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Abstract

Supervised fine-tuning (SFT) is a crucial step
for large language models (LLMs), enabling
them to align with human instructions and en-
hance their capabilities in downstream tasks.
Substantially increasing instruction data is a di-
rect solution to align the model with a broader
range of downstream tasks or notably improve
its performance on a specific task. However,
we find that large-scale increases in instruc-
tion data can damage the world knowledge
previously stored in LLMs. To address this
challenge, we propose LoRAMoE, a novel
framework that introduces several low-rank
adapters (LoRA) and integrates them by us-
ing a router network, like a plugin version
of Mixture of Experts (MoE). It freezes the
backbone model and forces a portion of Lo-
RAs to focus on leveraging world knowledge
to solve downstream tasks, to alleviate world
knowledge forgetting. Experimental results
show that, as the instruction data increases, Lo-
RAMoE can significantly improve the ability to
process downstream tasks, while maintaining
the world knowledge stored in the LLM. Our
code is available at https://github.com/
Ablustrund/LoRAMoE.

1 Introduction

Supervised fine-tuning (SFT) provides a pivotal
technique to make large language models (LLMs)
follow human instructions and improve their per-
formance of downstream tasks (Chung et al., 2022;
Ouyang et al., 2022). Although some studies (Zhou
et al., 2023; Cao et al., 2023) indicate that LLMs
trained on a little data can follow instructions well,
increasing the amount of data is a straightforward
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Figure 1: (Left) With the number of fine-tuning data
increases from 10K to 3M, the performance of many
downstream tasks is significantly improved. (Right)
With the amount of instruction data increasing, fine-
tuning the language models results in a decline in per-
formance on the benchmarks that measure their world
knowledge, such as TriviaQA (Han et al., 2019), Natural
Questions (Kwiatkowski et al., 2019). The details of
training implementation can be seen in Section 2.1.

way to enhance their ability to multiple downstream
tasks or improve their performance on a specific
task, as shown in the left of Figure 1.

However, the large-scale increase in instruc-
tion data can destroy the world knowledge stored
in LLMs, as illustrated in the right of Figure 1.
Specifically, as the amount of instruction data
increases, we observe a notable decline in per-
formance on Closed-Book Question Answering
(CBQA) datasets, which are used to measure world
knowledge in LLMs (Touvron et al., 2023; Nee-
man et al., 2022). In the paradigm of supervised
fine-tuning, the conflict between maintaining world
knowledge inside LLMs and improving their per-
formance on downstream tasks by scaling up in-
struction data has not been thoroughly examined.

In this paper, we propose LoRAMoE, a novel
framework for SFT, to enhance the models’ capa-
bility of solving downstream tasks, while alleviat-
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Figure 2: Performance on the various tasks after expanding the amount of fine-tuning data. For most of the
downstream tasks (e.g., NLI and summarization), with the expansion of training data, performance on these tasks
remains stable after the improvement. Whereas, for the world knowledge benchmark, a significant decline can be
witnessed after a large amount of instruction data.

ing world knowledge forgetting during the training
phase. LoRAMoE is a Mixture-of-Experts-style
(MoE-style) plugin, which introduces several low-
rank adapters (LoRA) (Hu et al., 2021) as experts
and integrates them by using a router network. The
router network automatically assigns weights to ex-
perts, which can improve the LLM’s performance
on multiple downstream tasks.

To demonstrate the efficacy of our proposed
method, we conduct extensive experiments across
a range of downstream tasks. Experiment results
show that LoRAMoE can significantly improve
LLM’s ability to address the various downstream
tasks by fine-tuning the model on a large amount
of instruction data, while maintaining the world
knowledge stored in the model. In addition, we
further evaluate our method by visualizing the ex-
pert weight for tasks. The result indicates that
LoRAMoE adequately alleviates world knowledge
forgetting and achieves an improvement of mod-
els by fostering collaboration among experts. The
main contributions of our paper are as follows:

1. We find that significantly increasing the
amount of instruct data during the SFT phase
can damage the world knowledge inside the
LLMs. The need for improvement in down-
stream tasks by scaling up instruction data
conflicts with maintaining the world knowl-
edge inside the model.

2. We introduce LoRAMoE, a novel framework
for SFT, which introduces LoRAs as experts
and integrates them by the router. LoRAMoE
can enhance the model’s ability to address
downstream tasks, while alleviating the world
knowledge forgetting.

3. Extensive Experiments demonstrate the effi-
cacy of our proposed approach in multi-tasks
and mitigating the forgetting of world knowl-
edge inside the model. The visualization ex-
periment shows that LoRAMoE can achieve
an improvement by fostering collaboration
among experts.

2 Motivation

In this section, we verify that a large-scale SFT
can cause irreversible damage to world knowledge
within the LLMs while improving the LLMs’ per-
formance in various downstream tasks.

2.1 A Diverging Trend
We constructed a dataset containing seven cate-
gories of tasks with a total of five million training
samples, and used it to conduct SFT on a Llama-
2-7B model. The implementation details are de-
scribed in Appendix A. During the expansion of
fine-tuning data, we observed a diverging trend
in the performance across two types of tasks, as
shown in Figure 2:
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Figure 3: Performance on world knowledge benchmarks
after training on CBQA solely. Its performance rises
greatly after training with very few samples and remains
relatively stable thereafter.

Across downstream tasks such as summariza-
tion, Natural Language Inference (NLI), machine
translation, and others, the performance of the
fine-tuned model initially showed a magnificent
increase and eventually stabilized at a promising
level. However, when it comes to closed-book QA
(CBQA) tasks that are used as world knowledge
benchmark (Touvron et al., 2023; Neeman et al.,
2022), the model’s performance catastrophically
declines under the baseline Notably, with the train-
ing data expanding, a contiguous decline can be
witnessed. Moreover, this decline will occur ear-
lier if the test set is filtered.1 Appendix B case
with a larger dataset including more tasks shows
an even steeper drop on world knowledge bench-
marks, although performance remains competitive
on others.

2.2 Irreversible Knowledge Forgetting

In this section, we dissect the reason behind the de-
cline on these world knowledge benchmarks during
the expansion of fine-tuning data. We find this re-
sults from the occurrence of irreversible knowledge
forgetting inside the LLM.

The performance on world knowledge bench-
marks highly relies on the knowledge and skills
learned during pre-training phase. To investi-
gate the relationship between the performance on
world knowledge benchmarks and the knowledge
embedded in pre-trained models (Petroni et al.,

1Considering previous work that has noted train-test over-
lap in CBQA datasets (Lewis et al., 2020), we elaborately
select parts of the CBQA dataset without train-test overlap for
our testing set, namely Filtered NQ and Filtered TriviaQA.

Task Name Baseline SFT solely
on CBQA

Two-stage
Fine-tuning

TriviaQA 33.5 36.22 13.7
NQ 7.8 12.8 3.6

HotpotQA 11.2 16.1 7.1

Table 1: Performance from left to right: LlaMA-2-
7B, model tuned on CBQA, and model tuned on 3M
instructions then on CBQA. Despite further tuning
on CBQA, the large-scale SFT model’s knowledge-
answering doesn’t improve, staying below the baseline.

2019; Roberts et al., 2020; AlKhamissi et al., 2022),
we conduct fine-tuning solely on the CBQA dataset
with 250k samples and run evaluation on the test
sets without training-testing overlap (e.g. Filtered
NQ and Filtered TriviaQA). Results in Figure 3
show initial training boosts performance signifi-
cantly, especially the first 1% (approximately 1k
samples), with limited gains thereafter. This is be-
cause early fine-tuning aligns existing knowledge
with new instructions, improving CBQA results.
However, due to minimal training-testing data over-
lap, adding more samples doesn’t further enhance
performance. Thus, a model’s benchmark success
relies on world knowledge acquired from the pre-
training.

Given this, it is naturally assumed that the dimin-
ished performance on knowledge benchmark
stems from the damage of knowledge stored in
the LLM due to large-scale instruction tuning.
To verify the hypothesis, we sequentially fine-tuned
a model using two datasets, first excluding CBQA
data, then with CBQA data. Results presented in
Table 1 show a great decline in knowledge capa-
bilities versus the original LLM. This indicates
that the world knowledge within the model was
compromised during the first stage of large-scale
fine-tuning, resulting in the model’s inability to
forge the alignment between human instructions
and the already destroyed knowledge in the subse-
quent stage of fine-tuning solely with CBQA.

To sum up, the pursuit of enhancing perfor-
mance on downstream tasks through the expansion
of training data conflicts with the preservation of
world knowledge within the model in vanilla SFT.

3 LoRAMoE

In this section, we elaborate on the methodologi-
cal details of LoRAMoE, which is an MoE-style
plugin and introduced Localized Balancing Con-
straint during the training phase to alleviate the

1934



Embedding

Transformer
Block

Transformer
Block

Output

Input

Embedding

Input

Multi-Head attention

Add & Norm

Add & Norm

Embedding

Router

Multi-Head attention

Add & Norm

Add & Norm

FFN FFN Router

MoE
LoRAMoE

Input

FFN

Figure 4: The architecture of LoRAMoE, compared with classic MoE. LoRAMoE utilizes multiple LoRAs as
adaptable experts and a router to gate them in the FFN layer of every transformer block. During the training process,
only the experts and the router are optimized.

world knowledge, as shown in Figure 4.

3.1 Architecture

The left of Figure 4 illustrates the forward process
of the standard MoE architecture (Shazeer et al.,
2016; Fedus et al., 2021; Lepikhin et al., 2020).
In the MoE, the router assigns weights of experts
according to the data, allowing them to divide their
labor to complete the forward process (Jacobs et al.,
1991). The key sight of LoRAMoE is that we freeze
the backbone model to maintain world knowledge
and introduce experts to leverage this knowledge
to address tasks, while improving the performance
on multiple downstream tasks. Additionally, we
utilize the LoRA (Hu et al., 2021) as the architec-
ture of the expert to improve training and inference
efficiency.

Formally, for the traditional transformers archi-
tecture, the forward propagation process of the
feed-forward neural (FFN) network block can be
simplified as follows:

f(x) = x+ fFNN(x). (1)

The matrix operation of the linear layer in this for-
ward propagation can be expressed as:

o = Wx = W0x+∆Wx (2)

where W0 ∈ Rdin×dout represents the parameter ma-
trix of the backbone model and ∆W ∈ Rdin×dout

denotes the updated parameter during the training
phase. For LoRAMoE, we replace the linear layer
in the FFN block with the MoE-style plugin, which
makes experts collaborate to address tasks. Dur-
ing the training phase, we freeze the backbone to
maintain the world knowledge and only update
∆W . Consider the LoRAMoE layer containing
N experts, which is denoted as {Ei}Ni=1, the for-
ward process of the layer can be mathematically
expressed as follows:

o = W0x+∆Wx = W0x+
N∑

i=1

G(x)iEi(x) (3)

where Ei(·) and G(·) = Softmax(xWg) represent
the i-th expert and the router in the LoRAMoE
layer, respectively. The Wg is the trainable parame-
ter matrix of the route network. By this, the experts
and the outer work in tandem, enabling the experts
to develop varied capabilities and efficiently handle
diverse types of tasks.

In addition, LoRA has been proven to be both
effective and efficient for the SFT phase of LLMs
(Wang et al., 2023a; Liu et al., 2022; Pan et al.,
2022). To enhance the efficiency and resource con-
servation of the fine-tuning process, we replace the

1935



0 1000 2000 3000 4000
Step

0

1

2

3

4

5

6
C

oe
ffi

ci
en

t o
f V

ar
ia

tio
n

Original
Smoothed

Figure 5: The coefficient of variation for the experts
of the unconstrained LoRAMoE progressively esca-
lates and sustains at a high value, i.e., approximately
three, similar to the phenomenon observed at Shazeer
et al. (2016). This indicates that the router assigns large
weights to the same few experts.

parameter matrix of the experts with a low-rank
format. Specifically, the matrix ∆WE ∈ Rdin×dout

of the expert E(·) in the LoRAMoE layer can be
written as follows:

∆WE = BA (4)

where A ∈ Rdin×r, B ∈ Rr×dout , and the rank
r ≪ min(din, dout). LoRA contributes to a signifi-
cant reduction in the trainable parameters, thereby
enhancing efficiency and saving costs during the
fine-tuning process.

Overall, the forward process of the LoRAMoE
layer replaced the traditional FFN layer can be
represented as:

o = W0x+
α

r

N∑

i=1

ωi ·BiAix (5)

where ωi denotes the weight of i-th expert and
α is the constant hyper-parameter, approximately
equivalent to the learning rate.

3.2 Localized Balancing Constraint
The imbalance of the experts’ utilization is a typ-
ical problem in MoE (Shazeer et al., 2016; Fedus
et al., 2021), which is also observed in our proposed
method, as shown in Figure 5. The conventional
solution is balancing expert utilization (Shazeer
et al., 2016), which involves making the coefficient
of variation of the experts’ importance as the loss
function. However, this method assumes all the
training samples are under the same distribution,

Balancing
Expert Utilization

Localized Balancing Constraint

Balancing
Expert Utilization

Figure 6: Localized balancing constraint. We softly
force experts to focus on two types, one for leveraging
world knowledge by learning on its related tasks, and
another for concentrating on other downstream tasks.
Meanwhile, the experts in solving the same aspect are
balancing.

which ignores the fact that samples may be from dif-
ferent distributions such as the question-answering
task and other downstream tasks, more detailed
analysis and conceptual proof in Appendix C.

Considering the mixed characteristics of data dis-
tributions are important, during the training phase,
we introduce localized balancing constraint, a novel
balancing expert utilization method to make a por-
tion of experts focus more on leveraging world
knowledge to solve tasks. As shown in Figure 6,
during the fine-tuning phase, we softly constrain
experts to concentrate on two aspects, one of which
focuses on leveraging world knowledge by learn-
ing on its related datasets, while another focuses
on other downstream tasks. In addition, all experts
within the same aspects are balanced such as bal-
ancing expert utilization.

Formally, we define the importance matrix Q of
the LoRAMoE layer and Qn,m denotes the sum of
router values of the n-th expert for the m-th train-
ing sample in a batch, which can be represented as
follows:

Qn,m =

Tm∑

j=1

G(xj)i =
exp(ωj

i /τ)∑N
k=1 exp(ω

j
i /τ)

(6)

where N and Tm denote the number of experts
and the number of tokens of m-th training sample,
respectively. xj is the hidden input of the j-th token.
We then define the coefficient matrix I with the
same size of Q, corresponding to the importance
matrix Q. In,m denotes the importance coefficient
of Qn,m, which can be written as follows:

In,m =

{
1 + δ, Typee(n) = Types(m)
1− δ, Typee(n) ̸= Types(m)

(7)
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where δ ∈ [0, 1] controls the degree of imbalance
between experts types. Typee(n) and Types(m)
are pre-defined target type of n-th expert and the
task type of m-th training sample in a batch, re-
spectively.

We categorize the instruction data into two dis-
tinct types: world knowledge-related tasks such as
TriviaQA, and other downstream tasks such as Flo-
res. Then, we enable a portion of experts to learn
on world knowledge-related tasks to align human
instructions with world knowledge, while making
other experts focus more on enhancing the perfor-
mance of downstream tasks. Formally, suppose
that Ii,k and Ij,k denote the importance coefficient
of the i-th and j-th expert for the k-th sample, re-
spectively. If experts are in the same group, their
values at corresponding positions in the coefficient
matrix are identical, i.e., Ii,k = Ij,k. This indi-
cates that these experts have the same importance
because they are assigned to focus on learning the
same type of tasks. On the contrary, the values
of experts from distinct groups at their coefficient
matrix are different, i.e., Ii,k ̸= Ij,k.

The localized balancing constraint loss Llbc is
defined to measure the dispersion of the weighted
importance matrix Z = I ◦Q, which can be math-
ematically represented as:

Llbc =
σ2(Z)

µ(Z)
(8)

where σ2(Z) and µ(Z) represent the variance and
mean of Z, respectively. Specifically, if a spe-
cific sample is from the world knowledge-related
dataset, experts focusing on solving this type will
have larger values in the coefficient matrix I. Op-
timizing the loss Llbc reducing can make corre-
sponding experts learn more from this sample and
be assigned a larger weight by the router. Mean-
while, experts solving the same type of task are
balanced such as Shazeer et al. (2016). In addi-
tion, the constraint is soft to encourage cooperation
among experts to preserve the capacity for general-
ization.

Overall, localized balancing constraint Llbc

achieves a localized balance between two types of
experts: one specializes in leveraging world knowl-
edge by training more on world knowledge-related
datasets, while the other concentrates on various
downstream tasks. The loss of LoRAMoE can be
represented as follows:

Ltotal = L+ βLlbc (9)

where L is the next-token prediction loss of LLMs
and β controls the strength of localized balancing
constraint. In the training phase, we freeze the
backbone model and the trainable parameters are
only those of the experts and routers within the
LoRAMoE layers. In the inference process, the
router automatically assigns weights to all experts,
which avoids the need for pre-specified data types.

4 Experiments

4.1 Experiment Setup

In this section, we introduce the training implemen-
tation for LoRAMoE. We only replace the linear
layer in the feed-forward neural network of LLM
with the LoRAMoE layer, initializing each layer
with six experts, of which three experts are dedi-
cated to addressing downstream tasks, and the other
three are responsible for leveraging world knowl-
edge in the base model by learning on its related
tasks. The hyperparameters for control constraint
strength β and degree of imbalance δ are both set
to 0.1. For LoRA settings, the α, and r are set to
32 and four for the main result, respectively. The
dropout is 0.05, and the learning rate is 2e − 4.
The training dataset is the 3 million set the same
as the one described in Appendix A, so as the eval-
uation settings. We freeze the parameters of the
base model, rendering only the experts and router
in LoRAMoE trainable. The batch size per node is
set to 16.

4.2 Main Results

Table 2 displays the performance of LoRAMoE and
compares this result with the outcomes of directly
applying SFT to the model or utilizing LoRA tun-
ing. The results show that the language model with
LoRAMoE gets good performance on both world
knowledge benchmarks and others, indicating its ef-
fectiveness in avoiding knowledge forgetting while
improving multi-tasking abilities.

For world knowledge benchmarks, contrary to
the catastrophic collapse seen in Section 2, Lo-
RAMoE not only avoids this issue but also sur-
passes the model fine-tuned solely with the CBQA
dataset. LoRAMoE shows a significant perfor-
mance boost on world knowledge benchmarks over
vanilla SFT, with up to a 63.9% improvement and
an average increase of 35.3%.

For other downstream tasks, LoRAMoE is capa-
ble of achieving performance close to or even sur-
passing that of direct SFT. For instance, in all read-

1937



Task Name Baseline SFT solely on
CBQA SFT LoRA LoRAMoE LoRAMoE

(with Llbc)
WSC 65.4 - 76.0 65.4 71.2 70.2

winogrande 61.7 - 71.2 64.3 66.3 69.6
Flores 0.1 - 24.3 26.6 26.4 25.9
Xsum 19.7 - 34.7 34.5 34.8 33.2

Race-middle 30.5 - 89.1 78.8 84.5 90.0
Race-high 30.4 - 86.1 75.3 80.6 86.5

RTE 52.7 - 88.1 77.3 80.9 87.4
ReCoRD 29.4 - 84.8 83.2 84.3 85.9

AX-g 52.0 - 84.8 76.1 81.7 87.1
multiRC 44.0 - 86.7 81.4 87.3 87.9
TriviaQA 52.2 57.8 51.1 47.8 55.3 58.1

NQ 18.5 28.6 24.5 16.2 23.8 28.0
Filtered TriviaQA 33.5 36.2 21.6 33.4 38.5 35.4

Filtered NQ 7.8 12.8 7.3 11.6 13.4 12.0
HotpotQA 11.2 16.1 13.4 10.7 14.4 16.1

Table 2: Results of LoRAMoE. Contrary to direct full fine-tuning and the use of LoRA-tuning that exhibits reduced
performance on world knowledge benchmarks after training, our approach ensures simultaneous growth of both
world knowledge benchmarks and other downstream tasks.

ing comprehension tasks (i.e., Race, ReCoRD, mul-
tiRC), LoRAMoE achieved superior performance.

We also compare our method against PEFT by
single LoRA. The knowledge forgetting also oc-
curred during the single LoRA-tuning, as it is es-
sentially the same as vanilla SFT (Hu et al., 2021).
Compared with a single LoRA, multiple collabo-
rative LoRAs in LoRAMoE enhance both world
knowledge retention and multitasking performance.
They offer an average boost of 30.9% in world
knowledge benchmarks and 8.4% in other down-
stream tasks.

Besides, Llbc improves outcomes for LoRAMoE
in the vast majority of tasks, both world knowledge
benchmarks and others. Notably, for reading com-
prehension, NLI, and the original CBQA dataset,
the benefits of this method were quite substantial,
up to 17.6%. This indicates capability partition-
ing in the expert group benefits the performance in
multi-task learning.

4.3 Sensitivity Analysis

In this section, we analyze the parameter sensitivity
of LoRAMoE. Keeping other settings constant, we
vary the number of experts and the rank of LoRA.
The average performance with varied parameter
settings on all test sets including the world knowl-
edge benchmark and all other downstream tasks is
shown in Table 3. In Appendix D there are detailed
results.

As the number of trainable parameters increases,

# Experts # LoRA
Rank

# Trainable
Param.

Avg.
Results

6 4 0.57% 58.21
4 4 0.38% 55.84
8 4 0.76% 56.58

6 8 1.07% 58.11
6 16 2.08% 58.86

Table 3: Performance of LoRAMoE varies with the num-
ber of experts and LoRA rank across all test sets. This
includes the average results on both the world knowl-
edge benchmark and all other downstream tasks. Lo-
RAMoE shows stability to parameter changes.

performance is generally stable. the number of 6
experts is the most beneficial choice, as more ex-
perts do not lead to higher performance. While the
increase in LoRA rank improves the model’s capa-
bilities somewhat, it brings about an exponential
rise in trainable parameters.

4.4 Visualizing the Experts Utilization

To confirm the effectiveness of LoRAMoE in spe-
cializing the experts with two types, we visualize
their weight assigned by the router when encoun-
tered with data from downstream tasks and knowl-
edge benchmarks respectively, as illustrated in Fig-
ure 7.

There is a distinct contrast in the utilization
of the two types of experts when dealing with
world knowledge benchmarks and other down-
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Figure 7: Visualization of routers’ weight on different
types of data, where type 1 refers to the experts dedi-
cated to aligning the world knowledge in the base model
with the human instruction and type 2 refers to the ex-
perts that focus on downstream tasks. The utilization
rate of the type of experts diverged significantly across
tasks.

stream tasks. This suggests that the routers can
automatically allocate specific tasks to experts
with corresponding abilities during the inference
phase. Specifically, the experts requested to lever-
age world knowledge are greatly employed in
world knowledge benchmarks (e.g., TriviaQA, Nat-
ural Questions, and HotpotQA), underscoring their
vital role in preventing world knowledge forgetting.
This corresponds to the fact we state in Section 2
that supervised fine-tuning boosts the model’s ca-
pabilities in these tasks by associating pre-stored
world knowledge in the model with human instruc-
tions. On the other hand, experts assigned to focus
on enhancing performance in downstream tasks
are given increased prominence when encountering
these tasks. Through this visualized result, we find
that some downstream tasks still require experts of
another type. It is reasonable. For example, in read-
ing comprehension tasks, the knowledge learned
by the model during pre-training can better assist
in making factual judgments. This phenomenon is
even more pronounced in language-based tasks. In
the WSC task (Levesque et al., 2012), the router
allocates an average of about 45% of its attention
to the experts responsible for world knowledge.

5 Related Work

Parameter-Efficient Fine-tuning. With the size
of language models growing larger, parameter-
efficient fine-tuning (PEFT) (He et al., 2021) has
become crucial for resource savings. Researchers
have proposed several approaches such as LoRA
(Hu et al., 2021), adapters (Houlsby et al., 2019),
and prompt learning (Lester et al., 2021), to en-

hance fine-tuning efficiency. PEFT based on low-
rank adapters (Hu et al., 2021) is popular and
widely used, which introduces two trainable low-
rank matrices in each fully connected layer, to
achieve significant savings in training resources
without adding additional inference computation
cost. We apply low-rank techniques to the structure
of experts to save resource consumption.

Mixture-of-Experts. The mixture of Experts
(MoE) replaces the feed-forward neural network
layer with sparsely activated experts, which sig-
nificantly enlarges the model without remarkably
increasing the computational cost (Jacobs et al.,
1991). Currently, the token-level MoE architectures
are widely used in pre-trained language models
and vision models (Shazeer et al., 2016; Lepikhin
et al., 2020; Du et al., 2022; Riquelme et al., 2021).
In addition, researchers (Zhou et al., 2022; Chi
et al., 2022) aim to investigate the router selection
problem in MoE. Unlike these efforts to expand
the model size and address the selection problem,
we propose an MoE-style framework for multi-
task learning and maintaining the world knowledge
stored in LLMs.

Multi-LoRA Architecture. Researchers also
have utilized multiple LoRAs for enhanced model
performance. Huang et al. (2023) propose LoraHub
to choose different LoRA combinations for task
generalization. MOELoRA (Liu et al., 2023) lever-
age LoRA and MoE for task-specific tuning and
multitasking, especially in healthcare. However,
these methods need the data type as the input dur-
ing the inference phase, which limits the applica-
tion of the model to other tasks. Chen et al. (2023a)
first introduces multiple LoRA serving systems and
Sheng et al. (2023) proposes S-LoRA, a system
that can serve thousands of LoRA adapters from
a single machine. Chen et al. (2023b) introduces
several experts to enhance the model’s ability for
multimodal learning. Unlike these approaches, Lo-
RAMoE introduces an MoE-style plugin and Local-
ize Balancing Constraint to tackle world knowledge
forgetting in LLMs, while enhancing the model’s
ability to multi-task learning.

6 Conclusion

In this paper, we first delve into the conflict be-
tween improving LLM’s performance on down-
stream tasks by scaling up data during the SFT
phase and discouraging world knowledge forget-
ting. To address this conflict, we then introduce Lo-
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RAMoE, a novel framework for SFT, which intro-
duces LoRAs as experts and integrates them by the
router. Extensive experimental results demonstrate
that LoRAMoE can foster collaboration among ex-
perts to enhance the model’s performance of down-
stream tasks, while preserving the world knowl-
edge inside it.

7 Limitations

In this section, we discuss the potential limitations
of our proposed method LoRAMoE. Firstly, al-
though we have demonstrated the effectiveness of
LoRAMoE in alleviating world knowledge forget-
ting while enhancing the downstream ability of the
LLMs with SFT, we limit the model size to 7B due
to resource and time constraints. Further work will
be conducted on the larger LLMs, to understand the
influence of large-scale SFT on these LLMs and
to boost their multitasking abilities. Secondly, the
localized balancing constraint can softly constrain
the type of experts and balance the experts utiliza-
tion. However, we haven’t studied the case where
there are more experts types for a more fine-grained
task category. Future work will be conducted on a
more fine-grained understanding of the influence
of SFT and the utilization of LoRAMoE.
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A Details about Experiment
Implementation

Datasets. The seven tasks are closed-book ques-
tion answering (CBQA), coreference resolution,

natural language inference (NLI), abstract summa-
rization, multi-lingual translation, reading compre-
hension, and text classification. Table 4 shows
the composition of the 3-million-sample dataset.
The five million fine-tuning data we use includes
three million versions and their variants from data
augmentation strategies. The 1-million-sample ver-
sion is the subset of the original 3-million-sample
dataset.

Evaluation. We utilize the opencompass6

framework to run the evaluation process on the
aforementioned tasks. Notably, considering previ-
ous work that has noted train-test overlap in CBQA
datasets (Lewis et al., 2020), we elaborately se-
lect parts of the CBQA dataset without train-test
overlap for our testing set, namely Filtered NQ and
Filtered TriviaQA, to analyze the world knowledge
of models better.

B The World Knowledge of LLM Further
Declines after Being Trained with More
Data

With the task types increasing, there is an inevitable
trend to increase the amount of SFT training data.
To further verify that a large-scale SFT training
process can lead to knowledge forgetting of LLM
as stated in Section 2, we construct a much larger
dataset containing ten million training samples. In
addition to the dataset from the previous section,
we also added the following tasks:

• Named Entity Recognition: sampled from
Wang et al. (2023b). Contains 17 different
NER tasks.

• Program Execution: sampled from Wang et al.
(2022). Contains 90 different tasks requiring
the LLM to understand the instructions about
a program and execute it.

• Question Generation: sampled from a existing
huggingface dataset 7. Given a context, the
LLM needs to generate an appropriate ques-
tion based on the answer.

• Text2sql: sampled from two existing hugging-
face datasets8. Given a description in natural
language, the LLM needs to generate an ap-
propriate sequence of SQL.

6https://opencompass.org.cn/
7https://huggingface.co/datasets/qa_zre
8https://huggingface.co/datasets/Clinton/

Text-to-sql-v1, https://huggingface.co/datasets/
cfq
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Task Name # Train # Test Task Type

TriviaQA (Han et al., 2019) 78785 254 closed-book QA
NQ (Kwiatkowski et al., 2019) 104071 357 closed-book QA
HotpotQA (Qi et al., 2019) 72798 5622 closed-book QA
WSC (Levesque et al., 2012) 554 146 coreference resolution
WinoGrande (Sakaguchi et al., 2021) 40398 1767 coreference resolution
Flores (Guzmán et al., 2019) 0 1600 machine translation
WMT 2 500000 - machine translation
RTE 3 2490 3000 NLI
ReCoRD (Zhang et al., 2018) 100730 10000 reading comprehension
AX-g 4 0 356 NLI
multiRC (Khashabi et al., 2018) 27243 9693 reading comprehension
anli r1/r2/r3 (Liu et al., 2020) 162874 - NLI
qqp (Wang et al., 2017) 363846 - NLI
Xsum (Narayan et al., 2018) 204045 11334 single-document summarization
Race (Lai et al., 2017) 87866 4934 reading comprehension
duorc-selfRC (Saha et al., 2018) 60721 - reading comprehension
AG-news (Zhang et al., 2015) 120000 - topic classification
yelp review (Zhang et al., 2015) 650000 - sentiment classification
openai tldr 5 232188 - summarization

Table 4: Details about the tasks in our fine-tuning dataset. "-" means we do not use the test set of this dataset for
evaluation.

• Toxic Classification: sampled from a existing
huggingface datasets9.

After training the LLaMa-2-7b on this 10-
million-sample dataset with the same experiment
setup with Appendix A, we find the LLM exhibit
a greater knowledge-forgetting but a promising
performance in other tasks apart from knowledge
benchmarks.

C Mixed Distribution Dilemmas for
Expert Balancing

When fine-tuning MoE without any constraints,
the router mechanism often converges to a state
in which a small number of experts receive a dis-
proportionately large share of preferences by the
router, as depicted in Figure 5. This imbalance
among experts presents a challenge to correct, as
experts that receive greater routing weights in the
early stages of training undergo more rapid opti-
mization, thereby garnering increased preferences
from the router. A similar phenomenon has been
documented in the work presented in Shazeer et al.
(2016) and Fedus et al. (2021).

A conventional solution for balancing experts
utilization involves employing the coefficient of

9https://huggingface.co/datasets/google/civil_
comments

Task Name Baseline Result
NER 42.1 82.2

Program Execution 18.7 78.5
Toxic Classification 96 97.4

Question Generation 46.2 61.1
Text2sql 56 96.2

WSC 65.4 70.2
winogrande 61.7 66.1

Flores 0.1 26.0
Xsum 19.7 33.2

Race-middle 30.5 87.0
Race-high 30.4 83.3

RTE 52.7 87.4
ReCoRD 29.5 56.6

AX-g 52.0 87.9
multiRC 44.0 86.0

TriviaQA 52.2 30.9
NQ 18.5 14.2

Filtered TriviaQA 33.5 15.7
Filtered NQ 7.8 5.0
HotpotQA 11.2 7.6

Table 5: Performance of Llama-2-7B after vanilla SFT
with a 10-million-sample datasets. There is a much
more severe decrease in the performance on the CBQA
tasks, while a great enhancement in other tasks com-
pared with the baseline.
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variation of the experts’ importance as the loss func-
tion, aimed at equalizing the significance of each
expert (Shazeer et al., 2016). This solution assumes
that the distribution of training samples for optimis-
ing MoE is a single distribution, which inherently
eliminates the necessity of considering the diverse
origins of data distribution. Specifically, this tra-
ditional approach simplifies the modeling process
by assuming homogeneity in data sources that of-
ten do not align with fine-tuning data containing
both factual knowledge QA and other downstream
tasks. Therefore, such simplification can lead to
significant biases, particularly when encountering
datasets with varied distributional characteristics.

Traditional balancing constraints, which aim to
allocate a uniform distribution of training samples
across all experts, can lead to inaccurate param-
eter estimation. This is because such constraints
do not account for the intrinsic differences in data
representation and importance across various cat-
egories. Recognizing the disparate nature of data
distributions, LoRAMoE strategically assigns data
to experts, not uniformly, but based on the observed
imbalances. This allocation is governed by a set
of weights that are calibrated to reflect the varying
significance and representation of different data
categories within the overall dataset.

Such a specialized allocation method is pivotal in
addressing the challenges posed by uneven data dis-
tributions. By tailoring the distribution of training
samples to each expert based on the inherent dispar-
ities in the data, LoRAMoE facilitates a more accu-
rate and representative parameter estimation. This
nuanced approach to data distribution allows for a
more effective fitting of the model to diverse data
subsets, significantly enhancing the model’s predic-
tive accuracy and generalization capability. This
strategy is particularly effective in scenarios where
data imbalance could otherwise lead to skewed
learning and generalization errors, ensuring that
each data category is appropriately represented and
modeled within the overall system.

To illustrate the concept with a simplified model,
let’s assume our training data is sampled from a
mixture of two Gaussian distributions. The means
(µ1, µ2) and variances (σ2

1, σ
2
2) of these distribu-

tions are implicit. The proportion of training data
from each distribution is denoted as p1andP2 where
p1 + p2 = 1, without loss of generality, we assume
that p1 ≤ p2. When a MoE model fits the proposed
distribution with balanced weights m, the likeli-
hood of the model given the data can be expressed

as:

L(X) =
∏

x∈X1

(
mN

(
x;µ′

1, σ
′2
1

)

+(1−m)N
(
x;µ′

2, σ
′2
2

))

×
∏

x∈X2

(
mN

(
x;µ′

1, σ
′2
1

)

+(1−m)N
(
x;µ′

2, σ
′2
2

))
, (10)

where Card(X1) : Card(X2) = p1 : p2.
Using N1(x) and N2(x) for N

(
x;µ

′
1, σ

′2
1

)
and

N
(
x;µ

′
2, σ

′2
2

)
,

The optimal mean value for µ
′
1 satisfies the fol-

lowing conditions, whose value is 0 when the fitted
distribution is in the same family of mixed distribu-
tions N(θ, p1) as the sampling distribution:

∂ logL(X)

∂µ′
1

=
∑

x∈X1∪X2

∂

∂µ′
1

log (mN1(x)

+(1−m)N2(x))

=
∑

x∈X1∪X2

(
x− µ′

1

σ′2
1

)

× mN1(x)

mN1(x) + (1−m)N2(x)
, (11)

In equation 10, we can replace part of the summa-
tion with the empirical estimate of the mean of the
input x. For an ideal routing network, there must
exist a distribution Ni such that the data allocated
to this distribution is independently and identically
distributed with one of the peaks in the sampling
distribution. Let’s assume this distribution to be N2.
In this case, if m ≥ p1, then the fitting result for dis-
tribution µ1′ will be µ′

1 = (p1µ1+(m−p1)µ2)/m.
Based on the chain rule of differential derivation,
we end up with:

d logL

dm
=
∂ logL

∂µ′
1

dµ′
1

dm

=

( ∑

x∈X1∪X2

(
x− µ′

1

σ′2
1

)

× mN1(x)

mN1(x) + (1−m)N2(x)

)

× p1(µ2 − µ1)

m2

≤0, (12)

The inverse result can be derived similarly.
Therefore, the best training error is achieved only
when the mixing coefficient m of the prior distri-
bution is consistent with the actual sampling distri-
bution weight p1.
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Task Name # Expert=8
# rank=4

# Expert=4
# rank=4

# Expert=6
# rank=8

# Expert=6
# rank=16

WSC 71.2 76.0 70.2 76.9
winogrande 69.8 56.0 69.5 70.9

Flores 25.0 25.8 26.1 26.3
Xsum 32.8 33.3 33.7 34.0

Race-middle 90.3 84.2 90.3 90.5
Race-high 87.1 80.7 87.3 87.2

RTE 84.5 80.1 88.1 85.2
ReCoRD 85.6 85.5 86.0 86.1

AX-g 88.8 77.5 88.2 85.7
multiRC 77.2 87.6 81.1 87.3

TriviaQA 54.4 57.8 58.2 58.9
NQ 25.6 27.9 27.8 28.2

Filtered TriviaQA 30.7 35.8 36.7 34.3
Filtered NQ 11.5 13.4 12.0 15.4
HotpotQA 14.5 16.0 16.4 16.5

Table 6: Detailed result on sensitivity study.

D Detalied Results of Sensitivity Study

Table 6 shows the detailed results presented in Sec-
tion 4.3.
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