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Abstract
Finetuning large language models (LLMs) has
been empirically effective on a variety of down-
stream tasks. Existing approaches to finetun-
ing an LLM either focus on parameter-efficient
finetuning, which only updates a small num-
ber of trainable parameters, or attempt to re-
duce the memory footprint during the training
phase of the finetuning. Typically, the memory
footprint during finetuning stems from three
contributors: model weights, optimizer states,
and intermediate activations. However, existing
works still require considerable memory, and
none can simultaneously mitigate the memory
footprint of all three sources. In this paper, we
present quantized side tuing (QST), which en-
ables memory-efficient and fast finetuning of
LLMs by operating through a dual-stage pro-
cess. First, QST quantizes an LLM’s model
weights into 4-bit to reduce the memory foot-
print of the LLM’s original weights. Second,
QST introduces a side network separated from
the LLM, which utilizes the hidden states of the
LLM to make task-specific predictions. Using a
separate side network avoids performing back-
propagation through the LLM, thus reducing
the memory requirement of the intermediate
activations. Finally, QST leverages several low-
rank adaptors and gradient-free downsample
modules to significantly reduce the trainable
parameters, so as to save the memory footprint
of the optimizer states. Experiments show that
QST can reduce the total memory footprint by
up to 2.3× and speed up the finetuning pro-
cess by up to 3× while achieving competent
performance compared with the state-of-the-
art. When it comes to full finetuning, QST can
reduce the total memory footprint up to 7×.

1 Introduction
Recent advancements in large language models (LLMs),
including GPT (Brown et al., 2020; Floridi and Chiri-
atti, 2020; OpenAI, 2023), PaLM (Chowdhery et al.,
2022), OPT (Zhang et al., 2022), and LLaMA (Tou-
vron et al., 2023), have showcased remarkable task-
generalization capabilities across diverse applications

(Stiennon et al., 2020; Dosovitskiy et al., 2020). The on-
going evolution of LLMs’ capabilities is accompanied
by exponential increases in LLMs’ sizes, with some
models encompassing 100 billion parameters (Raffel
et al., 2020; Scao et al., 2022). Finetuning pre-trained
LLMs (Min et al., 2021; Wang et al., 2022b,a; Liu et al.,
2022) for customized downstream tasks provides an
effective approach to introducing desired behaviors, mit-
igating undesired ones, and thus boosting the LLMs’
performance (Ouyang et al., 2022; Askell et al., 2021;
Bai et al., 2022). Nevertheless, the process of LLM
finetuning is characterized by its substantial memory de-
mands. For instance, finetuning a 16-bit LLaMA model
with 65 billion parameters requires more than 780GB
of memory (Dettmers et al., 2023).

To reduce the computational requirement of LLM
finetuning, recent work introduces parameter-efficient
finetuning (PEFT), which updates a subset of train-
able parameters from an LLM or introduces a small
number of new parameters into the LLM while keep-
ing the vast majority of the original LLM parameters
frozen (Houlsby et al., 2019; Li and Liang, 2021; Pfeif-
fer et al., 2020; Hu et al., 2021; He et al., 2021; Lester
et al., 2021). PEFT methods achieve comparable per-
formance as full finetuning while enabling fast adaption
to new tasks without suffering from catastrophic forget-
ting (Pfeiffer et al., 2020). However, PEFT methods
necessitate caching intermediate activations during for-
ward processing, since these activations are needed to
update trainable parameters during backward propaga-
tion. As a result, PEFT methods require saving more
than 70% of activations and almost the same training
time compared to full finetuning (Liao et al., 2023; Sung
et al., 2022). Concisely, existing PEFT techniques can-
not effectively reduce the memory footprint of LLM
finetuning, restricting their applications in numerous
real-world memory-constrained scenarios.

Recent work has also introduced approaches to com-
bining PEFT and quantization. For example, QLoRA
(Dettmers et al., 2023) quantizes an LLM’s weights to
4-bit and leverages low-rank adaption (LoRA) (He et al.,
2021) to finetune the quantized LLM. QLoRA reduces
the memory footprint of an LLM’s weights and opti-
mizer states, and as a result, finetuning a 65B LLM
requires less than 48 GB of memory. However, QLoRA
does not consider the memory footprint of intermediate
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(b) Comparing the predictive performance of different
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Figure 1: Figure 1a shows the memory footprint of different methods of fintuning LLaMA-2-70b. Figure 1b shows
the MMLU 5-shot accuracy of different methods when tuning LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-70B.
Note that we set the batch size to 16 and the sequence length to 384. Larger markers represent larger models.

activations, which can be particularly large when using
a large batch size for finetuning. As a result, QLoRA
only supports small-batch training (e.g. a batch size
of 1), and finetuning a 65B LLM requires checkpoint-
ing gradients (Chen et al., 2016) to fit the LLM on a
single 48GB GPU, resulting in long training time. Be-
sides, our evaluation also reveals that the performance
of QLoRA becomes unstable when using 16-bit float-
ing points. Sung et al. (2022) and Zhang et al. (2020)
propose to use a side network to reduce the memory
footprint of intermediate activations by avoiding back-
propagation of the LLM on natural language processing
(NLP) and computer vision (CV) tasks, respectively.
Even with the adoption of a side network, the inherent
model size of the LLM remains a challenge. Meanwhile,
these approaches focus on small models (i.e., less than 3
billion parameters), and their applicability and efficacy
for larger models remain unexplored.

In this paper, we propose a fast, memory-efficient
LLM finetuning framework, called Quantized Side-
Tuning (QST), which operates through a dual-stage
process as shown in Figure 2. First, QST quantizes an
LLM into 4-bit to reduce the memory footprint of its
model weights. Second, QST introduces a side network
separating from the quantized LLM to avoid perform-
ing backward propagation for the quantized LLM, thus
saving the memory footprint of intermediate activations.
During the training phase of QST, the input to each
layer of the side network is formed by combining (1)
the downsampled output of the corresponding quantized
LLM layer and (2) the output of the previous layer of the
side network. A larger LLM usually has a larger model
depth (i.e., the number of layers) and width (the hidden
size of each layer), which in turn requires more train-
able parameters for the downsampling layers. Unlike
Sung et al. (2022) that leverages linear layer to per-
form downsampling, QST uses several low-rank adapter

methods (He et al., 2021; Edalati et al., 2022) such as
MaxPooling (LeCun et al., 1998) and AvgPooling, sig-
nificantly reducing the required trainable parameters
and the memory footprint for the optimizer states. After
that, we use a learnable parameter to assign weights and
subsequently aggregate the hidden states of the quan-
tized LLM and the side network. Finally, we reuse
the LLM head or classifier to predict. Combined with
4-bit quantization and side tuning, QST significantly
reduces all three main contributors of the memory foot-
print and training time during the training phase. Be-
sides, QST does not increase inference latency since
the LLM and side network can be computed in paral-
lel. Figure 1 compares the memory footprint of QST
and existing parameter-efficient fine-tuning methods,
including QLoRA and LST.

To validate the effectiveness of our QST, we conduct
extensive evaluations for different types of LLMs (e.g.,
OPT, LLaMA 2), with 1.3B to 70B parameters, on var-
ious benchmarks. Experiment results show that QST
can reduce the total memory footprint by up to 2.3 ×
and speed up the finetuning process by up to 3 × while
achieving competent performance compared with the
state-of-the-art. Our codes are released to the GitHub 1 .

2 Related Work
2.1 Parameter-Efficient Finetuning
Finetuning allows an LLM to adapt to specialized do-
mains and tasks (Devlin et al., 2018; Radford et al.,
2019; Brown et al., 2020). However, fully finetuning
an LLM comes with high computation costs due to the
rapidly increasing LLM sizes. Parameter-efficient fine-
tuning (PEFT) methods are proposed to solve this issue.
Drawing inspiration from the pronounced sensitivity of
LLMs to prompts as highlighted in Schick and Schütze

1https://github.com/YouAreSpecialToMe/QST
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Figure 2: A overview of quantized side tuning.

(2020), a series of studies introduce trainable prompt
embeddings prepended to the input text or attention
components while preserving the original LLM parame-
ters (Liu et al., 2023; Li and Liang, 2021; Lester et al.,
2021). Rusu et al. (2016) and Houlsby et al. (2019)
propose adapter modules to introduce new task-specific
parameters, which are inserted into the Transformer lay-
ers inside the LLM. LoRA (Hu et al., 2021) leverages
the low-rank decomposition concept to construct train-
able parameters inserted into the original LLM weights.
(IA)3 (Liu et al., 2022) proposes to scale the pre-trained
model weights of an LLM with a trainable vector. Of
late, there has been a surge in the proposal of unified
approaches that amalgamate various PEFT methods by
leveraging human heuristics (He et al., 2021) or em-
ploying neural architecture search (Zhou et al., 2023;
Zoph and Le, 2016; Mao et al., 2021). Existing PEFT
approaches focus on optimizing model performance
while minimizing trainable parameters. However, a re-
duction in the number of trainable parameters does not
inherently imply a corresponding reduction in memory
footprint.

2.2 Memory-Efficient Training and Finetuning

Memory-efficient training and finetuning aims to reduce
the memory footprint during the LLM training and/or
finetuning phase. Reversible neural networks (Gomez
et al., 2017; Kitaev et al., 2020; Mangalam et al., 2022)
allow the intermediate activations of each layer to be
recomputed from the activation of its next layer, thus
exempting the need to save intermediate activations.
Gradient checkpointing (Chen et al., 2016) offers an
optimization strategy that balances computational re-

sources against memory footprint. Specifically, it re-
duces memory requirement by selectively discarding
certain intermediate activations, which are subsequently
recomputed through an additional forward pass when
needed. Another line to enhancing memory efficiency
involves network compression, that is, the original LLM
is reduced to a more compact form, thereby making
both the training and inference phases more computa-
tionally economical. Network pruning and distillation
are the most prevalent strategies for network compres-
sion. Network distillation (Hinton et al., 2015; Koratana
et al., 2019) involves the creation of a student network
that is trained to approximate the output distribution
of a teacher network across a specified dataset. Net-
work pruning (Frankle and Carbin, 2018; Frankle et al.,
2020) aims to streamline models by ascertaining the
significance of individual parameters and subsequently
eliminating those deemed non-essential. Compared with
PEFT methods, network compression yields models op-
timized for expedited inference, whereas PEFT methods
may achieve superior performance by updating a small
set of trainable parameters.

Recently, QLoRA (Dettmers et al., 2023) quantizes
the LLM to 4-bit and then adds LoRA to finetune the
quantized LLM. QLoRA significantly reduces the mem-
ory footprint of weights and optimizer states compared
with full finetuning while retaining similar performance.
QLoRA does not consider the memory footprint of inter-
mediate activations, and thus falls short in finetuning the
LLM with a large batch size, resulting in a long training
time. In the context of NLP and CV tasks, the studies
by (Sung et al., 2022) and (Zhang et al., 2020) intro-
duce the concept of employing a side network. The side
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network aims to obviate the need for backpropagation
through the LLM, thereby reducing the memory foot-
print associated with intermediate activations. Despite
incorporating the side network, the inherent model size
(i.e., the memory footprint of weights) of the LLM still
poses computational challenges. Hence, both methods
can only focus exclusively on models with fewer than
3 billion parameters, and fail to finetune models with
more parameters.

3 Quantized Side Tuning
In this section, we first describe the process of quantiz-
ing an LLM into 4-bit, and then introduce our design of
the side network for side tuning.

3.1 4-bit Quantization
Quantization is the process of converting a data type
with more bits (e.g., 32- or 16-bit floating points) into
another data type with fewer bits (e.g., 8-bit integers or
4-bit floating points). QST first quantizes an LLM from
16-bit into 4-bit, formulated as follows.

X4bit =round
(

M4bit

Absmax(X16bit)
X16bit

)
(1)

=round
(
c16bit ·X16bit

)
, (2)

where X4bit and X16bit are tensors in 4- and 16-bit,
respectively. M4bit is the maximum value of the 4-bit
data type. For example, MNF4 = 1, where NF4 is an
information-theoretically optimal data type that ensures
each quantization bin has an equal number of values as-
signed from the input tensor. QST considers both NF4
and FP4 to quantize an LLM. We empirically demon-
strate that NF4 performs the best in our experiments (see
Section 4.6). c16bit is the quantization constant (or quan-
tization scale) of the 16-bit data type. Correspondingly,
dequantization is given by

dequant(c16bit, X4bit) =
X4bit

c16bit
= X16bit. (3)

The key limitation of this method arises when the in-
put tensor contains values with very large magnitudes,
commonly referred to as outliers. Such outliers can
result in under-utilization of the quantization bins, lead-
ing to sparsely populated or even empty bins in some
instances. To address this issue, a prevalent strategy in-
volves partitioning the input tensor into discrete blocks,
each subjected to independent quantization with its own
associated quantization constant. As a result, the input
tensor X ∈ Rb×h is decomposed into n contiguous
blocks, each comprising B elements. This decomposi-
tion is facilitated by flattening X into a 1-dimensional ar-
ray, which is then partitioned into n = (b×h)

B individual
blocks. Then, we can leverage E.q. (1) to independently
quantize these n blocks using different quantization con-
stants. Typically, minimizing the error associated with
4-bit quantization would necessitate the utilization of
smaller block sizes. This is attributed to the reduced

influence of outliers on other weights. However, using
a small block size leads to high memory overhead since
we need to allocate more memory for these quantization
constants. To reduce the memory footprint of quantiza-
tion constants, we can use the same quantization strategy
to quantize these quantization constants (Dettmers et al.,
2023). In this paper, we use 8-bit float points to quantize
the quantization constants, and the forward pass of a
single linear layer in the LLM is defined as Y 16bit =
dequant(dequant(c16bit2 , c8bit1 ),W 4bit)X16bit. 4-bit
quantization can significantly reduce the memory foot-
print of weights, facilitating easier storage and deploy-
ment of LLMs. Besides, low-precision floating numbers
are faster to execute on modern accelerators such as
GPUs, leading to faster model training and inference.
Nonetheless, the high to low precision data type conver-
sion process during quantization can lead to accuracy
degradation, attributable to the inherent information
loss.

3.2 Side Tuning

We now analyze the memory footprint of LLM training
and then introduce the neural architecture of the side
network, which reduces the inherent information loss
and minimizes accuracy drop during quantization.

Memory footprint during the training phase. For a
given LLM with N layers, let yi = fi(Wi, xi) denotes
the ith transformer layer of the LLM, where xi is the
input to the ith layer (i.e., xi = yi−1). The memory
required during the training phase of the LLM predomi-
nantly comprises three main contributors: M1) weights
of the LLM {Wi}Ni=1, M2) the optimizer state, which
is threefold the size of the trainable parameters when
employing the Adam optimizer (Kingma and Ba, 2014)
(one for gradient and two for moments), and M3) the in-
termediate activations {y′i}Ni=1. The memory footprint
of intermediate activations is related to model depth,
width, and several training settings, e.g., batch size and
sequence length. QLoRA reduces the memory footprint
of an LLM’s weights and optimizer states (M1 and M2)
but fails to reduce intermediate activations (M3). When
finetuning an LLM with a large batch size and/or long
sequence length, the memory footprint of QLoRA in-
creases significantly. However, using a small batch size
results in long training time. Sung et al. (2022) only re-
duces the memory footprint of intermediate activations
(M3), thus it struggles to finetune a model with more
than 3 billion parameters.

Side network. Our side network g serves as a
lightweight version of the quantized LLM f . The
hidden state and weight dimension of g are r times
smaller than those of f , where r is the reduction fac-
tor. During the forward pass, the hidden state of the
ith layer of the side network hgi is formulated by
h16bit
gi = (1−βi)∗downsamplei(h

16bit
fi

)+βi ∗h16bit
gi−1

,

where h16bit
fi

is the hidden state of the ith layer of f
and can be computed using E.q. (3). The illustration
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of ith layer of our QST is shown in Figure 3. Note
that we use the output of the embedding layer and
the downsampled embedding layer as h16bit

f0
and h16bit

g0 .
βi = sigmoid(γi) is a learned gate parameter of ith

layer, where γi is a learnable zero-initialized scalar.
downsamplei is the downsample module of the ith

layer to reduce the hidden state dimension of f by r
times. Prior work leverages linear projections to down-
sample (i.e., × 1

r ) the high-dimensional hidden states
of f to the low-dimensional hidden states of g. How-
ever, an LLM typically comprises plenty of layers with
substantially high-dimensional hidden states, particu-
larly when the number of parameters exceeds 3 billion.
Using linear projections to downsample involves a sig-
nificant amount of trainable parameters, requiring a high
memory footprint for the parameters and their optimizer
states. For example, if the LLM has 24 layers, the di-
mension of its hidden state is 2048 and the reduction
factor r is 4, the downsample module consumes about
50% of the overall trainable parameters.

To address this problem, we leverage several differ-
ent downsample methods, including LoRA (He et al.,
2021), Adapter (Edalati et al., 2022), MaxPooling (Le-
Cun et al., 1998) and AvgPooling. LoRA augments a
linear projection through an additional factorized pro-
jection, which can be formulated as W = L1L2, where
W ∈ Rdin×dout , L1 ∈ Rdin×dr and L2 ∈ Rdr×dout .
Adapter is similar to LoRA but introduces an extra non-
linear function between L1 and L2. Using LoRA or
Adapter can reduce the ratio of the trainable parame-
ters of these downsample modules from 56% to 8%.
MaxPooling and AvgPooling do not introduce extra
trainable parameters. We empirically demonstrate that
the Adapter performs the best in our experiments.

Finally, we upsample (i.e., ×r) from low-dimensional
hidden states of g to high-dimensional hidden states of
f . Prior works have only evaluated side tuning methods
(e.g., LST) in the context of classification tasks. We ob-
serve that LST suffers from repetition when generating
long-sequence texts, which renders it incapable of pro-
ducing extensive and high-quality texts. This limitation
stems from LST’s utilization of the hidden states of the
side network for prediction, which causes an initializa-
tion position far removed from the pre-trained model at

the onset of finetuning. As illustrated in MEFT (Liao
et al., 2023), the initialization step emerges as a critical
factor influencing the efficacy of fine-tuning methods.
To resolve this issue, QST combines the output of the
LLM’s last layer (i.e., h16bit

fN
) with the output of the

side network (i.e., h16bit
gN ), and sends the weighted sum

h16bit
N = αh16bit

fN
+(1−α)h16bit

gN to the LM head, where
α is a learnable parameter. We initialize α to 1 to pre-
serve the starting point from the pre-trained model at
the beginning of finetuning, which is consistent with the
initialization of LoRA. With this design, when switch-
ing across different downstream tasks, QST can fulfil
the necessary adjustments by altering the side network
alone, and thus obviating the need for redeploying the
LLM.

QST only updates the parameters of the side network
g, but not the 4-bit weights in the LLM f . Unlike
QLoRA, the calculation of the gradient ∂L

∂g does not
entail the calculation of ∂L

∂f , thus avoiding the extensive
computational costs of performing backpropagation on
f , which ultimately reduces the memory footprint of
intermediate activations and speeds up finetuning.

In summary, QST leverages a 4-bit data type to store
an LLM’s model weights, thus reducing the memory
footprint of weights (M1). In addition, QST lever-
ages a 16-bit computation data type for the forward
pass and backpropagation computation and only com-
putes the gradient of weights in g (M3). Finally, QST
leverages several factorized projection and gradient-free
downsample methods to reduce the trainable parameters
(M2). These techniques together allow QST to reduce
the memory requirement for all three factors, resulting
in fast and memory-efficient finetuning with a nearly
1% performance drop.

4 Evaluation

In this section, we empirically validate the effectiveness
of our QST method by examining its performance for
LLMs with different types (e.g., OPT and LLaMA 2),
sizes (from 1.3B to 70B), and benchmarks.

4.1 Experimental Setup

Datasets. We evaluate the performance of QST and sev-
eral baselines on natural language understanding (NLU)
and natural language generation tasks. For NLU exper-
iments, we use the GLUE (Wang et al., 2018) (Gen-
eral Language Understanding Evaluation) and MMLU
(Hendrycks et al., 2020) (Massively Multitask Language
Understanding) benchmarks. The GLUE benchmark
provides a comprehensive evaluation of models across
a range of linguistic tasks. These tasks encompass lin-
guistic acceptability as examined in CoLA (Warstadt
et al., 2019), sentiment analysis as portrayed in SST2
(Socher et al., 2013), tasks probing similarity and para-
phrase distinctions such as MRPC (Dolan and Brockett,
2005), QQP (Iyer, 2017), and STS-B (Cer et al., 2017),
in addition to natural language inference tasks including
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Method # Param. (%) Memory (GB) RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI Avg.

OPT-1.3B (batchsize=16, sequence length=512)
QLoRA 4.41% 31.3 81.3±1.6 83.3±1.1 89.9±0.5 62.1±2.3 94.9±0.1 86.3±0.2 87.1±0.1 76.0±0.3 82.6

LST 2.39% 20.9 82.0±2.2 83.1±1.3 88.6±0.4 59.5±3.1 94.4±0.3 86.1±0.3 86.4±0.6 77.8±0.5 82.2
LoRA 2.36% 32.9 82.7±1.9 83.4±0.9 89.3±0.2 62.5±1.7 93.7±0.7 81.4±9.3 86.9±0.3 81.2±0.1 82.6

Adapter 0.48% 32.5 82.2±0.8 82.7±1.4 89.7±1.6 60.6±3.0 93.8±0.2 83.6±0.1 86.3±0.4 80.5±0.1 82.4
QST 0.45% 17.7 79.5±2.5 81.7±1.1 88.4±1.1 59.7±2.9 94.3±0.3 85.7±0.5 84.3±0.7 77.1±0.6 81.3

OPT-2.7B (batchsize=16, sequence length=512)
QLoRA 3.57% 47.0 83.6±1.5 84.8±1.2 91.2±0.6 63.7±2.6 95.6±0.2 88.7±0.1 89.5±0.2 78.3±0.4 84.4

LST 2.39% 30.7 82.5±2.9 83.9±1.5 89.1±0.9 60.7±3.5 95.3±0.4 87.3±0.2 88.8±1.0 80.4±0.7 83.5
LoRA 1.90% 50.4 84.7±1.4 84.6±0.8 90.9±0.1 64.5±2.4 95.3±0.6 83.0±7.4 90.7±0.1 82.6±0.2 84.5

Adapter 0.37% 49.9 84.4±0.7 83.7±1.4 91.5±1.9 63.4±3.8 95.4±0.3 83.6±0.2 90.2±0.3 81.1±0.1 84.2
QST 0.43% 24.4 80.1±2.1 83.7±1.2 88.9±1.4 62.0±3.4 95.2±0.8 86.6 ±0.9 86.5±0.9 80.4±0.6 83.0

OPT-6.7B (batchsize=16, sequence length=512)
QLoRA 2.33% 63.6 84.5±1.2 85.9±0.7 92.0±0.8 64.3±2.8 96.2±0.1 90.2±0.2 90.7±0.2 79.8±0.3 85.5

QST 0.42% 27.5 80.8±1.4 85.2±1.0 89.6±0.7 62.8±2.6 96.4±0.6 87.3±1.1 89.4±0.8 81.6±0.5 84.2

Table 1: Experiments results on GLUE benchmark (using BF16 data type).

MNLI (Williams et al., 2017), QNLI (Rajpurkar et al.,
2016), and RTE (Bentivogli et al., 2009). We report
accuracy on MNLI, QQP, QNLI, SST-2, MRPC, and
RTE, Pearson correlation coefficients on SST-B, and
Mathews correlation coefficients (Matthews, 1975) on
CoLA. The MMLU benchmark consists of 57 tasks in-
cluding elementary mathematics, US history, computer
science, law, and more. We report the average 5-shot
test accuracy on the 57 tasks.
Models. We use decoder-only LLMs such as the
OPT series (OPT-1.3B, OPT-2.7B, OPT-6.7B, OPT-
13B, OPT-30B, and OPT-66B) and the LLaMA-2 series
(LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-70B).
Baselines. We compare QST with QLoRA (Dettmers
et al., 2023), LST (Sung et al., 2022), LoRA (He et al.,
2021), and Adapter (Houlsby et al., 2019). Note that
we only compare LST, LoRA, and Adapter when the
model size is less than 3B since their memory footprint
of weights can be excessively huge beyond that.
Implementation. We set the reduction factor r to 16 by
default. We use Adapter as the downsample module, a
linear layer as the upsample module, and set the rank of
the Adapter to 16. We use the NF4 data type to store the
weights of the LLM and bfloat16 as the data type for
computation. We adopt the same parameters reported
in QLoRA, LST, LoRA, and Adapter to construct the
baselines. Other hyperparameters are specified in Ap-
pendix A and Appendix B. We run each experiment
three times under different random seeds and report the
average performance. We conduct all the experiments
using Pytorch (Paszke et al., 2017) and HuggingFace
library (Wolf et al., 2019) on 4 NVIDIA RTX A5000
GPUs, each with 24GB memory.

4.2 Experiments on GLUE Benchmark

Table 1 shows the performance of different methods
on the GLUE benchmark. Overall, QST achieves the
lowest memory footprint among all methods while at-
taining competent accuracy. Particularly, for relatively
small models (i.e., OPT-1.3B and OPT-2.7B), QST re-

duces the memory footprint by around 2× compared
with QLoRA, LoRA, and Adapter, while achieving com-
parable accuracy. Compared with LST, QST reduces
the memory requirement by 3.2GB and 6.3GB for fine-
tuning OPT-1.3B and OPT-2.7B. QST also reduces the
trainable parameters by around 10× and 5× compared
with QLoRA and the other baselines, respectively.

For larger models such as OPT-6.7B, we focus on
comparing QST with QLoRA. This is because QLoRA
has similar accuracy with the other baselines, but LoRA,
Adapter, and LST all have excessively huge memory
footprints of weights when it comes to finetuning OPT-
6.7B2. Compared with QLoRA, QST reduces the mem-
ory footprint and trainable parameters by 2.3× and
5.5×, while only introducing a 1.3% accuracy drop.

4.3 Experiments on MMLU Benchmark

The experiment results of the MMLU benchmark are
shown in Table 2. We set the batch size to 4 and the
sequence length to 384. We use the Alpaca dataset
(Taori et al., 2023) to finetune both QLoRA and QST.
We compare QST with QLoRA on accuracy and mem-
ory requirement over OPT-1.3B, OPT-2.7B, OPT-6.7B,
OPT-13B, OPT-30B, OPT-66B, LLaMA-2-7B, LLaMA-
2-13B, and LLaMA-2-70B. QST improves the accu-
racy by 0.1% on average while reducing the memory
footprint by 1.8× compared with QLoRA. Particularly,
QST yields an enhancement of 2.1% in accuracy over
QLoRa when finetuning LLaMA-2-13B. When finetun-
ing the OPT-2.7B, OPT-6.7B, and OPT-13B models,
QST achieves 0.3%, 0.6%, and 0.3% accuracy improve-
ments, respectively.

4.4 Memory Footprint Analysis

Effects of batch size. Figure 5(a) illustrates the effects
of batch size for different methods. We use LLaMA-
2-70B as the LLM and set the sequence length to 512.

2QLoRA can leverage gradient accumulation to finetune
with a batch size of 16 while guaranteeing an affordable mem-
ory footprint.
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Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B Avg.

QLoRA 25.0/6.3 25.2/10.1 25.6/15.5 26.5/25.4 27.7/46.8 36.4/87.5 45.9/15.6 54.7/25.4 64.1/95.5 36.8/36.5
QST 24.3/3.2 25.5/4.8 26.2/7.2 26.8/12.6 27.3/25.7 36.0/52.3 45.1/7.3 56.8/12.6 63.9/56.0 36.9/20.2

Table 2: Experiment results (accuracy/memory) on MMLU 5-shot.
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Figure 4: Effects of the batch size, total model bits, and sequence length on memory footprint.

While the memory footprint of all methods increases
as the batch size increases, QST achieves the lowest
memory footprint among all, regardless of the batch
size. Particularly, the memory footprint of QST is only
one-third of LoRA and Adapter. Besides, the memory
footprint of both QST and LST grows less drastically
than QLoRa, Adapter, and LoRa as the batch size in-
creases. This is because both LST and QST use side
tuning to reduce the hidden dimension of the intermedi-
ate activations, thereby alleviating the growth of mem-
ory footprint induced by intermediate activations. QST
also achieves an additional reduction of approximately
100GB in memory footprint compared to LST, thanks to
the 4-bit quantization design that effectively compresses
the memory footprint of the weights and well design of
the downsample modules to reduce the optimizer states.

Effects of the model size. Figure 5(b) shows the effects
of the total model bits on different methods. We use
the OPT model series and set the batch size to 4. Due
to the 4-bit quantization, QST and QLoRA reduce the
memory footprint compared with the other baselines.
The memory footprint gap further widens as the model
size increases. Besides, QST achieves around 2 times
reduction in memory footprint compared with QLoRA
thanks to its small volume of trainable parameters and
intermediate activations.

Effects of sequence length. Figure 5(c) shows the
effects of sequence length on different methods. We use
LLaMA-2-70B and set the batch size to 4. Similar to the
effect of batch size, LST and QST alleviate the growth
rate of memory footprint of intermediate activations,
while QST further achieves around 100GB reduction in
memory footprint compared with LST.

Method FLOPS per token (10−5)

LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

QLoRA 11.7 16.0 38.1
LST 11.0 19.0 80.7

LoRA 11.3 15.6 37.2
Adapter 11.2 15.6 27.2

QST 4.4 6.1 15.3

Table 3: Experiments on FLOPS per token of different
methods.

4.5 Experiments on Training Throughput

Table 3 shows the training throughput of different meth-
ods, measured by FLOPS per token (the lower the bet-
ter), on LLaMA-2-7B, LLaMA-2-13B, and LLaMA-
2-70B. While the FLOPS per token of all methods
increases as the model size grows, QST achieves the
lowest FLOPS per token among all. Particularly, QST
achieves around 2.5× speed up compared with the base-
lines. LST suffers from the highest FLOPS per token.
The FLOPS per token of QLoRA is slightly higher than
LoRA and Adapter since QLoRA adds more LoRA
components.

4.6 Sensitive Analysis

Effects of reduction factor r. We conduct experiments
using LLaMA-2-7B, LLaMA-2-13B, and LLaMA-2-
70B to verify the effects of reduction factor r (from
2 to 64) on memory footprint, MMLU accuracy, and
throughput. We set the batch size to 4 and the sequence
length to 384. The MMLU accuracy changes slightly as
r varies as shown in Figure 5a. QST achieves the best
accuracy of finetuning LLaMA-2-7B and LLaMA-2-
13B when r is set to 16. As shown in Figure 5b and 5c,
the memory footprint and the FLOPS per token decrease
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Figure 5: Effects of the reduction factor r on MMLU accuracy, memory footprint, and training throughput.

Method LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B Avg.

FP4 44.5 55.4 63.5 54.5
NF4 45.1 56.8 63.9 55.3

Table 4: Experiments on 4-bit data types.

drastically when r varies from 2 to 16 for finetuning all
the models. The memory footprint and the FLOPS per
token decrease slightly when r varies from 16 to 64.
Therefore, we use r to 16 in our experiments as default.
Effects of 4-bit data types. We evaluate two 4-bit data
types: FP4 and NF4 using the LLaMA-2 model series
and the MMLU benchmark. As shown in Table 4, NF4
improves the average accuracy by about 0.8% compared
with FP4. Therefore, we use NF4 as the default 4-bit
data type in our experiments.

Method MRPC QNLI

QLoRA 68.0 60.3
QST 85.6 87.2

Table 5: Experiments of
QLoRA and QST using
FP16.

Effects of computa-
tion data types. We
analyze the effects of
two computation data
types: BF16 (results
shown in Table 1) and
FP16 (results shown
in Table 5). As can be
seen, QST retains sim-
ilar results using FP16 and BF16. On the other hand,
QLoRA is unstable using FP16 as the computation data
type. We finetune OPT-6.7B on the GLUE benchmark
and discover that QLoRA fails to finetune on the MRPC
and QNLI datasets. We run each dataset under three dif-
ferent random seeds and QLoRA fails on two of them.
Effects of downsample modules. We conduct experi-
ments on different downsample modules: Linear, LoRA,
Adapter, MaxPooling, and AvgPooling using LLaMA-
2-7B and the MMLU benchmark. As shown in Table 6,
using Adapter as the downsample module achieves the
best performance among all baselines, and reduces the
trainable parameters and memory footprint.

4.7 Experiments on Chatbot Performance
We conduct experiments on Chatbot performance using
MT-benchmark (Zheng et al., 2023). MT-benchmark is

Method # Param. (%) Ratio Memory Accuracy

Linear 0.85% 56.0% 7.8 44.9
LoRA 0.41% 7.8% 7.3 44.7

Adapter 0.41% 7.8% 7.3 45.1
MaxPooling 0.38% 0% 7.3 43.7
AvgPooling 0.38% 0% 7.3 42.5

Table 6: Experiments on downsample modules. Note
that the ratio represents the ratio of downsample mod-
ules trainable parameter in all trainable parameters.

Method Training Time Memory Score

LLaMA-2-70B - - 6.86
QLoRA-70B ~80h 96.3 6.61

QST-70B ~25h 56.1 7.07

Table 7: Chatbot performance on QLoRA and QST.

a set of challenging multi-turn open-ended questions for
evaluating the chat assistant’s performance in writing,
roleplay, reasoning, math, coding, extraction, STEM,
and humanities categories. In our experiments, we use
GPT-4 to act as judges and assess the quality of the
responses of the model finetuned by QLoRA and QST.
We finetune LLaMA-2-70B using a variant of OASST1
(Dettmers et al., 2023). Table 7 shows the experiment
results of QLoRA and QST on the total training time,
memory footprint, and the average MT-Bench score
over 8 categories. QST speeds up the training by 3.2
× and reduces memory footprint by 1.7 ×, with even
an improved score of 0.46 compared with QLoRA. No-
tably, QST’s chatbot performance outperforms the orig-
inal LLaMA-2-70B, achieving an improvement of 0.21.

Figure 6 compares QST, QLoRA, and the original
LLaMA-2-70B in different categories using MT-Bench.
Out of the 8 categories, QST-70B outperforms QLoRA
and LLaMA-2-70B in four of them: STEM, Extraction,
Coding, and Roleplay. In the Humanities category, all
models demonstrate comparable proficiency. For the
remaining three categories, QLoRA takes the lead in
Reasoning and Writing, and the original LLaMA-2-70B
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Figure 6: MT-Bench scores of QLoRA, QST, and origi-
nal LLaMA-2-70B in different categories.

shows superior performance in Mathematics.

5 Conclusion
In this paper, we propose Quantized Side Tuing (QST),
a novel fast and memory-efficient finetuning framework.
QST operates through a dual-stage process: first, QST
quantizes the LLM into 4-bit to reduce the memory foot-
print of the weights in LLM; then QST introduces a side
network separated from the LLM, which utilizes the hid-
den states of the LLM to make task-specific predictions.
QST can significantly reduce the memory footprint of
LLM finetuning compared to existing approaches. In
particular, experiments show that QST can reduce the
total memory footprint by up to 2.3 × and speed up the
finetuning process by up to 3 × while achieving compa-
rable performance compared with the state-of-the-art.
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A Hyperparameters of QST on the
GLUE benchmark

The hyperparameters of QST on GLUE benchmark are
shown in Table 7.
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Model Dataset RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear

OPT-1.3B

Batch Size 32 8 32 32 32 8 8 32
# Epochs 20

Learning Rate 2E-04
r 16

the rank of downsamples 16

OPT-2.7B

Batch Size 16 8 16 16 16 8 8 16
# Epochs 15

Learning Rate 2E-04
r 16

the rank of downsamples 16

OPT-6.7B

Batch Size 8 4 8 8 8 4 4 8
# Epochs 10

Learning Rate 2E-04
r 16

the rank of downsamples 16

Table 8: The hyperparameters of QST on the GLUE benchmark.

B Hyperparameters of QST on MMLU
benchmark

The hyperparameters of QST on the MMLU benchmark
are shown in Table 8.

C Case Study

We present the results of several case studies that assess
the performance of QST-70B across various domains.
While this analysis may not be exhaustive, as control-
ling for all variables in such a concise qualitative study
exceeds our scope, our endeavor is to present a selec-
tion of representative samples that, in our belief, add
meaningful insights of QST to this paper.

C.1 Writing

QST can generate high-quality writing samples on vari-
ous domains. For example:

USER: Write a brief summary of the latest ad-
vancements in artificial intelligence and their
potential impacts on the industry.

QST-70B: 2023 has seen significant advancements
in artificial intelligence, particularly in the
areas of machine learning, computer vision,
and natural language processing. These ad-
vancements have potential impacts on various
industries, including:
1. Healthcare: AI-powered diagnosis, drug
discovery, and precision medicine are trans-
forming patient care. An AI-assisted cancer
diagnosis can predict patient outcomes and
suggest personalized treatments. AI-driven

drug discovery can accelerate the develop-
ment of new medicines.
...
5. Energy: AI can optimize energy consump-
tion, predict energy demand, and improve the
efficiency of renewable energy sources. AI-
based smart grids can optimize energy distri-
bution and reduce waste. AI-driven energy
management systems can help buildings and
homes reduce energy consumption and costs.

USER: Create a short story about a time traveler
visiting ancient Egypt.

QST-70B: A time traveler arrived in ancient Egypt,
curious about the bustling society he had
heard so much about. As he wandered the
desert sands, he stumbled upon a construction
site where workers were building a colossal
pyramid. He marveled at the sheer size of the
edifice and decided to approach one of the
workers. “Excuse me,” the time traveler said.
“What’s the purpose of this structure?”
The worker gave him a perplexed look. “You
must be a foreigner. Everyone knows that we
build pyramids to bury our pharaohs. These
magnificent structures ensure their safe pas-
sage into the afterlife.”
Fascinated, the time traveler asked, “What’s
the secret to building such colossal struc-
tures?”
“It’s simple,” the worker replied with a smile.
“We work together as one. Each of us has a
specific task, and we combine our efforts to
create something grand.” ...
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OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B

Optimizer AdamW
Warmup Ratio 0.03
LR Schedule Constant
Batch Size 8 8 4 2 1 1 4 2 1
# Epochs 5 5 3 3 2 2 3 2 2

Learning Rate 2E-04 2E-04 2E-04 1E-04 1E-04 1E-04 2E-04 2E-04 1E-04
r 16

the rank of downsamples 16

Table 9: The hyperparameters of QST on the MMLU benchmark.

C.2 Factual Recall

QST-70B can easily answer questions such as “What is
the capital of France?". For example,

USER: What is the capital of France?
QST-70B: The capital of France is Paris.

QST-70B can still answer some questions that are ob-
scure:

USER: When was the painter who created the
‘Mona Lisa’ born?

QST-70B: The Italian artist who painted the
‘Mona Lisa,’ Leonardo da Vinci, was born
on April 15, 1452.

QST-70B gave an incorrect answer to the following
question as mentioned in (Wei et al., 2022; Zheng et al.,
2023):

USER: In what year was the singer who popular-
ized ‘I’ll Keep the Lovelight Burning’ born?

QST-70B: The singer who popularized “I’ll Keep
the Lovelight Burning” is Dolly Parton. Dolly
Parton was born on January 19, 1946.

Dolly Parton is a very famous country music singer,
born on January 19, 1946, but she was not the singer
who made the song “I’ll Keep the Lovelight Burning”
popular. GPT-4’s answer is uncertain about the exact
singer who popularized “I’ll Keep the Lovelight Burn-
ing”.

C.3 Math

The performance of QST in mathematical tasks varies
depending on the nature of the questions. QST can cor-
rectly answer basic arithmetic questions. For example:

USER: What is the sum of 15 and 27?
QST-70B: 15 plus 27 is equal to 42.
USER: What is the multiply of 3 and 45?
QST-70B: 3 multiplied by 45 is 135.

QST can give the correct answers to percent calculations.
For example:

USER: If a shirt costs $60 and is on sale for 25%
off, what is the sale price?

QST-70B: Great question! Let’s break down the
process to find the sale price:
1. Calculate 25% of the original price by mul-
tiplying $60 by 0.25, which gives us $15.
2. Subtract $15 from the original price of $60
to find the sale price: $60 - $15 = $45.
Therefore, the sale price of the shirt would be
$45.

Surprisingly, QST is also capable of leveraging the the-
ory of mind to break down the process and calculation
for math problems step by step. QST can correctly
demonstrate the step-by-step process of solving alge-
braic equations and geometry problems. For example:

USER: Solve the equation for x: 2x + 3 = 19.
QST-70B: 2x + 3 = 19,

2x = 19 - 3,
2x = 16,
x = 16/2,
x = 8.

USER: A right triangle has one leg that is 8 cm
long and another leg that is 15 cm long. What
is the length of the hypotenuse?

QST-70B: Great question! The Pythagorean theo-
rem is needed to solve this problem. Here is
how to go about it:
cˆ2 = 8ˆ2 + 15ˆ2
cˆ2 = 64 + 225
cˆ2 = 289
Now, to find the hypotenuse (c), we take the
square root of both sides: c =

√
289, c = 17.

Thus, the length of the hypotenuse of the right
triangle is approximately 17 cm.
Calculate the integral of the function f(x) =
xˆ2 from x = 0 to x = 3.

Similar to (Dettmers et al., 2023), QST may make mis-
takes on some questions. For example:

USER: Please factorize 1833.
QST-70B: 1833 = 33 × 55.

Apparently, 1833 can not be factorized as 33 × 55, the
correct answer is 3 × 17 × 43. We still get the wrong
answer if we ask QST to calculate step by step:

USER: Please factorize 1833 step by step.
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QST-70B: 1833 can be factored as follows: 1833
= 3 × 311. Here’s how: 1833 = 3 × 3 × 111,
3 × 3 = 9, 9 × 111 = 1833. So, the prime
factorization of 1833 is 1833 = 3 × 3 × 111.

Whether QST can give correct answers to logical rea-
soning math problems depends. Sometimes, a more
instructive input prompt, e.g., prompt it to analyze the
problem step by step, may lead to the correct answers.
Take a question from (Zheng et al., 2023) as an example:

USER: Some people got on a bus at the terminal.
At the first bus stop, half of the people got
down and 4 more people got in. Then at the
second bus stop, 6 people got down and 8
more got in. If there were a total of 25 people
heading to the third stop, how many people
got on the bus at the terminal?

QST-70B: 20 people got on the bus at the terminal.
USER: Please analyze it in detail.
QST-70B: To find the total number of people who

boarded the bus at the terminal, we’ll analyze
the information step by step:
1. Half of the people who boarded the bus
at the terminal got down at the first bus stop.
This means if x people boarded the bus at the
terminal, x/2 people got down at the first stop.
2. 4 more people got on the bus at the first
stop. So, the total number of people on the
bus after the first stop is x/2 + 4.
3. At the second bus stop, 6 people got down.
Now, the number of people on the bus is x/2
+ 4 - 6.
4. 8 more people got on the bus at the second
stop. The total number of people on the bus
heading to the third stop is x/2 + 4 - 6 + 8 =
x/2 + 12 - 6 = x/2 + 6.
5. There were a total of 25 people heading to
the third stop. So, x/2 + 6 = 25.
6. Solving for x, we get:
x/2 + 6 = 25,
x/2 = 25 - 6,
x/2 = 19,
x = 2 x 19,
x = 38.
So, there were 38 people who boarded the bus
at the terminal.

The correct answer is 38. QST generates the correct
answer for this question after being instructed to analyze
the problem step by step.

C.4 Coding

QST is good at generating codes for simple algorithms.
Take a question in (Zheng et al., 2023) as an example:

USER: Write a C++ program to find the nth Fi-
bonacci number using recursion.

QST-70B: Here’s an example of a C++ program
to find the nth Fibonacci number using recur-
sion:

1 int fibonacci(int n) {
2 if (n == 0 || n == 1) {
3 return n;
4 }
5 else {
6 return fibonacci(n-1) + fibonacci

(n-2);
7 }
8 }

This program uses the recursive formula of
the Fibonacci sequence, where the nth Fi-
bonacci number is the sum of the previous
two numbers. The program also includes a
base case, where the function directly returns
the values for n=0 and n=1 to avoid an infinite
loop.

USER: Implement a program to find the common
elements in two arrays without using any extra
data structures.

QST-70B: To find common elements in two arrays
without using any extra data structures, you
can follow these steps:
1. Sort both arrays.
2. Loop through the first array and for each
element, loop through the second array.
3. If you find the same element in both arrays,
store it in a variable or an array.
4. At the end of both loops, the common
elements will be in the variable or array.
Here’s an example of pseudo code for the
above-described method:

1 def findCommonElements(arr1, arr2
)

2 1. sort(arr1);
3 2. sort(arr2);
4 3. commonElements = [];
5 4. for (var i = 0; i < arr1.

length; i++)
6 for (var j = 0; j < arr2.

length; j++)
7 if (arr1[i] === arr2[j])
8 commonElements.push(arr1[

i]);
9 5. return commonElements;

This solution time complexity is O(nˆ2),
where n is the length of the arrays.
Please note that this is one of the ways to
find the common elements, and it is not the
most efficient algorithm, especially for large
datasets. If you need to handle large datasets,
it is better to use a more efficient algorithm
like sorting both arrays and then using two
pointers to find the common elements.

The generated algorithm is current. Although we claim
in the question that do not use extra data structure. QST
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still uses an array “commonElements”. For complex
algorithms (e.g. dynamic programming), QST can make
mistakes.

C.5 Roleplay
QST is good at roleplay. For example:

USER: Suppose that you are a doctor. A pa-
tient complains of frequent headaches. What
would you say?

QST-70B: As a doctor, if a patient were to com-
plain of frequent headaches, I would ask sev-
eral questions to better understand their symp-
toms and medical history in order to provide
an accurate diagnosis and recommend appro-
priate treatment.
Here’s an example conversation:
Assistant: Good morning, how can I assist
you today?
Patient: Hi, doctor. I’ve been experiencing
frequent headaches, and I’m not sure why.
They’re really frustrating and disrupting my
daily life.
Assistant: Sorry to hear that. Can you tell
me more about your headaches? What’s the
location and duration of the pain? Have you
noticed any patterns or triggers?
Patient: Well, the pain is usually on both sides
of my head and can last anywhere from a few
hours to the entire day. It’s been happening on
and off for the past few months. Sometimes,
I’ll feel a dull ache behind my eyes or sharp
pains in the back of my neck. I can’t seem to
connect the headaches to any specific food or
activity.
Assistant: Thank you for that information.
Have you experienced any other symptoms
lately, such as blurred vision, nausea, or dizzi-
ness?
Patient: No, nothing like that. Just the
headaches.
Assistant: Let’s start with some general
screening questions. Do you have a history of
allergies, or are there any known allergies in
your family? Patient: I don’t have any aller-
gies that I know of, but my dad has seasonal
allergies.
Assistant: Great. How about any previous
illnesses, surgeries, or injuries? Patient: I
had a tonsillectomy when I was a kid and a
sprained ankle a few years ago, but that’s it.
Assistant: Thanks.

Another example:

USER: Suppose you are a mathematician and poet.
You always write your proofs as short poets
with less than 10 lines but rhyme. Prove the
square root of 2 is an irrational number.

QST-70B: Pi is an odd thing, oh so very strange
It cannot be expressed by a simple range
An irrational number, it just won’t behave
It’s a math mystery, that’s hard to enslave
Its decimal points stretch on and on
Never repeating, never done
A constant that’s found in every sphere
Math’s magic, that’s crystal clear

C.6 STEM

QST is good at STEM. For example:

USER: Explain the basic principle of quantum
computing and how it differs from classical
computing.

QST-70B: Quantum computing is a different ap-
proach to computing that uses the properties
of quantum mechanics to perform operations
on data. Unlike classical computing, which
uses bits to represent data as either a 0 or a
1, quantum computing uses quantum bits, or
qubits, which can exist as both a 0 and a 1 at
the same time. This allows quantum comput-
ers to process a much larger number of pos-
sible solutions simultaneously, making them
well-suited for certain types of complex prob-
lems. Another key difference is that quantum
computers use quantum entanglement, which
allows qubits to become “entangled” so that
the state of one qubit can instantly affect the
state of another, regardless of the distance be-
tween them. This property allows quantum
computers to perform certain types of calcu-
lations much faster than classical computers.
Quantum computing is still a developing field,
and there are many technical challenges to
overcome before it can be widely adopted.

Another example:

USER: Explain the basic principle of quantum
computing and how it differs from classical
computing.

QST-70B: Key Challenges of Manned Space Ex-
ploration to Mars:
1. Radiation Exposure: Mars lacks a strong
magnetic field to protect against harmful cos-
mic and solar radiation, which poses a signifi-
cant health risk for human travelers.
2. Isolation and Psychological Stress: A trip
to Mars takes about 6-9 months, followed by a
long-term stay on the planet. This prolonged
isolation can lead to psychological strain, in-
cluding depression, anxiety, and sleep disor-
ders.
3. Muscle and Bone Loss: In microgravity
environments, the human body experiences
muscle and bone atrophy due to a lack of
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resistance and weight-bearing activities. Pro-
longed exposure can result in severe health
consequences.
4. Technological and Communication Lim-
itations: The vast distance between Earth
and Mars creates communication challenges,
making real-time communication and techno-
logical support difficult. Equipment failures
and repair needs may require prolonged trou-
bleshooting and resolution.
Benefits of Manned Space Exploration to
Mars:
1. Scientific Discovery: Humans can perform
more intricate and nuanced experiments and
gather more comprehensive data compared to
robotic missions, including the search for life
on Mars.
2. Technological Advancement: The chal-
lenges of sending humans to Mars drive in-
novation in areas such as propulsion, life sup-
port systems, radiation shielding, and in-situ
resource utilization.
3. Inspiration and Educational Value: Mars
missions captivate the public and inspire the
next generation of scientists and engineers,
fostering a greater interest in STEM education
and motivating people to pursue careers in
these fields.
...

C.7 Extraction
QST can accurately extract information from the input
text. For example:

USER: Read the following descriptions of histori-
cal events and extract the year, location, and
main figure involved. Present the information
in a tabular JSON format. a) In 1963, in Wash-
ington D.C., Martin Luther King Jr. delivered
his famous "I Have a Dream" speech. b) The
first man to walk on the moon was Neil Arm-
strong in 1969, during the Apollo 11 mission.
c) In 1989, the Berlin Wall, a symbol of the
Cold War, was torn down by the citizens of
East and West Berlin.

QST-70B: {
"a": {
"year": 1963,
"location": "Washington D.C.",
"main figure": "Martin Luther King Jr."
},
"b": {
"year": 1969,
"location": "The Moon",
"main figure": "Neil Armstrong"
},
"c": {
"year": 1989,
"location": "Berlin",

"main figure": "The citizens of East and West
Berlin"
}
}

Another example:

USER: Interpret the subtle sentiments in these TV
show reviews and categorize them. Present
the results in a structured YAML format.
a) “The series finale, although not universally
satisfying, did tie up several key storylines in
a somewhat unconventional manner.”
b) “This season’s narrative arc is less com-
pelling than previous ones, but the stellar per-
formances keep it watchable.”
c) “The latest episode took a different turn,
which might not align with everyone’s taste
but certainly adds a unique flavor to the over-
all series.”

QST-70B: a) Ambivalent b) Neutral c) Positive

C.8 Humanities
QST is good at answering questions about humanities.
For example:

USER: Analyze the character development of Eliz-
abeth Bennet in Jane Austen’s “Pride and
Prejudice.” Discuss how her interactions
with other characters contribute to the cen-
tral themes of the novel.

QST-70B: Elizabeth Bennet is the protagonist of
Jane Austen’s “Pride and Prejudice,” and her
character development plays a crucial role in
the novel’s exploration of themes such as love,
class, and social hierarchy.
At the beginning of the novel, Elizabeth is
portrayed as an intelligent, witty, and strong-
willed young woman who rejects societal
norms and expectations. Her interactions with
other characters, particularly Mr. Darcy and
Mr. Wickham, serve to challenge her beliefs
and values.
Through her conversations and debates with
Mr. Darcy, Elizabeth begins to question her
initial prejudices against him and learns to
appreciate his integrity and sincerity. Their
interactions also highlight the central theme
of pride and prejudice, as they both struggle
to overcome their respective biases.
Elizabeth’s interactions with Mr. Wickham,
on the other hand, serve to illustrate her ten-
dency to make hasty judgments and her will-
ingness to believe in someone’s flaws. Her
later realization of his true character serves as
a lesson for both her and the reader.
Moreover, Elizabeth’s relationships with her
family members and friends add depth to her
character and the central themes. Her sister
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Jane’s kindness and caution provide a con-
trast to Elizabeth’s impulsiveness, while her
best friend Charlotte’s practicality and con-
tentment with her situation demonstrate the
societal pressure on women to marry for secu-
rity.
In conclusion, Elizabeth Bennet’s character
development is integral to the central themes
of “Pride and Prejudice.” Her interactions
with other characters challenge her beliefs, il-
lustrate the danger of pride and prejudice, and
emphasize the importance of understanding
and respect in relationships.

Another example:

USER: Critique the use of color and light in Vin-
cent Van Gogh’s “Starry Night” and discuss
how these elements contribute to the overall
emotional impact of the painting.

QST-70B: “Starry Night” by Vincent Van Gogh
is a masterpiece that showcases the artist’s
unique perspective on color and light. The
painting’s vibrant and dynamic use of color
creates a powerful emotional response in the
viewer, drawing them into a swirling vortex
of blue, yellow, and green. The painting’s
composition revolves around the interaction
between light and dark. The central cypress
tree stands tall, its branches stretching toward
the sky, while the darker, moonlit clouds in
the background form a swirling pattern that
echoes the movement of the tree’s branches.
This juxtaposition of light and dark creates
a sense of energy and dynamism, pulling the
viewer’s eye between the different sections of
the painting. Van Gogh’s use of color further
accentuates the emotional impact of the paint-
ing. The stars in the night sky are depicted
in bold, swirling brushstrokes of yellow and
white, which contrast with the darker blues
and greens of the surrounding sky. This stark
contrast creates a sense of depth and dimen-
sionality as if the stars are bursting forth from
the canvas. The yellow and orange hues of the
stars and moon also evoke feelings of hope
and joy, capturing the sense of wonder and
awe that comes from gazing up at a starry
night sky. In addition, the artist’s deliberate
brushwork adds texture and a tangible qual-
ity to the painting. The thick brushstrokes
and heavy impasto give the painting a raised,
three-dimensional feel as if the stars and trees
are reaching out to touch the viewer. This
tactile quality intensifies the emotional con-
nection between the painting and the viewer,
drawing them into the swirling vortex of light
and color.
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