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Fig. 1: WORDFLOW is an open-source social prompt engineering tool to help everyday users create, run, share,
and discover prompts for large language models (LLMs). (A) The Editor View offers an easy-to-use text editing
interface, allowing users to run an LLM prompt using the selected text as input by simply clicking on a button and
examine the changes made by LLMs. (B) The Prompt Manager enables users to edit and curate prompts, adjust
LLM settings, and share their prompts with the community.

Abstract
Large language models (LLMs) require well-
crafted prompts for effective use. Prompt engi-
neering, the process of designing prompts, is
challenging, particularly for non-experts who
are less familiar with AI technologies. While
researchers have proposed techniques and tools
to assist LLM users in prompt design, these
works primarily target AI application devel-
opers rather than non-experts. To address
this research gap, we propose social prompt
engineering, a novel paradigm that leverages
social computing techniques to facilitate col-
laborative prompt design. To investigate so-
cial prompt engineering, we introduce WORD-
FLOW, an open-source and social text editor
that enables everyday users to easily create,
run, share, and discover LLM prompts. Ad-
ditionally, by leveraging modern web tech-
nologies, WORDFLOW allows users to run
LLMs locally and privately in their browsers.

Two usage scenarios highlight how our tool’s
incorporation of social prompt engineering
can enhance laypeople’s interactions with
LLMs. WORDFLOW is publicly accessible at
https://poloclub.github.io/wordflow.

1 Introduction
Recently, there has been a surge in the popularity
of large language models (LLMs) such as GPT-
4 (OpenAI, 2023a), Gemini (Team et al., 2023),
and Llama 2 (Touvron et al., 2023). These pre-
trained artificial intelligence (AI) models demon-
strate a diverse array of capabilities that are contin-
ually being discovered, including summarization,
question-answering, creative writing, and transla-
tion (Bommasani et al., 2022). To instruct these
general-purpose LLMs to perform specific tasks,
users need to provide them with prompts—text in-
structions and examples of desired outputs (Brown

42

https://poloclub.github.io/wordflow


et al., 2020). These prompts serve as background
contexts and guides for LLMs to generate text that
aligns with users’ objectives. Prompting enables
users to employ LLMs for various tasks with plain
language; in fact, well-crafted prompts can make
general-purpose LLMs outperform specialized AI
models (Nori et al., 2023).

Designing effective prompts, known as prompt
engineering, poses significant challenges for LLM
users (Jiang et al., 2022). LLM users often rely on
trial and error and employ unintuitive patterns, such
as adding “think step by step” (Kojima et al., 2022)
to their prompts, to successfully instruct LLMs.
Prompt engineering, despite its name, is considered
an art (Parameswaran et al., 2023) and is even com-
pared to wizards learning “magic spells” (Willison
et al., 2022). Prompt writers may not fully under-
stand why certain prompts work, but they still add
them to their “spell books.” Furthermore, prompt-
ing is especially challenging for non-AI-experts,
who are often confused about getting started and
lack sufficient guidance and training on LLMs and
prompting (Zamfirescu-Pereira et al., 2023).

To help users prompt LLMs, researchers propose
instruction tuning (Chung et al., 2022) and rein-
forcement learning from human feedback (Ouyang
et al., 2022) to align a model’s output with users’
intent. Prompting techniques (Brown et al., 2020)
are introduced to improve LLMs’ performance on
complex tasks. Libraries and interactive tools have
also been developed to streamline the prompt craft-
ing process (e.g., Chase, 2022; Jiang et al., 2022).
However, existing techniques and tools primarily
cater to AI application developers who use LLMs
to build AI applications (e.g., chatbot applications),
overlooking non-expert users who use LLMs for
everyday tasks (e.g., checking emails for grammar
errors). To bridge this critical research gap, we pro-
pose social prompt engineering, a novel paradigm
that leverages social computing techniques to facil-
itate collaborative prompt designs. We contribute:

• WORDFLOW, the first social and customiz-
able text editor that empowers everyday users
to create, run, share, and discover LLM
prompts (Fig. 1). It features a direct manipu-
lation text editing interface for applying LLM
prompts to transform existing text, such as
proofreading and translation, or generate new
text, such as creative writing. Users can eas-
ily customize prompts and LLM settings, share
prompts with the community, and copy commu-

nity prompts (§ 3). Two usage scenarios high-
light how WORDFLOW and social prompt en-
gineering can enhance users’ interactions with
LLMs (§ 4). Finally, we discuss future research
opportunities enabled by our system (§ 5).

• An open-source1, web-based implementation
that lowers the barrier for everyday users in de-
signing effective prompts and applying LLMs
to their daily tasks. By leveraging modern web
technologies, such as WebGPU (MDN, 2023;
team, 2023), our tool enables users to run cutting-
edge LLMs locally without the need for dedi-
cated backend servers or external LLM API ser-
vices (§ 3.4). Additionally, we offer an open-
source implementation to help future designers
and researchers adopt WORDFLOW for explor-
ing and developing future user interfaces for
LLMs. To see a demo video of WORDFLOW,
visit https://youtu.be/3dOcVuofGVo.

We hope our work will inspire the research and
development of collaborative interfaces that help
everyone more easily and effectively use LLMs.

2 Related Work

Addressing prompt engineering challenges.
Researchers have proposed libraries such as
LANGCHAIN (Chase, 2022), GUIDANCE (Lund-
berg et al., 2023), and OUTLINES (Willard and
Louf, 2023) to help users write prompts program-
matically and control the structure of an LLM’s
output. By formulating prompting as program-
ming, researchers propose techniques that help
users edit (Fiannaca et al., 2023) and unit test
prompts (Strobelt, 2023). COPROMPT (Feng
et al., 2023) introduces a collaborative editor for
multiple programmers to write prompts simul-
taneously. AI prototyping tools like PROMPT-
MAKER (Jiang et al., 2022), GOOGLE AI STU-
DIO (Google, 2023), OPENAI PLAYGROUND (Ope-
nAI, 2023b), and PARTYROCK (Amazon, 2023)
allow users to rapidly write and run prompts.

By leveraging visual programming techniques,
tools such as AI CHAINS (Wu et al., 2022),
PROMPT SAPPER (Cheng et al., 2023), and CHAIN-
FORGE (Arawjo et al., 2023) enable AI applica-
tion developers to visually design and test com-
plex prompts. Similarly, PROMPTIDE (Strobelt
et al., 2022), PROMPTAID (Mishra et al., 2023),
and PROMPTERATOR (Sučik et al., 2023) employ
mixed-initiative and interactive visualization tech-

1Code: https://github.com/poloclub/wordflow
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Fig. 2: Users can easily manage and customize their prompts in WORDFLOW. (A) The Personal Prompt Library
provides an overview of local prompts, allowing users to search, sort, and customize the quick-action prompt toolbar
in the Editor View. (B) The Prompt Editor, activated by clicking a Prompt Card, employs progressive disclosure to
help users modify prompt and configure output parsing rules, temperature, and sharing settings.

niques to help LLM users brainstorm and refine
prompts. These existing tools function as IDEs
that help AI developers craft prompts that will later
be integrated into other applications. In contrast,
WORDFLOW aims to serve as a runtime interface
for everyday users, who act as both the prompt en-
gineers and direct users of their prompts, and may
not be well-versed in AI technologies.

Social prompt engineering. Online com-
munities, including Promptstacks (Promptstacks,
2023), ChatGPT Prompt Genius (Reddit, 2023),
and ShareGPT (Eccleston and Tey, 2022), serve
as platforms for prompt creators to share tips,
collaborate, and stay updated on AI advance-
ments. User prompts from social media have
been scraped to create prompt datasets for AI
model development (Wang et al., 2023). Online
prompt marketplaces, such as PromptBase (Prompt-
Base, 2023), PromptHero (PromptHero, 2023) and
ChatX (ChatX, 2023), have emerged to allow users
to buy and sell prompts for generative models.
Midjourney’s Discord server (Holz, 2022) allows
users to run and share prompts for text-to-image
generative models, with dedicated sections for
prompt critique and improvement (Oppenlaender,
2022). Building on the design of these communi-
ties, WORDFLOW provides an easy-to-use interface
that unifies creating, running, sharing, and discover-
ing LLM prompts. The most relevant related work
is PROMPTSOURCE (Bach et al., 2022), an IDE for
AI researchers and developers to write and share
LLM prompts. PROMPTSOURCE targets AI ex-
perts using LLMs for natural language processing

tasks on datasets (such as data annotation), and it
requires users to provide a dataset. In comparison,
WORDFLOW targets everyday users using LLMs
for daily tasks, such as grammar checking, without
the need to provide any dataset.

3 System Design & Implementation

WORDFLOW is an interactive tool that empow-
ers everyday users to easily create, run, share,
and discover LLM prompts. It tightly integrates
four views: the Editor View (§ 3.1), where users
can write text, run LLM prompts, and inspect
changes made by LLMs; the Personal Prompt Li-
brary (§ 3.2), offering a prompt manager for cre-
ating and editing prompts locally; the Community
Prompt Hub (§ 3.2), enabling users to explore and
search for the latest and popular prompts shared by
the community; and the Setting Panel for configur-
ing remote or local LLMs (§ 3.4).

3.1 Editor View
When users open WORDFLOW in their
browser or its mobile and desktop progres-
sive web app, they are presented with the
Editor View (Fig. 1A). This view shows a
familiar text editor interface with a Float-
ing Toolbar anchored on the right. Users
can type or paste text into the editor. The Float-
ing Toolbar consists of three prompt buttons and a
home button (shown on the right). Each prompt but-
ton is represented by an emoji icon and corresponds
to a prompt template. Users can click the prompt
button to run its prompt using the current paragraph
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Fig. 3: Users can easily configure LLM temperatures
and regex-baed output parsing in the Prompt Editor.

as the input text. If a user has selected some text,
the selected text is used as the input for the prompt.
Users can also click the home button to open a
pop-up window that contains the Personal Prompt
Library (§ 3.2, Fig. 2A), the Community Prompt
Hub (§ 3.3, Fig. 1B), and the Setting Panel (Fig. 4).

Prompt input templating. In WORDFLOW, a
prompt template includes pre-defined prefix text
and a placeholder for the input text. For exam-
ple, the prefix text can be “Improve the flow of the
following text”. The input placeholder in the tem-
plate serves as a variable that will be substituted
with the selected text from the editor. Inspired by
popular prompting tools such as LANGCHAIN and
PROMPTMAKER, our tool supports basic prompt
templating. Users can include a special string
{{text}} in their prompt template to represent the
input placeholder (Fig. 2B), which will be replaced
with the selected text from the editor before run-
ning the prompt. If the user does not include the
string {{text}} in the template, the input text will
be appended to the prompt template.

Prompt output parsing. To run users’ prompts,
WORDFLOW supports remote LLM API services,
such as GPT 4 and Gemini API services provided
by OpenAI and Google, as well as local open-
source models, such as Llama 2 (Touvron et al.,
2023) and Phi 2 (Abdin et al., 2023). Users can set
their preferred models in the Setting Panel (Fig. 4).
After receiving the output from the LLM API ser-
vice or local model, the Editor View applies Myer’s
diffing algorithm (Fraser, 2012) to compare the out-
put text with the input text. It then highlights the
changes made by the LLM (e.g., addition, replace-
ment, and deletion) using different text background

colors (Fig. 1A). Users can click on the highlighted
text to accept or reject the changes.

Inspired by LANGCHAIN, WORDFLOW allows
users to add optional output parsing rules to
a prompt by writing regular expression (regex)
text (Fig. 3), which is useful for disregarding unre-
lated output text. For example, a user can prompt
LLMs to structure the output in XML format (rec-
ommended by prompt engineering guidelines (An-
thropic, 2023)), such as “Improve the flow of the
following text. Put the rewritten text in an XML
tag <output></output>”. The user can then add a
regex pattern .*<output>(.*)</output>.* and
a replacement rule $1 to parse the LLM’s output
before it is displayed in the Editor View.

3.2 Personal Prompt Library
After clicking the home button , users can open
the Personal Prompt Library to manage their lo-
cal prompts (Fig. 2A). This view organizes each
prompt as a Prompt Card, allowing users to search
and sort prompts based on name, recency, and run
count. To change the prompts in the Floating Tool-
bar (§ 3.1), users can simply drag a Prompt Card
into one of the three prompt slots located in the bot-
tom row, each corresponding to a prompt button in
the Floating Toolbar. To add or edit a prompt,
users can click on the button or a
Prompt Card to open the Prompt Editor (Fig. 2B).
The Prompt Editor comprises three forms: basic
prompt information (Fig. 2B), optional advanced
settings (Fig. 3), and optional sharing settings. In
the basic prompt information section, users can
configure the title, icon, and prompt template. The
advanced settings allow more experienced users to
set the LLM temperature, output parsing rules, and
insertion rules (Fig. 3). To share a prompt with the
community, users can provide a description, tags,
and recommended LLM models in the sharing set-
tings, and then click on the button.

3.3 Community Prompt Hub
The Community Prompt Hub enables users to
browse and search for prompts shared by WORD-
FLOW users (Fig. 1B). Each community prompt
is represented as a Prompt Card and is associated
with at least one tag. Users can filter prompts by
clicking on a tag and can also sort prompts based
on recency and popularity (i.e., the number of times
they have been run). By clicking on a Prompt Card,
users can access the Prompt Viewer (Fig. 5) to ex-
amine detailed information provided by the prompt
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creator, including the title, description, prompt tem-
plate, and recommended LLM models. Finally,
users can click on the button to include a
copy of the community prompt in their Personal
Prompt Library (§ 3.2), where they can run the
prompt, make further refinements, and potentially
share it again with the community.

3.4 Open-source Implementation

Fig. 4: WORDFLOW supports
both remote and local LLMs.

We implement WORD-
FLOW as a progres-
sive web app using
Web Components and
LIT Element (Google,
2015). Users can use
it as a mobile or desk-
top app by saving it as
a Safari Web App or a
Chrome app. WORD-
FLOW allows users to run LLMs through remote
API services, such as GPT 4 provided by Ope-
nAI, or directly run open-source LLMs, such as
Gemma (Team et al., 2024), Llama 2, Phi 2, and
TinyLlama, in their browser (Fig. 4). We use Web
LLM (team, 2023) and WebGPU to implement on-
device LLM inference. In WORDFLOW, all local
prompts are stored in the local persistent storage
of the user’s browser. To enable users to share
community prompts, we use Amazon API Gate-
way and DynamoDB as a backend. Additionally,
we provide a Google Doc add-on (Fig. 6) that al-
lows Google Doc users to directly use WORDFLOW

within their editor. We open source WORDFLOW

as a collection of reusable interactive components
that can be easily adopted by future researchers and
developers in their interactive LLM projects.

4 Usage Scenarios

4.1 Improving Technical Writing

As a recently graduated junior software developer,
Wade has been struggling with writing API doc-
umentation and system architecture descriptions.
Specifically, Wade is unfamiliar with explaining
technical concepts in simple language that can be
easily understood by different colleagues such as
developers, UX designers, and program managers.
One day, Wade came across a forum thread where
developers were sharing LLM prompts that had
helped them improve their technical documenta-
tion writing. Wade had never thought about using
LLM to assist him in his writing before. Intrigued,

Fig. 5: The Prompt Viewer shows detailed information
about a community prompt. Users can click a button to
copy this prompt into their Personal Prompt Library.

he clicked on a WORDFLOW prompt link shared in
a popular comment on the thread. The link opened
WORDFLOW in a new tab, displaying the Com-
munity Prompt Hub along with a pop-up showing
a community prompt (Fig. 5). Wade found the
prompt and its description to be suitable for his
writing tasks, so he clicked on the button to
copy this community prompt to his local library.

Wade decided to try out this prompt to improve
his writing. He opened the Personal Prompt Li-
brary and dragged the newly added prompt into
one of the Favorite Prompts slots (Fig. 2A), and the
prompt appeared in the Floating Toolbar in the Ed-
itor View (Fig. 1A). Wade copied a paragraph from
the API documentation that he was working on.
However, before clicking on the prompt button in
the Floating Toolbar, Wade suddenly remembered
that his company prohibits employees from using
LLM services (e.g., ChatGPT and Bard) with work
materials, as a measure to safeguard trade secrets
and sensitive information.

Upon reviewing the documentation of WORD-
FLOW, Wade discovered that WORDFLOW supports
running LLMs locally in browsers without send-
ing any data to third-party services (e.g., OpenAI
and Google). Therefore, he configured the LLM
model to Llama 2, a local LLM model, in the Set-
ting Panel before running the prompt on his writing.
Then, he observed the changes made by the LLM
model, which were highlighted in the Editor View,
and found the new paragraph to be much easier to
read. After using this prompt for a few days, Wade
shared the prompt link on his company’s mailing
list, and more developers from his company began
to use it to improve technical writing.
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Fig. 6: Users can directly use WORDFLOW add-on to
apply prompts to text within Google Doc documents.

4.2 Customizing Translation Styles
Ember, a senior manager in a US financial firm,
recently encountered difficulties in communicating
with her Japanese counterparts due to the absence
of a translator. The use of traditional translation
software has sometimes caused confusion among
her Japanese colleagues. For example, the software
translated the English idiom “break the ice” to “氷
を砕く,” which means “destroy the ice” instead of
her intended meaning of “relieving tension when
people interact for the first time.”

Due to the recent popularity of LLMs, Ember
decided to try using them to translate her docu-
ments from English to Japanese. As she writes in
Google Docs, she explored the Google Doc Mar-
ketplace for an AI add-on and came across WORD-
FLOW. Upon installation, she opened the Commu-
nity Prompt Hub (Fig. 1B) and selected the tag

, which showed various popular translation
prompts. She found a prompt titled “Translate
English to Japanese.”

After adding this prompt to her library, she tried
to run it with the input “break the ice”. How-
ever, WORDFLOW appended the incorrect trans-
lation “氷を砕く” to her document. Drawing from
her previous experience interacting with ChatGPT,
Ember decided to edit the prompt and provide ad-
ditional instructions to guide the LLM model in
considering her translation context. She opened the
Editor View (Fig. 2B). and added a new sentence
to the translation prompt: “My input text is used
in US corporate communications” (Fig. 6 Right).
Running the prompt again, WORDFLOW generated
a more suitable translation “雰囲気を和らげる,”
which means “ease the atmosphere” (Fig. 6 Left).
Ember back-translated the translation to English
using her other translation software and felt more
confident in continuing to use this prompt for future
translations. Finally, to help other people who need
to translate English to Japanese in business settings,
she shared her updated prompt with the commu-
nity by clicking on the button (Fig. 2B).

5 Future Work & Conclusion

In this work, we present social prompt engineer-
ing, a new paradigm that leverages social comput-
ing techniques to facilitate collaborative prompt
design. To realize social prompt engineering, we
design and develop WORDFLOW, an open-source
and social text editor empowering users to easily
create, run, share, and discover LLM prompts. Two
usage scenarios highlight social prompt engineer-
ing and WORDFLOW can assist everyday users in
interacting with LLMs. Reflecting on our design
and development of this system, we discuss future
research directions to help everyone use LLMs.

• Usage log study. Using WORDFLOW as a re-
search instrument, we plan to conduct a usage
log study to evaluate social prompt engineering
and investigate (1) the effectiveness of social
prompt engineering in helping everyday users
craft prompts, and (2) everyday users’ LLM use
cases. We will examine the evolution of prompt
editing and analyze community prompts to syn-
thesize popular use cases and prompting patterns.

• Fitting into user workflows. Future tools like
WORDFLOW can be seamlessly integrated into
user workflows by being in situ and ubiquitous.
With recent advancements in on-device machine
learning, we see great potential for on-device
LLMs, which allow users to avoid sending sensi-
tive data to external services, reduce API costs,
and use LLMs without network access.

• Enhancing engagement in social prompt engi-
neering. There are great opportunities to enrich
user interaction with LLMs using social comput-
ing techniques. To encourage user participation
in prompt sharing, researchers can explore intrin-
sic motivations, such as designing an enjoyable
social environment, and extrinsic motivations,
such as virtual rewards and reputation systems.

• Promoting responsible AI. Social prompt en-
gineering presents both opportunities and chal-
lenges for responsible AI. Platforms like WORD-
FLOW enable users to share prompting techniques
to mitigate potential harms, but also run the risk
of disseminating harmful prompts such as misin-
formation generators. In WORDFLOW, users can
report harmful prompts, and we diligently mon-
itor and moderate community prompts. Future
researchers can explore social system designs
that promote responsible prompting and develop
methods to detect potentially harmful prompts.
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6 Broader Impact
We propose social prompt engineering with good
intentions—to help everyday users more easily and
effectively use LLMs for their everyday tasks. In
addition, we design and develop WORDFLOW, an
open-source tool that is publicly accessible, to help
everyday users easily create, run, share, and dis-
cover LLM prompts. However, bad actors might
exploit our open platform to distribute prompts de-
signed for harmful purposes. For example, they
could share prompts that generate misinformation
or content fostering divisive or extremist ideologies,
exploiting WORDFLOW’s reach to influence vulner-
able and inexperienced audiences. To address and
mitigate these potential harms, WORDFLOW en-
ables users to report harmful prompts. We also ac-
tively monitor and moderate community prompts.
Given that social prompt engineering and social
prompting systems are still in their early stages,
further research is needed to understand and ad-
dress their potential harms.
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