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Abstract

We present the LM Transparency Tool (LM-TT),
an open-source interactive toolkit for analyzing
the internal workings of Transformer-based
language models. Differently from previously
existing tools that focus on isolated parts of the
decision-making process, our framework is
designed to make the entire prediction process
transparent, and allows tracing back model
behavior from the top-layer representation
to very fine-grained parts of the model.
Specifically, it (i) shows the important part of
the whole input-to-output information flow,
(ii) allows attributing any changes done by a
model block to individual attention heads and
feed-forward neurons, (iii) allows interpreting
the functions of those heads or neurons. A
crucial part of this pipeline is showing the
importance of specific model components at
each step. As a result, we are able to look at
the roles of model components only in cases
where they are important for a prediction.
Since knowing which components should be
inspected is key for analyzing large models
where the number of these components is
extremely high, we believe our tool will greatly
support the interpretability community both
in research settings and in practical applica-
tions. The LM-TT codebase is available at
https://github.com/facebookresearch/
llm-transparency-tool.

1 Introduction

Recent advances in natural language processing led
to remarkable capabilities of the Transformer lan-
guage models, especially with scale (Brown et al.,
2020; Kaplan et al., 2020; Zhang et al., 2022a; Wei
et al., 2022; Ouyang et al., 2022; OpenAI, 2023;
Anil et al., 2023; Touvron et al., 2023a,b). This,
along with the wide adoption of such models in
high-stakes settings, makes understanding the inter-
nal workings of these models vital from the safety,
reliability and trustworthiness perspectives.

∗ Work done during an internship at Meta.

Existing tools for analyzing sequence models’
predictions enable users to compute input tokens at-
tribution scores, read token promotions performed
by different model components, or analyze textual
patterns responsible for the activation of model’s
neurons (Geva et al., 2022a; Katz and Belinkov,
2023; Alammar, 2021; Tenney et al., 2020; Sarti
et al., 2023; Kokhlikyan et al., 2020; Miglani et al.,
2023). However, these focus only on specific parts
of the decision-making process and none of them
is designed to make the entire prediction process
transparent. In contrast, we introduce LM Trans-
parency Tool, a framework that allows tracing back
model behavior to very fine-grained model parts.

One of the key advantages of our pipeline is the
ability to look only at those model components that
were relevant for a selected prediction. Indeed, e.g.
syntactic attention heads (Voita et al., 2019), in-
duction heads (Elhage et al., 2021; Olsson et al.,
2022), knowledge neurons (Dai et al., 2022), etc.
perform their function only in specific cases and are
“dormant” otherwise – therefore, looking at them
makes sense only for those certain examples. To
make this possible, our tool first shows the informa-
tion flow routes introduced by Ferrando and Voita
(2024): this is a subset of intermediate token rep-
resentations and model components that together
form the most important part of the entire input-
to-output processing. Then, the tool further allows
(i) attributing any changes done by those impor-
tant model blocks to individual attention heads and
feed-forward neurons, as well as (ii) interpreting
the functions of those heads and neurons. Impor-
tantly, LM-TT is highly efficient: due to relying
on Ferrando and Voita (2024), it is 100 times faster
than typical patching-based alternatives (Conmy
et al., 2023).

Overall, the LM Transparency Tool:

• visualizes the “important” part of the predic-
tion process along with importances of model
components at varying levels of granularity;
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Figure 1: The LM Transparency Tool UI showing information flow graph for the selected prediction, importances of
attention heads at the selected layer, attention and contribution maps, logit lens for the selected representation, and
top tokens promoted/suppressed by the selected attention head.

• allows interpreting representations and up-
dates coming from model components;

• enables analyzing large models where it is
crucial to know what to inspect;

• allows interactive exploration via a UI1;

• is highly efficient.

2 User Interface and Functionality

Inside Transformer language models, each repre-
sentation evolves from the current input token em-
bedding2 to the final representation used to predict
the next token. This evolution happens through
additive updates coming from attention and feed-
forward blocks. The resulting stack of same-token
representations is usually referred to as “residual
stream” (Elhage et al., 2021), and the overall com-
putation inside the model can be viewed as a se-

1We also host a demo at https://huggingface.co/
spaces/facebook/llm-transparency-tool-demo

2Sometimes, along with positional encoding.

quence of residual streams connected through layer
blocks. Formally, we can see it as a graph where
nodes correspond to token representations and
edges correspond to operations inside the model
(attention heads, feed-forward layers, etc.). Our
tool visualizes the “important” part of this graph,
importances of model components at varying lev-
els of granularity (individual heads and neurons),
as well as an interpretation of representations and
updates coming from model components.

2.1 Important Information Flow Subgraph

As we mentioned, we can see computations in-
side the Transformer as a graph with token rep-
resentations as nodes and operations inside the
model as edges. While during model computa-
tion all the edges (i.e., model components) are
present, computations important for each predic-
tion are likely to form only a small portion of
the original graph (Voita et al. (2019); Wang et al.
(2023); Hanna et al. (2023), among others). Re-
cent work by Ferrando and Voita (2024) extracts
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Figure 2: The tool shows how the MLP block on Layer 10 promotes tokens greater than 32, causing the prediction
of the end of the war year to be later than the beginning in 1732. Model: OPT-125m (Zhang et al., 2022b).

this important subgraph in a top-down manner by
tracing information back through the network and,
at each step, leaving only edges that were impor-
tant (Figure 1). To understand which edges are
important, they rely on an attribution method (Fer-
rando et al., 2022). Ferrando and Voita (2024) ex-
plain the benefits of this method including, among
other things, why it is more versatile, informative
and around 100 times more efficient compared to
commonly used patching-based approaches typ-
ical for the existing mechanistic interpretability
workflows (Wang et al., 2023; Hanna et al., 2023;
Conmy et al., 2023; Stolfo et al., 2023; Heimer-
sheim and Janiak, 2023).

In the tool. In the tool, we show only the im-
portant attention edges and feed-forward blocks
(purple squares in Figure 1). Clicking at the top tri-
angles gives the important information flow routes
for each token position. Under the “Graph” menu,
one can vary the importance threshold to get more
or less dense graphs.

2.2 Fine-Grained Importances
While the information flow graph already relies
on the importances of attention or feed-forward
blocks for the current residual stream, the tool goes
further and shows the importances of (i) individual
attention heads, and (ii) individual FFN neurons.

2.2.1 Individual Attention Heads
Importance. After clicking on an attention edge
(green lines in Figure 1), the tool shows which
specific attention head is mostly responsible for this

connection, as well as highlights the importances
of other heads for this specific step.

Weights and contributions. Whenever a head is
selected, the tool shows

• attention map,

• contribution map.

While the attention map can give an idea of the
attention head’s function (Voita et al., 2019; Clark
et al., 2019; Correia et al., 2019), attention weights
might not reflect influences properly (Bastings and
Filippova (2020); Kobayashi et al. (2020), among
others). Therefore, we also show contribution map
reflecting the influence of a head-token pair in the
overall attention block (Ferrando and Voita, 2024).
Note that while attention weights always sum to 1,
contributions sum to the overall importance of this
attention head at each step. As a result, contribution
maps can be more sparse, as shown in Figure 1.

2.2.2 Individual FFN Neurons
When clicking on feed-forward blocks (purple
squares), the tool shows the top neurons that con-
tributed at this step. Note that this is different
from previous work that either considered top ac-
tivated neurons (Geva et al. (2022a); Alammar
(2021), among others) or did not consider neu-
rons at all (Tenney et al. (2020); Sarti et al. (2023),
among others). In contrast, our tool shows top con-
tributing neurons and makes it possible to look at
the functions of neurons only when they are impor-
tant, i.e. when they perform their function.
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Figure 3: The tool efficiently precomputes the information flow routes across all predictions with a single pass.
Clicking on triangle buttons switches between token predictions on different positions. One can see that information
flow routes are rather wide for some predictions and narrow for the others. Model: DistilGPT2 (Sanh et al., 2019).

2.3 Vocabulary Projections

One of the popular ways to interpret vector rep-
resentations is to project them onto the model’s
vocabulary space. Our tool does this for (i) repre-
sentations in the residual stream and (ii) the updates
coming from specific model components.

2.3.1 Interpreting Representations
While to get a prediction, we project the final-layer
representation onto the output vocabulary, for in-
terpretation, we can project representations at any
point inside the residual stream – this is called
logit lens (nostalgebraist, 2020). The resulting se-
quence of distributions (or top-token predictions)
illustrates the decision-making process over the
course of the Transformer inference. This is used
rather prominently to trace the bottom-up changes
in the residual stream (Alammar (2021); Geva et al.
(2021, 2022b); Merullo et al. (2023); Belrose et al.
(2023); Din et al. (2023), among others).

Tool: click on the circles. In our tool, circles
correspond to residual stream representations after
applying each model block, either attention or feed-
forward; overall, we have two representations per
layer. By clicking at each circle, under “Top tokens”
the tool shows the projection of this residual state
onto output vocabulary.3

2.3.2 Interpreting Model Components
We can also project onto vocabulary an update com-
ing from a model component: this shows how this
component changes the residual stream and, there-
fore, gives an interpretation of its behavior. In this
way, we can get concepts promoted by this compo-
nent by looking at top positive projections (Geva

3Under “Graph”, one also specifies whether to apply the
final layer normalization before projecting onto vocabulary or
not.

et al. (2022b); Dar et al. (2023), inter alia) or sup-
pressed concepts by looking at bottom negative
projections (Voita et al., 2024). Figures 2 and 4
show examples of such cases.

Tool: click on the circles and go further. When
you click on a representation from the residual
stream, in addition to this representation’s logit
lens, the tool will also show top promoted and sup-
pressed concepts for the last applied block (either
attention or feed-forward). By clicking further,
you can also select an individual attention head or
feed-forward neuron and get an interpretation at a
finer-grained level.

2.4 Additional Controls

For the functionality above, the sidebar to the left
has additional controls:

• Model:

◦ GPT-2 (Radford et al., 2019),
◦ OPT (Zhang et al., 2022b),
◦ Llama-2 (Touvron et al., 2023b),
⋄ add your own model (Section 3.6);

• Device: GPU or CPU;

• Data: adding custom data or choosing an ex-
isting example;

• Graph: tuning parameters of the informa-
tion flow graph, e.g. contribution threshold
etc. (Ferrando and Voita, 2024).

2.5 Intended Use Cases

The tool can help generating or validating hypothe-
ses about model functioning more quickly. The list
of potential use cases contains, but is not limited to
the following:
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Figure 4: The input token is being suppressed by the neurons in MLP block at Layer 5, similar to the findings
reported by Voita et al. (2024). Model: OPT-125m (Zhang et al., 2022b).

• finding model components amplifying biases;

• checking whether the model is reasoning via
different routes for desired/undesired behavior
(e.g., in safety settings);

• validating whether e.g. mathematical tasks are
solved via computation rather than memoriza-
tion;

• inspecting model behavior for factuality, when
hallucinating, etc.

3 System Design and Components

Our application is a web-based toolkit, offering
easy and interactive access that is cross-platform
compatible. This approach allows users to utilize
and share the tool remotely, emphasizing conve-
nience and flexibility.

3.1 Frontend
The frontend is developed using Streamlit (Teix-
eira et al.), with an additional custom component
specifically created for visualization of the Trans-
former model in the form of a graph. This enhance-
ment was necessary as such complex visualizations
are not natively supported by Streamlit’s built-
in features. The custom component is built using
D3.js (Bostock et al., 2011) and integrated with
React for managing dynamic content and user in-
teractions.

3.2 Backend
Our backend is a single-dispatch, stateless
Streamlit program. It includes a caching

mechanism to optimize performance for repeated
queries. The modeling and tokenization are
powered by Hugging Face transformers (Wolf
et al., 2020) library. For capturing model acti-
vations and intermediate computations, we use
TransformerLens (Nanda and Bloom, 2022)4 li-
brary as it has hooked wrappers defined for a vari-
ety of models.

3.3 Configuration and Deployment
Configuration is handled via a JSON file, allowing
for customization of parameters such as dataset
file access, maximum user string length, the list of
available models, a default model and a dataset. An
example configuration is shown in Figure 5.

{
"max_user_string_length": 100,
"preloaded_dataset_filename": "samples.txt",
"debug": false,
"models": {

"facebook/opt-6.7b": "facebook/opt-6.7b",
"my_gpt": "./local/path/to/my_gpt"

}
}

Figure 5: An example configuration.

In this configuration, model names can be either
Hugging Face model identifiers or local paths.
Other settings, such as threshold adjustments and
computation precision, are directly configurable
within the application’s user interface, enabling
quick switching.

Overall, launching the tool is as easy as:
4https://github.com/neelnanda-io/

TransformerLens
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streamlit run app.py -- path/to/config.json

3.4 Computations

For a selected sentence and model, the tool makes
the forward pass and uses the following tensors:

• intermediate representations: residual stream
states before and after each block;

• each block’s output: the value added to the
residual stream by FFN or attention;

• attention block internal states: attention
weights, per-head block output, token-specific
terms in each head’s output;

• FFN block internal states: neuron activations
before and after the activation function.

Using this, the tool computes the importances of
all the elements (blocks, heads, neurons) and ex-
tracts the information flow graph (Ferrando and
Voita, 2024). Vocabulary projections and impor-
tances within a layer are done on-the-fly when a
user clicks on an element.

Supported model sizes. We tested the tool with
models up to 30b of parameters. Since for simplic-
ity and ease of debugging we focus on single-node
setup, larger models requiring distributed mode
might not work in the current version.

Efficiency. The tool supports automatic mixed
precision (float16 and bfloat16). This helps to
store model parameters and tensors efficiently, thus
saving memory in order to accommodate larger
models without sacrificing performance. Models
are loaded on demand and cached for efficiency.

3.5 Outside of the UI

Outside of the UI, one can access the underlying
functionality of the tool programmatically with
Python function calls. For example, getting in-
formation flow routes requires the following call:
import llm_transparency_tool as lmtt
from lmtt.models.tlens_model import (

TransformerLensTransparentLlm,
)

model = TransformerLensTransparentLlm(name)

model.run([sentence])

graph = lmtt.routes.graph.build_full_graph(
model,
threshold=threshold,

)

3.6 Adding Your Own Models
By default, upon installation, the tool supports only
the models listed in Section 2.4. Steps needed for
adding a new model depend on whether the model
is supported by TransformerLens.

Supported by TransformerLens. Adding a
model supported by TransformerLens model is
very simple.

• Hugging Face weights: Add model name (as
stated in Hugging Face transformers) to the
app’s configuration JSON file.

• Custom weights: In the JSON configuration
file, along with the name of the model, provide
the path to the model file.

Not supported by TransformerLens. In this
case, you need to let the tool know how to cre-
ate proper hooks for the model. Our tool is using
TransformerLens through an intermediate inter-
face (TransparentLlm class) and you have to im-
plement this interface for your model.

4 Related Work

Existing tools for analyzing sequence models’ pre-
dictions include LM-Debugger (Geva et al., 2022a),
VISIT (Katz and Belinkov, 2023), Ecco (Alam-
mar, 2021), LIT (Tenney et al., 2020), Inseq (Sarti
et al., 2023), and Captum (Kokhlikyan et al., 2020;
Miglani et al., 2023). These tools enable users to
compute input tokens attribution scores, read token
promotions performed by different model compo-
nents via logit lens, or analyze textual patterns re-
sponsible for the activation of the model’s neurons.
However, these are not able to extract a relevant
part of model computations and indicate compo-
nent importances. To identify parts of the model
relevant for some task, a recent trend in mechanis-
tic interpretability is to rely on causal interventions
on the computational graph of the model, aka “ac-
tivation patching” (Vig et al., 2020; Geiger et al.,
2020, 2021; Wang et al., 2023; Hanna et al., 2023;
Conmy et al., 2023; Stolfo et al., 2023; Heimer-
sheim and Janiak, 2023). Usually, this process
involves the following steps: 1) selecting a dataset
and metric, 2) manually creating contrastive exam-
ples, 3) searching for important edges in the graph
via activation patching. The latter requires running
a forward pass per each patched element and uses
many patches to explain a single prediction. Al-
though recent approaches aim to automate some
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parts of this workflow (Conmy et al., 2023), the
entire process requires a large human effort and
involves significant computational costs: this im-
poses constraints on the tool development and lim-
its its applicability. Differently, LM-TT relies on a
recent method by Ferrando and Voita (2024) which
refuses from the patching constraints by relying on
attribution to define the importances. Furthermore,
LM-TT incorporates additional functionalities such
as showing fine-grained component importances,
logit lens analysis at different levels of granularity,
and attention visualization not only via attention
weights but also via contributions. This enables
users to gain a more comprehensive understanding
of the functions executed by each component.

5 Conclusions

We release the LM Transparency Tool, an open-
source toolkit for analyzing Transformer-based lan-
guage models that allows tracing back model be-
havior to specific parts of the model. Specifically, it
(i) shows the important part of the whole input-to-
output information flow, (ii) allows attributing any
changes done by a model block to individual atten-
tion heads and feed-forward neurons, (iii) allows
interpreting the functions of those heads or neu-
rons. Notably, due to the nature of the underlying
method, our tool reduces the number of compo-
nents to be analyzed by highlighting model com-
ponents that were relevant to the prediction. This
greatly simplifies the study of large language mod-
els, with potentially thousands of attention heads
and hundreds of thousands of neurons to look at.
Moreover, the UI accelerates the inspection process,
unlike other frameworks that lack this feature. This
assists researchers and practitioners in efficiently
generating hypotheses regarding the behavior of
the model.
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