate that the invertibility mechanisms can
transform the distributed hidden space of an autoen-
coder into a latent space where AST-level syntactic
and semantic transformations can be localised, in-
terpolated and controlled. Secondly, we propose a

supervision approach, which leads to an improved
disentangled and separated space. This property
can facilitate localised interpolation control. Lastly,
we utilise these geometric properties to support a
semantically controlled data augmentation to assist
the disentanglement process.

Since our work connects distributional and for-
mal semantics via disentanglement, one future di-
rection is to explore the safety and control of the for-
mal semantic properties of Large Language Mod-
els. Besides, recent work (Liu et al., 2023) revealed
that distinct factors can be composed by modelling
the moving of latent vectors via ordinary differen-
tial equations, which can be adapted to sentence
representations to deliver more complex sentence
transformations within the latent space.

7 Limitations

This work focused on the disentangled sen-
tence representations geometry to deliver lo-
calised/semantic/formal semantic control. While
this work is motivated by providing more localised
distributed representations, which can positively
impact the safety and coherence of generative mod-
els, few scoping observations need to be estab-
lished: 1. The specific safety guarantees of these
models are not fully established. 2. While the lan-
guage autoencoder with unsupervised INN exhibit
a distinct learning pattern with regard to semantic
distribution, further understanding is required in
terms of information bottleneck properties (Saxe
et al., 2018) and on the semantic distribution of
unsupervised INNs in language modelling tasks. 3.
Furthermore, this study exclusively focused on a
corpus of sentences which are conceptually dense
((Dalvi et al., 2021)). The exploration of its per-
formance on other types of sentences, including
sentences with complex clausal-phrasal construc-
tions, or sentences with non-compositional idioms,
is yet to be undertaken.
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A Experiment setting

Dataset. Table 8 displays the statistical informa-
tion of the datasets used in the experiment. The
data of the two datasets partially overlap, so only
the unique explanations are selected as the exper-
imental data. Table 9 illustrates the semantic,

Corpus Num data. Avg. length
WorldTree (Jansen et al., 2018a) 11430 8.65

EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 8: Statistics from explanations datasets.

structure, and topic information of explanatory sen-
tences over the latent space.

The rationale for choosing explanatory sen-
tences is that they are designed for for-
mal/localised/symbolic semantic inference task in
natural language form, which provides a seman-
tically complex and yet controlled experimental
setting, containing a both well-scoped and diverse
set of target concepts and sentence structures, pro-
viding a semantically challenging yet sufficiently
well-scoped scenario to evaluate the syntactic and
semantic organisation of the space. More details
about semantic structure and lexical information
are provided in Table 9 and 10.

Data Augmentation. Algorithm 1 illustrates the
detailed process of data augmentation. The key
aspect of data augmentation is to keep the data dis-
tribution unchanged while increasing the size of the
dataset. Therefore, during traversal, we only sam-
ple the value whose probability density is between
0.495 and 0.505. In other words, for each original
explanation, we only traverse its close neighbours
over the latent space. We increased the number of
explanations in each role-content cluster to 3000
and kept the balance of each role-content category.
We provide more qualitative examples in Table 11.
Moreover, we visualise latent semantic distribution
before and after augmentation in Figure 7. As we
can observe, the data augmentation can maintain
the semantic distribution unchanged. For example,
PRED-is (red colour in the right column) is widely
distributed over the latent space before and after
augmentation. ARG0-something (purple colour in
the left column) is far from other clusters with or
without data augmentation in latent space.

Downstream Classifier. In this experiment, we
apply three downstream classifiers, including non-
parametric classifier: k-nearest neighbours (KNN)
and parametric classifiers: Naive Bayes (NB) and

Algorithm 1 Data Augmentation

Define: R as the role set (ARG0, PRED, ...).
Define: C as the content set (vocabulary).
Define: S as the explanation corpus (sentences).
Define: s = [(c1, r1), ..., (ci, ri)] ∈ S, ci ∈
C, ri ∈ R as a sentence.
Define: (ct, rt) | rt ∈ R, ct ∈ C as the
target role-content (e.g., ARG1-animal).
Define: St = ∀s ∈ S | ∃(ck, rk) = (ct, rt)
as the set of sentences with the target role-
content.
Define: E(s) : S → Rn as encoder (embed-
ding) function.
Define: D(vec) : Rn → S as the explanation
decoded from Decoder D.
Define: L: list for keeping augmented sentences.
Define: SRLer(s): semantic role label annota-
tor for s.
for all (si, sj) ∈ St, si ̸= sj do

vec = average(E(si), E(sj))
for all vec[i] ∈ vec do

vec[i] = N(0, 1) # neighbour traversal
sn = D(vec) # new sentence
if sn /∈ L AND R ∈ SRLer(sn) then

put sn in L.
end if

end for
end for
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Cluster Theme, Pattern, and Explanatory sentences
0 Theme: physics and chemistry. Pattern: if then and as. E.g., if a substance is mixed with another substance then

those substances will undergo physical change.
1 Theme: country, astronomy, and weather. E.g., new york state is on earth
2 Theme: physics and chemistry. Pattern: is a kind of. E.g., light is a kind of wave.
3 Theme: biology. E.g., a mother births offspring.
4 Theme: synonym for verb. Pattern: means and is similar to. E.g., to report means to show.
5 Theme: astronomy. E.g., the solar system contains asteroids.
6 Theme: animal/plant. Pattern: is a kind of. E.g., a seed is a part of a plant.
7 Theme: item. E.g., a telephone is a kind of electrical device for communication.
8 Theme: synonym for life. Pattern: means and is similar to. E.g., shape is a kind of characteristic.
9 Theme: geography. Pattern: is a kind of. E.g., a mountain is a kind of environment.
10 Theme: animal and plant. Pattern: if then and as. E.g., if a habitat is removed then that habitat is destroyed.
11 Theme: scientific knowledge. Pattern: (;), number and /. E.g., freezing point is a property of a ( substance ;

material ).
12 Theme: item. Pattern: is a kind of object. E.g., a paper is a kind of object.
13 Theme: chemistry and astronomy. E.g., oxygen gas is made of only oxygen element.
14 Theme: general about science. Pattern: (;). E.g., seed dispersal has a positive impact on ( a plant ; a plant ’s

reproduction).
15 Theme: item. Pattern: is a kind of. E.g., fertilizer is a kind of substance.
16 Theme: physics and chemistry. Pattern: (;). E.g., the melting point of oxygen is -3618f ; -2188c ; 544k.
17 Theme: animal. E.g., squirrels live in forests.
18 Theme: nature. E.g., warm ocean currents move to cooler ocean regions by convection.
19 Theme: life. E.g., pond water contains microscopic living organisms.

Table 9: Semantic, structure, topic information of explanatory sentences, where the cluster is the categories of
k-means classifier.

Figure 7: t-SNE plot for Data augmentation
(top: original dataset distribution, bottom: aug-
mented dataset distribution), (left: ARG0-animal(blue),
human(green), plant(red), something(purple); mid-
dle: ARG1-food(blue), oxygen(green), sun(red), wa-
ter(purple); right: PRED-are(blue), cause(green),
is(red), require(purple).

Support Vector Machine (SVM), to evaluate the
separability of latent representation. Those clas-
sifiers and classification metrics are implemented
based on scikit-learn package (Pedregosa et al.,
2011) with default hyper-parameters. We train
those classifiers on the training set (×60%) and
evaluate them on the test set (×40%). For multi-
class classification, we set macro for precision, re-

call, and f1 since macro-averaged metric for each
class is calculated independently, and then the aver-
age is taken, which ensures that the performance of
the model in each class contributes equally to the
final metric, regardless of the class size.

Visualizer. In this experiment, we implement t-
SNE and PCA visualisation based on Yellowbrick
library (Bengfort and Bilbro, 2019)2. We empiri-
cally set decompose_by = 4 for all cases. How-
ever, we found no significant difference between
different decompose_by parameters.

Baselines for Interpolation Smoothness. In the
experiment, we implement five LSTM-based au-
toencoders, including denoising AE (Vincent et al.
(2008), DAE), β-VAE (Higgins et al., 2016), ad-
versarial AE (Makhzani et al. (2015), AAE), label
adversarial AE (Rubenstein et al. (2018), LAAE),
and denoising adversarial autoencoder (Shen et al.
(2020), DAAE). Their implementation relies on the
open-source codebase available at the URL 3. As
for transformer-based VAEs, we implement Opti-
mus (Li et al., 2020b), AdaVAE (Tu et al., 2022)4,

2https://www.scikit-yb.org/en/latest/api/text/
tsne.html

3https://github.com/shentianxiao/
text-autoencoders

4https://github.com/ImKeTT/AdaVAE
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Semantic Tags Prop. % Description and Example
ARGM-DIR 0.80 Directionals. E.g. all waves transmit energy from one place to another
ARGM-PNC 0.08 Purpose. E.g. many animals blend in with their environment to not be seen

by predators
ARGM-CAU 0.05 Cause. E.g. cold environments sometimes are white in color from being

covered in snow
ARGM-PRP 1.30 Purpose. E.g. a pot is made of metal for cooking
ARGM-EXT 0.04 Extent. E.g. as the amount of oxygen exposed to a fire increases the fire will

burn longer
ARGM-LOC 4.50 Location. E.g. a solute can be dissolved in a solvent when they are combined
ARGM-MNR 2.00 Manner. E.g. fast means quickly
ARGM-MOD 9.80 Modal verbs. E.g. atom can not be divided into smaller substances
ARGM-DIS 0.07 Discourse. E.g. if something required by an organism is depleted then that

organism must replenish that something
ARGM-GOL 0.20 Goal. E.g. We flew to Chicago
ARGM-NEG 1.20 Negation. E.g. cactus wrens building nests in cholla cacti does not harm the

cholla cacti
ARGM-ADV 6.70 Adverbials
ARGM-PRD 0.20 Markers of secondary predication. E.g.
ARGM-TMP 7.00 Temporals. E.g. a predator usually kills its prey to eat it
O - Empty tag.
V 100 Verb.
ARG0 32.0 Agent or Causer. E.g. rabbits eat plants
ARG1 98.5 Patient or Theme. E.g. rabbits eat plants
ARG2 60.9 indirect object / beneficiary / instrument / attribute / end state. E.g. animals

are organisms
ARG3 0.60 start point / beneficiary / instrument / attribute. E.g. sleeping bags are designed

to keep people warm
ARG4 0.10 end point. E.g. when water falls from the sky that water usually returns to the

soil

Table 10: Semantic Role Labels that appear in explanations corpus.

Role-content Augmented sentences

ARG0-plant
plants use sunlight often to make food for themselves
plants produce light in the winter by photosynthesizing
green plants contain ( water ; food )
plants take in oxygen from the air
a plant requires water in order to perform photosynthesis
some plants grow organically
plants use soil as a source of water

ARG1-water
water is liquid by volume
salt water is a kind of solution
water is two things together
water is boiling in the pot
water is an ( inexhaustible ; wasteable ) resource
water is an ( electrical ; electrical energy ) insulator
water is a part of soup

ARG2-animal
a hurricane is a kind of animal
a bird is a kind of animal
a sperm whale is a kind of animal
a wren is a kind of animal
a dog is a kind of native animal
a chameleon is a kind of animal

PRED-require
making tools requires using sharp tools
plants require resources to provide food for themselves
a system requires electrical energy to operate
crops require specialized environments to grow
cooking requires food from human food chain
producing an object requires chemical energy
living things require energy from the sun for survival
growth requires the production of more cells

Table 11: Qualitative evaluation of geometrical data
augmentation.

and Della (Hu et al., 2022)5. All baseline models

5https://github.com/OpenVLG/DELLA

undergo training and evaluation with the hyper-
parameters provided by their respective sources.
A latent dimension of 32 is specified to ensure a
uniform and equitable comparative analysis.

Autoencoder. In this work, we employ an au-
toencoder architecture with the same configuration
as described in (Li et al., 2020b)6. The encoder
component is based on BERT (Devlin et al., 2018),
while the decoder component is based on GPT2
(Radford et al., 2019). The latent space dimension
is set to 32 (low-dimension) as Michlo et al. (2023)
revealed that strong compression, such as strong
KL regularisation term in ELBO, can lead to the
phenomenon of disentanglement of images.

To establish the connection between the encoder
and decoder, the input sentence x is first encoded
by BERT[cls] into the latent space, denoted as
N(µ,Σ). The parameters µ and Σ are trainable and
determine the mean and covariance of the Gaussian
distribution. Next, a sample z ∼ N(µ,Σ) is passed
through a multi-layer perceptron called W . This
step expands the dimensionality of z to obtain a

6https://github.com/ChunyuanLI/Optimus
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fixed-length embedding h ∈ RD×L×H , where D
represents the dimensions of the heads, L is the
number of heads, and H is the number of hidden
layers. The latent space injection can be described
as:

Attention(Q,K, V ) = softmax(
Q[z;K]T√

d
)[z;V ]

INN. The INN consists of 10 invertible blocks.
Each is built from three layers, including an affine
coupling (Dinh et al., 2016), permutation layer,
and ActNorm (Kingma and Dhariwal, 2018). Fig-
ure 8 displays one single invertible block. The
model was implemented using the FrEIA library
(Ardizzone et al., 2018-2022) 7. As for training
hyperparameters of INN, firstly, both input and out-
put have the same dimensions as the latent space
dimension of the autoencoder. Secondly, inside
the affine coupling block, the sub-network is MLP
with 512 as the hidden dimension. Thirdly, we use
AdamW (Loshchilov and Hutter, 2017) to optimise
the model where the learning rate is 5e-04 in the
experiment.

Figure 8: INN one single block.

The forward process of the affine coupling layer
can be described as follows:

xa, xb = split(x)

log s, t = mθ(xb)

s = exp(log s)

ya = s⊙ xa + t

yb = xb

y = concat(ya, yb)

(2)

Where mθ is a two-layer neural network. x and y

7https://github.com/VLL-HD/FrEIA

are the input and output. The reversed process is:

ya, yb = split(y)

log s, t = mθ(yb)

s = exp(log s)

xa = (ya − t)/s

xb = yb

y = concat(xa, xb)

(3)

B Additional Supervision Results

Disentanglement between ARG1 clusters We
consider four ARG1 clusters, including ARG1-food,
ARG1-oxygen, ARG1-sun, ARG1-water, and eval-
uate model performance following the same pro-
cedure. Figure 9 displays the distributions of four
role-content clusters over the latent space. With
similar observations as before, the INN cluster-
supervised training strategy can learn better dis-
entanglement between ARG1 clusters. Table 12

Figure 9: ARG1: t-SNE plot (blue: food, green: oxygen,
red: sun, purple: water). Supervision (right) induces
separability comparable with ARG0. PCA plot is pro-
vided in Figure 11.

and 13 show the disentanglement metrics and in-
vertibility ratio, respectively. With similar obser-
vations as the previous experiment: all classifiers
trained over the supervised latent representation
outperform both the unsupervised INN model and
Optimus, and both unsupervised and supervised
cases can achieve higher ratios (at least 0.95).

Invertibility ratio. Table 13, 14, and 15 re-
port the invertibility test for ARG1, PRED, and
ARG0,1,2 clusters, respectively. We can observe
that INN with both training approaches can per-
form stable invertibility.

Traversal decoding for Animal clusters. Ta-
ble 16 shows the decoded explanations traversed
around the central point of each cluster in the latent
space of cluster-supervised INN.

Traversal decoding for cluster connection. Ta-
ble 17 displays the decoded middle points between
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ARG1: disentanglement proxy metrics (forward: T )
classifier train accuracy precision recall f1 score

KNN
O 0.934 0.934 0.933 0.933
U 0.914 0.914 0.914 0.913
C 0.954 0.954 0.954 0.954

NB
O 0.904 0.910 0.902 0.904
U 0.922 0.922 0.922 0.922
C 0.957 0.957 0.957 0.957

SVM
O 0.951 0.951 0.951 0.950
U 0.953 0.953 0.952 0.953
C 0.959 0.959 0.959 0.959

Table 12: Forward evaluation for ARG1, consistent
results on different classifiers indicate that supervision
can perform better semantic disentanglement.

ARG1: invertibility ratio (backward: T ′)
train food oxygen sun water

U 0.990 0.980 0.950 1.000
C 0.960 0.950 0.960 1.000

Table 13: backward evaluation for ARG1 clusters. un-
supervised INN (U), and supervised INN (S).

clusters. It is also observable that there are low-
density embedding regions at the transition (con-
nection) between two clusters. We decode the mid-
dle datapoints between animal and human clusters
and list them in Table 17. From those examples,
we can observe that such explanations are related
to both animal and human. This result implies that
the explanations may be geometrically represented
in a similar way as they were originally designed
in the WorldTree corpus (maximising lexical over-
laps for pred-arg alignments within an explanation
chain) for supporting multi-hop inference tasks.

Principal component analysis (PCA) visualisa-
tion. In addition to the non-linearised t-SNE plot,
we also provide linearised visualisation via PCA
(Shlens, 2014). Figure 10,11,12, and 13 visualize
the separation of ARG0, ARG1, PRED, and animal.
Similar to the observation before, cluster supervi-
sion can lead to better separation and cluster.

Figure 10: PCA visualization for ARG0.

PRED: invertibility test (backward: T ′)
train is are cause require

U 1.000 0.950 0.970 0.800
C 1.000 0.880 0.900 0.820

Table 14: backward evaluation for predicate clusters.
unsupervised INN (U), and supervised INN (S).

Animal: invertibility ratio (backward: T ′)
train ARG0 ARG1 ARG2

U 0.990 0.990 0.900
C 0.970 0.960 0.920

Table 15: Backward evaluation for Animal.

Traversing Animal clusters

1: animals must escape from predators
2: animals require air to breathe
3: an animal requires warmth for survival

1: animals are small in size
2: animals usually are not carnivores
3: animals are a part of an environment

1: a rabbit is a kind of animal
2: an otter is a kind of animal
3: a horse is a kind of animal

Table 16: Traversal in each cluster (top: ARG0-Animal,
middle: ARG1-Animal, bottom: ARG2-Animal).

Cluster connection

1. humans sometimes hunt animals that are covered
in fur
2. animals / human habitats require food
3. an animal may be bred with a human for food
4. animals eat humans
5. a human can not eat algae and other animals

Table 17: Middle explanations between ARG0-animal
and ARG0-human.

Figure 11: PCA visualization for ARG1.

C Statistical Significance Tests for PRED
Downstream Classifiers

Statistical significance testing is a standard statis-
tical tool devised to ensure that experimental re-

2130



Figure 12: PCA visualization for PRED.

Figure 13: PCA visualization for Animal.

sults are not coincidental and reliable. Following
the work (Dror et al., 2018)8, we provide statisti-
cal significance tests to rigorous and quantitatively
evaluate the stability of trainable downstream clas-
sifiers, which indirectly indicates the representation
capability.

Our attention was directed towards PRED clus-
ters due to the comparatively decreased perfor-
mance of downstream classifiers within this cat-
egory as PRED usually contains less semantic in-
formation (Zhang et al., 2022). We select accuracy
metric, set α = 0.05, and choose bootstrap statisti-
cal test which was used with a variety of NLP tasks
(Ouchi et al., 2017; Wu et al., 2017).

As illustrated in Table 18, (1) the U-C pair con-
sistently yields a diminished significance value,
suggesting reliable classification performance re-
sulting from superior representational capabilities
facilitated by the AutoEncoder with INN configu-
ration, compared with Optimus. (2) the scores of
(O-C) pairs are consistently lower than those of (O-
U) pairs, indicating our supervision (C) can better
represent semantic information than unsupervised
INN. We refer (Dror et al., 2018) for an in-depth
illustration of statistical significance tests in NLP.

D Ablation of Data Augmentation

PRED semantic role. Firstly, we analyse the
effect of our supervision approach on PRED se-
mantic role with three lexical contents without
data augmentation, including are (×449), cause
(×380), and require (×262). The rationale for
their selection is that they are less frequent in cor-

8https://github.com/rtmdrr/
testSignificanceNLP/tree/master

Statistical significance tests for PRED
classifier source Bootstrap (p-value)↓

KNN
O-C 0.0155
U-C 0.0000
O-U 1.0000

NB
O-C 0.0000
U-C 0.0000
O-U 0.2268

SVM
O-C 0.3594
U-C 0.0000
O-U 1.0000

Table 18: Statistical significance tests for downstream
classifiers (O: Optimus, U: unsupervised INN, and C:
cluster supervised INN). We highlight the best signifi-
cant test value, indicating reliable classification perfor-
mance derived from better representation capability.

pus and partially overlap in latent space. More-
over, the contents under PRED usually have less
effect on the contextual semantics (Zhang et al.,
2022). Those difficulties allow us to fairly analyse
the effect of our supervision approach. Following
a similar order, we first visualise the t-SNE and
PCA plots in Figure 14. As we can observe, the
cluster-supervised approach can better represent
the cluster and separation for different contents
under PRED semantic role label without data aug-
mentation. Next, we apply downstream classifiers
to evaluate cluster separation. As illustrated in Ta-
ble 19, our cluster-supervised approach results in
better classification performance, indicating better
disentanglement.

Figure 14: Ablation: t-SNE plot (top), PCA plot
(bottom) (left: Optimus, middle: unsupervised, right:
cluster-supervised) where blue: PRED-are, green:
PRED-cause, red: PRED-require.

ARG0 semantic role. Next, we provide the same
analyse for fewer frequent ARG0 clusters: ARG0-
animal (×126), ARG0-human (×43), ARG0-plant
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PRED: disentanglement proxy metrics
classifier train accuracy precision recall f1 score

KNN
O 0.858 0.847 0.844 0.846
U 0.837 0.849 0.827 0.830
C 0.965 0.963 0.961 0.962

NB
O 0.839 0.823 0.833 0.826
U 0.901 0.895 0.891 0.893
C 0.977 0.974 0.975 0.974

SVM
O 0.876 0.863 0.866 0.865
U 0.954 0.953 0.949 0.950
C 0.967 0.965 0.967 0.966

Table 19: Ablation: disentanglement proxy metrics for
PRED-are, PRED-cause, and PRED-require.

(×77), and ARG0-something (×186). As illus-
trated in Figure 15, cluster supervision can lead
to better role-content separation/disentanglement.
Moreover, we can observe that cluster-supervision
leads to better proxy disentanglement metrics in
Table 20.

Furthermore, compared with Table 2, the in-
corporation of latent representation with data aug-
mentation results in enhanced classification perfor-
mance. This observation implies that our data aug-
mentation technique can more effectively capture
semantic information, thereby aiding downstream
classifiers.

Figure 15: Ablation: t-SNE plot (top), PCA plot
(bottom) (left: Optimus, middle: unsupervised, right:
cluster-supervised) where blue: ARG0-animal, green:
ARG0-human, red: ARG0-plant, purple: ARG0-
something.

E Controlled Interpolation

In tables 22 and 23, we provide more controllable
interpolation examples. Those examples reveal that
the latent space with better role-content separation
from supervised INN can provide better interpola-

ARG0: disentanglement proxy metrics
classifier train accuracy precision recall f1 score

KNN
O 0.890 0.890 0.850 0.867
U 0.890 0.896 0.834 0.858
C 0.919 0.907 0.858 0.877

NB
O 0.855 0.809 0.784 0.792
U 0.936 0.916 0.905 0.910
C 0.965 0.958 0.950 0.954

SVM
O 0.843 0.630 0.691 0.656
U 0.895 0.847 0.770 0.782
C 0.901 0.935 0.779 0.790

Table 20: Ablation: disentanglement proxy metrics for
ARG0-animal, ARG0-human, ARG0-plant, and ARG0-
something.

tion control, indicating better latent space geometry.

Interpolation localisation: predicate-require

source: humans require freshwater for survival

AutoEncoder:
1. humans require water to survive
2. marine mammals require great amounts of water
3. animals require oxygen to survive
4. animals require water for survival
5. animals must eat water to survive
6. animals require water and food
7. animals require water for survival
8. animals must eat to survive
9. animals require food for survival
10. animals must eat food to survive

Unsupervised INN:
1. nonhumans require water to survive
2. marine animals require food for survival
3. animals must breath to survive
4. animals require water for survival
5. animals require water from their ecosystems
6. animals require water for survival
7. animals must eat food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food for survival

target: animals require food to survive

Table 21: Interpolation examples where top and bottom
sentences are source and target, respectively.

F INNs: Explanation Reconstruction

Table 24 shows some reconstructed explanations
from AutoEncoder, unsupervised INN, and super-
vised INN, respectively.
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Interpolation localisation: predicate-is

source: the sun is in the northern hemisphere

1. the sun is located in the northern hemisphere
2. the sun is in the northern hemisphere
3. the sun is made of air around the sun
4. the sun is a source of sunlight for organisms
5. the sun is a source of sunlight for birds
6. the sun is a source of energy for organisms living in an arctic environment
7. the sun is a source of food for plants
8. food is a source of oxygen ; water for plants
9. food is a source of energy for plants by producing heat
10. food is a source of energy for a plant or animal / living thing

1. the sun is the dominant star in the night sky
2. the sun is closer to the earth than it is to the sun
3. the sun is a star in the night sky
4. the sun is good for the environment by providing sunlight to plants
5. the atmosphere is an environment for intensive farming
6. the respiratory system carries oxygen to the rest of the body
7. food contains nutrients ; water ; food energy
8. food is the nutrient for ( plants ; animals )
9. producers are a source of energy for producers by weathering
10. food is a part of a plant / animals / living things

target: food is a source of energy for animals / plants

Table 22: Interpolation examples (top: supervised INN, bottom: Optimus).

Interpolation localisation: argument-animals and predicate-require

source: animals require food to survive

1. animals require water to survive
2. animals require food for survival
3. animals require food for survival
4. animals require nutrients from food
5. an animal requires food for survival
6. an animal requires food for survival
7. an animal requires nutrients from producers
8. an animal requires nutrients for survival
9. an animal requires nutrients from food
10. an animal requires nutrients from producers

1. animals need sunglasses for protection
2. animals live in an environment
3. animals need food to thrive
4. animals require energy for survival
5. a consumer uses some of the food that is available
6. only a producer eats plants
7. a human produces its own food
8. an animal requires nutrients in a source of food to survive
9. an animal requires energy to perform photosynthesis
10. an animal requires nutrients to grow

target: an animal requires nutrients from producers

Table 23: Interpolation examples (top: supervised INN, bottom: Optimus).
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Augmented explanations BERT-GPT2 unsupervised INN supervised INN
a animal requires water for
survival

a animal requires water for
survival

a animal requires water for
survival

a animal requires water for
survival

an animal requires a mate for
survival

an animal requires a mate to
reproduce

an animal requires a mate to
reproduce

an animal requires a repro-
ductive system for survival

some animals sometimes
hunt for prey

some animals prey on other
animals

some animals sometimes
catch prey

some animals sometimes
hunt for prey

an animal requires energy of
its own to move

an animal requires energy
from somewhere to move

an animal requires energy to
move

an animal requires energy for
movement

an animal requires energy to
run

an animal requires energy to
run

an animal requires energy to
run

an animal requires energy to
run

animals live in their habitats animals live in their habitats animals live in their habitat animals live in their habitat
animals must eat animals to
survive

animals must eat to survive animals must eat other ani-
mals to survive

animals must eat to survive

animals taste flavors animals taste flavors animals taste flavors animals taste flavors
animals eat plants animals eat plants animals eat plants animals eat plants
an animal requires nutrients
to grow and heal

an animal requires nutrients
in soil for survival

an animal requires nutrients
to grow and repair

an animal needs to store fat
to grow

animals require oxygen to
grow

animals require oxygen to
grow

animals require oxygen to
breath

animals require oxygen for
survival

an animal needs to breathe in
order to survive

an animal requires food for
survival

a animal needs to breathe to
survive

an animal requires water and
food to survive

humans cause the disease humans cause the disease humans cause the disease humans cause the disease
humans have a negative im-
pact on the environment

humans have a negative im-
pact on the ecosystem

humans have a negative im-
pact on the environment

humans have a negative im-
pact on the environment

humans require water to sur-
vive

humans require water to sur-
vive

humans require water for sur-
vival

humans require water for sur-
vival

humans produce offspring humans produce offspring humans eat plants humans produce offspring
humans have lived on earth humans live in the solar sys-

tem
humans live in the solar sys-
tem

humans live in the biosphere

humans use fossil fuels for
energy

humans use fossil fuels to
make energy

humans use fossil fuels to
make energy

humans use natural gas to
make energy

humans eat green plants humans eat green plants humans eat green plants humans eat green plants
humans eat fruit humans eat fruit humans eat fruit humans eat fruit
humans sometimes eat plants
or animals

humans sometimes eat plants
and animals

living things sometimes eat
insects / animals

animals sometimes eat seeds
from trees

a plant absorbs light energy
for photosynthesis

a plant absorbs sunlight for
photosynthesis

an flower requires energy to
grow and provide warmth to
the skin

a plant absorbs light for pho-
tosynthesis

a plant absorbs water from
the air into its roots

a plant absorbs water from
the air into its body

a leaf absorbs water from the
air through the leaves

a plant absorbs water and nu-
trients from the air

a plant uses energy to grow a plant requires energy for
growth

a plant requires energy to
grow

a plant requires energy to
grow

plant reproduction occurs in
the spring

plant reproduction occurs in
the spring

plant reproduction begins
during seed dispersal

plant reproduction begins in
spring

plants require water and sun-
light to grow

plants require water and sun-
light to grow

plants require sunlight to
grow and survive

plants require water and sun-
light to grow

a plant requires a habitat for
survival

a plant needs a habitat for sur-
vival

a plant requires a habitat for
survival

a plant requires a habitat for
survival

Table 24: Explanation reconstruction. From left to right are augmented explanations, decoded explanations from
AutoEncoder, explanations from unsupervised INN, and that from supervised INN, respectively.
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