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Abstract
Efficient fine-tuning is vital for adapting large
language models (LLMs) to downstream tasks.
However, it requires non-trivial efforts to imple-
ment these methods on different models. We
present LLAMAFACTORY, a unified framework
that integrates a suite of cutting-edge efficient
training methods. It provides a solution for
flexibly customizing the fine-tuning of 100+
LLMs without the need for coding through
the built-in web UI LLAMABOARD. We em-
pirically validate the efficiency and effective-
ness of our framework on language modeling
and text generation tasks. It has been released
at https://github.com/hiyouga/LLaMA-Factory
and received over 25,000 stars and 3,000 forks.

1 Introduction

Large language models (LLMs) (Zhao et al., 2023)
present remarkable reasoning capabilities and em-
power a wide range of applications, such as ques-
tion answering (Jiang et al., 2023b), machine trans-
lation (Wang et al., 2023b; Jiao et al., 2023a), and
information extraction (Jiao et al., 2023b). Subse-
quently, a substantial number of LLMs are devel-
oped and accessible through open-source commu-
nities. For example, Hugging Face’s open LLM
leaderboard (Beeching et al., 2023) boasts over
5,000 models, offering convenience for individuals
seeking to leverage the power of LLMs.

Fine-tuning extremely large number of parame-
ters with limited resources becomes the main chal-
lenge of adapting LLM to downstream tasks. A
popular solution is efficient fine-tuning (Houlsby
et al., 2019; Hu et al., 2022; Dettmers et al., 2023),
which reduces the training cost of LLMs when
adapting to various tasks. However, the commu-
nity contributes various methods for efficient fine-
tuning, lacking a systematic framework that adapts
and unifies these methods to different LLMs and
provides a friendly interface for user customization.

*Corresponding author

To address the above problems, we develop LLA-
MAFACTORY, a framework that democratizes the
fine-tuning of LLMs. It unifies a variety of effi-
cient fine-tuning methods through scalable mod-
ules, enabling the fine-tuning of hundreds of LLMs
with minimal resources and high throughput. In
addition, it streamlines commonly used training
approaches, including generative pre-training (Rad-
ford et al., 2018), supervised fine-tuning (SFT)
(Wei et al., 2022), reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022),
and direct preference optimization (DPO) (Rafailov
et al., 2023). Users can leverage command-line
or web interfaces to customize and fine-tune their
LLMs with minimal or no coding effort.

LLAMAFACTORY consists of three main mod-
ules: Model Loader, Data Worker and Trainer.
We minimize the dependencies of these modules
on specific models and datasets, allowing the frame-
work to flexibly scale to hundreds of models and
datasets. Concretely, we first establish a model reg-
istry where the Model Loader can precisely attach
adapters to the pre-trained models by identifying
exact layers. Then we develop a data description
specification that allows the Data Worker to gather
datasets by aligning corresponding columns. Fur-
thermore, we provide plug-and-play implementa-
tions of state-of-the-art efficient fine-tuning meth-
ods that enable the Trainer to activate by replacing
default ones. Our design allows these modules
to be reused across different training approaches,
significantly reducing the integration costs.

LLAMAFACTORY is implemented with PyTorch
(Paszke et al., 2019) and significantly benefits from
open-source libraries, such as Transformers (Wolf
et al., 2020), PEFT (Mangrulkar et al., 2022), and
TRL (von Werra et al., 2020). On the basis, we
provide an out-of-the-box framework with a higher
level of abstraction. Additionally, we build LLAM-
ABOARD with Gradio (Abid et al., 2019), enabling
fine-tuning LLMs with no coding efforts required.
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LLAMAFACTORY FastChat LitGPT LMFlow Open-Instruct

LoRA ! ! ! ! !

QLoRA ! ! ! ! !

DoRA !

LoRA+ !

PiSSA !

GaLore ! ! ! !

BAdam !

Flash attention ! ! ! ! !

S2 attention !

Unsloth ! !

DeepSpeed ! ! ! ! !

SFT ! ! ! ! !

RLHF ! !

DPO ! !

KTO !

ORPO !

Table 1: Comparison of features in LLAMAFACTORY
with popular frameworks of fine-tuning LLMs.

LLAMAFACTORY is open-sourced under the
Apache-2.0 license. It has already garnered over
25,000 stars and 3,000 forks on the GitHub, and
hundreds of open-source models have been built
upon LLAMAFACTORY on the Hugging Face Hub1.
For example, Truong et al. (2024) build GemSUra-
7B based on LLAMAFACTORY, revealing the cross-
lingual abilities of Gemma (Mesnard et al., 2024).
Furthermore, dozens of studies have utilized our
framework to explore LLMs (Wang et al., 2023a;
Yu et al., 2023; Bhardwaj et al., 2024).

2 Related Work

With the rapid increase in demand for fine-tuning
LLMs, numerous frameworks for adapting LLMs
to specific purposes have been developed. LLaMA-
Adapter (Zhang et al., 2024) efficiently fine-tunes
the Llama model (Touvron et al., 2023a) using a
zero-initialized attention. FastChat (Zheng et al.,
2023) is a framework focused on training and evalu-
ating LLMs for chat completion purposes. LitGPT
(AI, 2023) provides the implementation of genera-
tive models and supports various training methods.
Open-Instruct (Wang et al., 2023c) provides recipes
for training instruct models. Colossal AI (Li et al.,
2023b) takes advanced parallelism strategies for
distributed training. LMFlow (Diao et al., 2024)
supports training LLMs for specialized domains or
tasks. GPT4All (Anand et al., 2023) allows LLMs
to run on consumer devices, while also providing
fine-tuning capabilities. Compared with existing
competitive frameworks, LLAMAFACTORY sup-
ports a broader range of efficient fine-tuning tech-
niques and training approaches. We list the features
among representative frameworks in Table 1.

1https://huggingface.co/models?other=llama-factory

Freeze-tuning GaLore LoRA DoRA LoRA+ PiSSA

Mixed precision ! ! ! ! ! !

Checkpointing ! ! ! ! ! !

Flash attention ! ! ! ! ! !

S2 attention ! ! ! ! ! !

Quantization % % ! ! ! !

Unsloth % % ! ! ! !

Table 2: Compatibility between the fine-tuning tech-
niques featured in LLAMAFACTORY.

3 Efficient Fine-Tuning Techniques

Efficient LLM fine-tuning techniques can be di-
vided into two main categories: those focused on
optimization and those aimed at computation. The
primary objective of efficient optimization tech-
niques is to fine-tune the parameters of LLMs while
keeping costs to a minimum. On the other hand,
efficient computation methods seek to decrease
the time or space for the required computation in
LLMs. The methods included in LLAMAFACTORY

are listed in Table 2. We will present these efficient
fine-tuning techniques and show the substantial ef-
ficiency improvement achieved by incorporating
them into our framework in the following sections.

3.1 Efficient Optimization

Firstly, we provide an overview of the efficient op-
timization techniques utilized in LLAMAFACTORY.
The freeze-tuning method (Houlsby et al., 2019) in-
volves freezing a majority of parameters while fine-
tuning the remaining parameters in a small subset
of decoder layers. Another method called gradient
low-rank projection (GaLore) (Zhao et al., 2024)
projects gradients into a lower-dimensional space,
facilitating full-parameter learning in a memory-
efficient manner. Similarly, BAdam (Luo et al.,
2024) leverages block coordinate descent (BCD)
to efficiently optimize the extensive parameters.
On the contrary, the low-rank adaptation (LoRA)
(Hu et al., 2022) method freezes all pre-trained
weights and introduces a pair of trainable low-rank
matrices to the designated layer. When combined
with quantization, this approach is referred to as
QLoRA (Dettmers et al., 2023), which additionally
reduces the memory usage. DoRA (Liu et al., 2024)
breaks down pre-trained weights into magnitude
and direction components and updates directional
components for enhanced performance. LoRA+
(Hayou et al., 2024) is proposed to overcome the
sub-optimality of LoRA. PiSSA (Meng et al., 2024)
initializes adapters with the principal components
of the pre-trained weights for faster convergence.
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3.2 Efficient Computation

In LLAMAFACTORY, we integrate a range of tech-
niques for efficient computation. Commonly uti-
lized techniques encompass mixed precision train-
ing (Micikevicius et al., 2018) and activation check-
pointing (Chen et al., 2016). Drawing insights from
the examination of the input-output (IO) expenses
of the attention layer, flash attention (Dao et al.,
2022) introduces a hardware-friendly approach to
enhance attention computation. S2 attention (Chen
et al., 2024a) tackles the challenge of extended con-
text with shifted sparse attention, thereby dimin-
ishing memory usage in fine-tuning long-context
LLMs. Various quantization strategies (Dettmers
et al., 2022a; Frantar et al., 2023; Lin et al., 2023;
Egiazarian et al., 2024) decrease memory require-
ments in large language models (LLMs) by uti-
lizing lower-precision representations for weights.
Nevertheless, the fine-tuning of quantized models
is restricted to the adapter-based techniques like
LoRA (Hu et al., 2022). Unsloth (Han and Han,
2023) incorporates Triton (Tillet et al., 2019) for
implementing the backward propagation of LoRA,
which reduces floating-point operations (FLOPs)
during gradient descent and leads to expedited
LoRA training.

LLAMAFACTORY seamlessly combines these
techniques into a cohesive structure to enhance the
efficiency of LLM fine-tuning. This results in a
reduction of the memory footprint from 18 bytes
per parameter during mixed precision training (Mi-
cikevicius et al., 2018) or 8 bytes per parameter in
half precision training (Le Scao et al., 2022) to only
0.6 bytes per parameter. Further elaboration on the
components in LLAMAFACTORY will be provided
in the subsequent section.

4 LLAMAFACTORY Framework

LLAMAFACTORY consists of three main modules:
Model Loader, Data Worker, and Trainer. The
Model Loader manipulates various model archi-
tectures for fine-tuning, supporting both large lan-
guage models (LLMs) and vision language models
(VLMs). The Data Worker processes data from dif-
ferent tasks through a well-designed pipeline, sup-
porting both single-turn and multi-turn dialogues.
The Trainer applies efficient fine-tuning techniques
to different training approaches, supporting pre-
training, instruction tuning and preference opti-
mization. Beyond that, LLAMABOARD provides a
friendly visual interface to access these modules,

LlamaBoard

Experiment Configurator Training Status Monitor

Trainer

Optimization Approaches

LoRA PiSSA

GaLore BAdam

Pre-train SFT

RLHF DPO

Model Loader Data Worker

Initialization Patches

Quantization Adapters

AligningLoading

PreprocessMerging

Pre-Trained Models Conversational Datasets

Figure 1: The architecture of LLAMAFACTORY.

enabling users to configure and launch individual
LLM fine-tuning instance codelessly and monitor
the training status synchronously. We illustrate the
relationships between these modules and the over-
all architecture of LLAMAFACTORY in Figure 1.

4.1 Model Loader

This section initially presents the four components
in Model Loader: model initialization, model patch-
ing, model quantization, and adapter attaching, fol-
lowed by a description of our approach of adapting
to a wide range of devices by handling the parame-
ter floating-point precision during fine-tuning.

Model Initialization We utilize the Auto Classes
of Transformers (Wolf et al., 2020) to load pre-
trained models and initialize parameters. Specifi-
cally, we load the vision language models using the
AutoModelForVision2Seq class while the rest are
loaded using the AutoModelForCausalLM class.
The tokenizer is loaded using the AutoTokenizer
class along with the model. In cases where the vo-
cabulary size of the tokenizer exceeds the capacity
of the embedding layer, we resize the layer and
initialize new parameters with noisy mean initial-
ization. To determine the scaling factor for RoPE
scaling (Chen et al., 2023), we compute it as the
ratio of the maximum input sequence length to the
context length of the model.
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Model Patching To enable the S2 attention, we
employ a monkey patch to replace the forward com-
putation of models. However, we use the native
class to enable flash attention as it has been widely
supported since Transformers 4.34.0. To prevent
excessive partitioning of the dynamic layers, we
set the mixture-of-experts (MoE) blocks as leaf
modules when we optimize the MoE models under
DeepSpeed ZeRO stage-3 (Rasley et al., 2020).

Model Quantization Dynamically quantizing
models to 8 bits or 4 bits with LLM.int8 (Dettmers
et al., 2022a) can be performed through the bitsand-
bytes library (Dettmers, 2021). For 4-bit quantiza-
tion, we utilize the double quantization and 4-bit
normal float as QLoRA (Dettmers et al., 2023). We
also support fine-tuning the models quantized by
the post-training quantization (PTQ) methods, in-
cluding GPTQ (Frantar et al., 2023), AWQ (Lin
et al., 2023), and AQLM (Egiazarian et al., 2024).
Note that we cannot directly fine-tune the quan-
tized weights; thus, the quantized models are only
compatible with adapter-based methods.

Adapter Attaching We automatically identify
the appropriate layers to attach adapters through
traversing the model layers. The low-rank adapters
are attached to all the linear layers for a better con-
vergence as suggested by (Dettmers et al., 2023).
The PEFT (Mangrulkar et al., 2022) library pro-
vides an extremely convenient way to implement
the adapter-based methods such as LoRA (Hu et al.,
2022), rsLoRA (Kalajdzievski, 2023), DoRA (Liu
et al., 2024) and PiSSA (Meng et al., 2024). We
replace the backward computation with the one
of Unsloth (Han and Han, 2023) to accelerate the
training. To perform reinforcement learning from
human feedback (RLHF), a value head layer is ap-
pended on the top of the transformer model, map-
ping the representation of each token to a scalar.

Precision Adaptation We handle the floating-
point precision of pre-trained models based on the
capabilities of computing devices. For NVIDIA
GPUs, we adopt bfloat16 precision if the computa-
tion capability is 8.0 or higher. Otherwise, float16
is adopted. Besides, we adopt float16 for Ascend
NPUs and AMD GPUs and float32 for non-CUDA
devices. In mixed precision training, we set all
trainable parameters to float32 for training stability.
Nevertheless, we retain the trainable parameters as
bfloat16 in half precision training.

Plain text [{"text": "..."}, {"text": "..."}]
Alpaca-like data [{"instruction": "...", "input": "...", "output":

"..."}]
ShareGPT-like data [{"conversations": [{"from": "human", "value":

"..."}, {"from": "gpt", "value": "..."}]}]
Preference data [{"instruction": "...", "input": "...", "output":

["...", "..."]}]

Standardized data {"prompt": [{"role": "...", "content": "..."}],
"response": [{"role": "...", "content": "..."}],
"system": "...", "tools": "...", "images": ["..."]}

Table 3: Dataset structures in LLAMAFACTORY.

4.2 Data Worker
We develop a data processing pipeline, including
dataset loading, dataset aligning, dataset merging
and dataset pre-processing. It standardizes datasets
of different tasks into a unified format, enabling us
to fine-tune models on datasets in various formats.

Dataset Loading We utilize the Datasets (Lhoest
et al., 2021) library to load the data, which allows
the users to load remote datasets from the Hug-
ging Face Hub or read local datasets via scripts or
through files. The Datasets library significantly re-
duces memory overhead during data processing and
accelerates sample querying using Arrow (Apache,
2016). By default, the whole dataset is downloaded
to local disk. However, if a dataset is too large to be
stored, our framework provides dataset streaming
to iterate over it without downloading.

Dataset Aligning To unify the dataset format, we
design a data description specification to charac-
terize the structure of datasets. For example, the
alpaca dataset has three columns: instruction, in-
put and output (Taori et al., 2023). We convert the
dataset into a standard structure that is compatible
with various tasks according to the data description
specification. Some examples of dataset structures
are shown in Table 3.

Dataset Merging The unified dataset structure
provides an efficient approach for merging multiple
datasets. For the datasets in non-streaming mode,
we simply concatenate them before the datasets are
shuffled during training. However, in streaming
mode, simply concatenating the datasets impedes
data shuffling. Therefore, we offer methods to
alternately read the data from different datasets.

Dataset Pre-processing LLAMAFACTORY is de-
signed for fine-tuning the text generative models,
which is primarily used in chat completion. Chat
template is a crucial component in these mod-
els, because it is highly related to the instruction-
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following abilities of these models. Therefore, we
provide dozens of chat templates that can be auto-
matically chosen according to the model type. We
encode the sentence after applying the chat tem-
plate using the tokenizer. By default, we only com-
pute loss on the completions, while the prompts
are disregarded (Taori et al., 2023). Optionally, we
can utilize sequence packing (Krell et al., 2021)
to reduce the training time, which is automatically
enabled when performing generative pre-training.

4.3 Trainer

Efficient Training We integrate state-of-the-art
efficient fine-tuning methods, including LoRA+
(Hayou et al., 2024), GaLore (Zhao et al., 2024)
and BAdam (Luo et al., 2024) to the Trainer by re-
placing the default components. These fine-tuning
methods are independent of the Trainer, making
them easily applicable to various tasks. We utilize
the trainers of Transformers (Wolf et al., 2020) for
pre-training and SFT, while adopting the trainers of
TRL (von Werra et al., 2020) for RLHF and DPO.
We also include trainers of the advanced preference
optimization methods such as KTO (Ethayarajh
et al., 2024) and ORPO (Hong et al., 2024) from
the TRL library. The tailored data collators are
leveraged to differentiate trainers of various train-
ing approaches. To match the input format of the
trainers for preference data, we build 2n samples in
a batch where the first n samples are chosen exam-
ples and the last n samples are rejected examples.

Model-Sharing RLHF Allowing RLHF training
on consumer devices is crucial for democratizing
LLM fine-tuning. However, it is difficult because
RLHF training requires four different models. To
address this problem, we propose model-sharing
RLHF, enabling entire RLHF training with no more
than one pre-trained model. Concretely, we first
train an adapter and a value head with the objec-
tive function for reward modeling, allowing the
model to compute reward scores. Then we initial-
ize another adapter and value head and train them
with the PPO algorithm (Ouyang et al., 2022). The
adapters and value heads are dynamically switched
through the set_adapter and disable_adapter
methods of PEFT (Mangrulkar et al., 2022) dur-
ing training, allowing a single pre-trained model
to serve as policy model, value model, reference
model, and reward model simultaneously. To the
best of our knowledge, this is the first method that
supports RLHF training on consumer devices.

Distributed Training We can combine the above
trainers with DeepSpeed (Rasley et al., 2020; Ren
et al., 2021) for distributed training. We adopt
data parallelism to fully exploit the ability of com-
puting devices. Leveraging the DeepSpeed ZeRO
optimizer, the memory consumption can be further
reduced via partitioning or offloading.

4.4 Utilities

Model Inference During inference time, we
reuse the chat template from the Data Worker to
build the model inputs. We offer support for sam-
pling the model outputs using Transformers (Wolf
et al., 2020) and vLLM (Kwon et al., 2023), both
of which support stream decoding. Additionally,
we implement an OpenAI-style API that utilizes
the asynchronous LLM engine and paged attention
of vLLM, to provide high-throughput concurrent
inference services, facilitating the deployment of
fine-tuned LLMs into various applications.

Model Evaluation We include several metrics
for evaluating LLMs, including multiple-choice
tasks such as MMLU (Hendrycks et al., 2021),
CMMLU (Li et al., 2023a), and C-Eval (Huang
et al., 2023), as well as calculating text similar-
ity scores like BLEU-4 (Papineni et al., 2002) and
ROUGE (Lin, 2004). This feature facilitates users
to measure the abilities of the fine-tuned models.

4.5 LLAMABOARD: A Unified Interface for
LLAMAFACTORY

LLAMABOARD is a unified user interface based
on Gradio (Abid et al., 2019) that allows users to
customize the fine-tuning of LLMs without writing
any code. It offers a streamlined model fine-tuning
and inference service, enabling users to easily ex-
plore the potential of LLMs in their environments.
LLAMABOARD has the following notable features.

Easy Configuration LLAMABOARD allows us
to customize the fine-tuning arguments through
interaction with the web interface. We provide de-
fault values for a majority of arguments that are
recommended for most users, simplifying the con-
figuration process. Moreover, users can preview
the datasets on the web UI to validate them.

Monitorable Training During the training pro-
cess, the training logs and loss curves are visualized
and updated in real time, allowing users to monitor
the training progress. This feature provides valu-
able insights to analyze the fine-tuning process.
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Gemma-2B Llama2-7B Llama2-13B

Method Trainable Memory Throughput PPL Trainable Memory Throughput PPL Trainable Memory Throughput PPL
Params (GB) (Tokens/s) Params (GB) (Tokens/s) Params (GB) (Tokens/s)

Baseline / / / 11.83 / / / 7.53 / / / 6.66
Full-tuning 2.51B 17.06 3090.42 10.34 6.74B 38.72 1334.72 5.56 / / / /
Freeze-tuning 0.33B 8.10 5608.49 11.33 0.61B 15.69 2904.98 6.59 0.95B 29.02 1841.46 6.56
GaLore 2.51B 10.16 2483.05 10.38 6.74B 15.43 1583.77 5.88 13.02B 28.91 956.39 5.72
LoRA 0.16B 7.91 3521.05 10.19 0.32B 16.32 1954.07 5.81 0.50B 30.09 1468.19 5.75
QLoRA 0.16B 5.21 3158.59 10.46 0.32B 7.52 1579.16 5.91 0.50B 12.61 973.53 5.81

Table 4: Comparison of the training efficiency using different fine-tuning methods in LLAMAFACTORY. The best
result among GaLore, LoRA and QLoRA of each model is in bold.

Flexible Evaluation LLAMABOARD supports
calculating the text similarity scores on the datasets
to automatically evaluate models or performing
human evaluation by chatting with them.

Multilingual Support LLAMABOARD provides
localization files, facilitating the integration of new
languages for rendering the interface. Currently
we support three languages: English, Russian and
Chinese, which allows a broader range of users to
utilize LLAMABOARD for fine-tuning LLMs.

5 Empirical Study

We systematically evaluate LLAMAFACTORY from
two perspectives: 1) the training efficiency in terms
of memory usage, throughput and perplexity. 2) the
effectiveness of adaptation to downstream tasks.

5.1 Training Efficiency

Experimental Setup We utilize the PubMed
dataset (Canese and Weis, 2013), which comprises
over 36 million records of biomedical literature.
We extract around 400K tokens from the abstract
of the literature to construct the training corpus.
Then we fine-tune the Gemma-2B (Mesnard et al.,
2024), Llama2-7B and Llama2-13B (Touvron et al.,
2023b) models using the generative pre-training
objective with various efficient fine-tuning meth-
ods. We compare the results of full-tuning, freeze-
tuning, GaLore, LoRA and 4-bit QLoRA. After
fine-tuning, we calculate the perplexity on the train-
ing corpus to evaluate the efficiency of different
methods. We also incorporate the perplexities of
the pre-trained models as baselines.

In this experiment, we adopt a learning rate of
10−5, a token batch size of 512. We fine-tune
these models using the 8-bit AdamW optimizer
(Dettmers et al., 2022b) in bfloat16 precision with
activation checkpointing to reduce the memory
footprint. In freeze-tuning, we only fine-tune the
last 3 decoder layers of the model. For GaLore,

we set the rank and scale to 128 and 2.0, respec-
tively. For LoRA and QLoRA, we attach adapters
to all linear layers and set the rank and alpha to
128 and 256, respectively. All the experiments are
conducted on a single NVIDIA A100 40GB GPU.
We enable flash attention in all experiments and
Unsloth for LoRA and QLoRA experiments.

Results The results about the training efficiency
are presented in Table 4, where memory refers
to the peak memory consumed during training,
throughput is calculated as the number of tokens
trained per second, and PPL represents the perplex-
ity of the model on the training corpus. Since full-
tuning Llama2-13B lead to a memory overflow, the
results are not recorded. We observe that QLoRA
consistently has the lowest memory footprint be-
cause the pre-trained weights are represented in
lower precision. LoRA exhibits higher throughput
leveraging the optimization in LoRA layers by Un-
sloth. GaLore achieves lower PPL on large models
while LoRA advantages on smaller ones.

5.2 Fine-Tuning on Downstream Tasks

Experimental Setup To evaluate the effective-
ness of different efficient fine-tuning methods, we
compare the performance of various models after
fine-tuning on downstream tasks. We construct non-
overlapping training set and test set using 2,000 ex-
amples and 1,000 examples from three representa-
tive text generation tasks, including CNN/DM (Nal-
lapati et al., 2016), XSum (Narayan et al., 2018)
and AdGen (Shao et al., 2019), respectively. We
select several instruction-tuned models and fine-
tune them following the sequence-to-sequence task
using different fine-tuning methods. Then we com-
pare the results of full-tuning (FT), GaLore, LoRA
and 4-bit QLoRA. After fine-tuning, we calculate
the ROUGE score (Lin, 2004) on the test set of
each task. We also incorporate the scores of the
original instruction-tuned models as baselines.
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CNN / DM XSum AdGen
Model Baseline FT GaLore LoRA QLoRA Baseline FT GaLore LoRA QLoRA Baseline FT GaLore LoRA QLoRA

ChatGLM3-6B 18.51 22.00 22.16 21.68 21.70 16.14 26.25 26.34 26.50 26.78 14.53 19.91 20.57 20.47 20.49
Yi-6B 16.85 22.40 22.68 22.98 22.97 18.24 27.09 28.25 28.71 29.21 13.34 19.68 20.06 20.97 20.31
Llama2-7B 12.94 22.87 22.40 22.70 22.61 13.89 27.69 27.64 28.80 28.05 0.61 20.51 19.61 20.29 20.45
Mistral-7B 14.39 22.03 22.99 23.47 23.28 15.87 23.57 28.00 30.41 30.44 7.82 20.14 20.90 20.99 20.56
Gemma-7B 15.97 22.07 / 22.41 22.44 15.31 25.13 / 28.67 29.02 11.57 19.99 / 20.62 19.81
Qwen1.5-7B 15.40 22.46 21.76 22.71 22.52 19.27 26.68 26.64 27.77 27.60 14.49 20.42 21.08 21.31 21.34
Qwen2-7B 16.46 23.20 / 23.29 23.66 19.76 26.94 / 28.92 28.94 12.89 19.83 / 20.96 20.86
Llama3-8B 15.19 23.36 23.57 23.48 24.12 17.83 26.21 30.45 30.63 30.94 0.22 20.28 21.27 21.44 21.20

Table 5: Comparison of the performance (in terms of ROUGE) on specific tasks using different fine-tuning methods
in LLAMAFACTORY. The best result of each model is underlined, and the best result of each task is in bold.

In this experiment, we set learning rate to 10−5,
batch size to 4 and maximum input length to 2048.
We fine-tune these models using the 8-bit AdamW
optimizer (Dettmers et al., 2022b) in bfloat16 pre-
cision with activation checkpointing. For GaLore,
we set the rank and scale to 128 and 2.0, respec-
tively. For LoRA and QLoRA, we attach adapters
to all linear layers and set the rank and alpha to
128 and 256, respectively. All the experiments are
conducted on NVIDIA A100 40GB GPUs.

Results The evaluation results on downstream
tasks are shown in Table 5. We report the averaged
scores over ROUGE-1, ROUGE-2 and ROUGE-
L. Some results of the Gemma-7B and Qwen2-
7B (Bai et al., 2023) models are not included in
the table because the GaLore method may not be
applicable to them. An interesting finding from
the results is that LoRA and QLoRA achieve the
best performance in most cases, except for the
ChatGLM3-6B (Zeng et al., 2024) and Llama2-7B
models on the CNN/DM and AdGen datasets. This
phenomenon highlights the effectiveness of these
efficient fine-tuning methods in adapting LLMs
to specific tasks. Additionally, we observe that
Llama3-8B achieves the best performance among
these models, while Yi-6B (Young et al., 2024) and
Mistral-7B (Jiang et al., 2023a) exhibit competitive
performance among models of the same size.

6 Conclusion and Future Work

In this paper, we demonstrate LLAMAFACTORY, a
unified framework for the efficient fine-tuning of
LLMs. Through a modular design, we minimize de-
pendencies between the models, datasets and train-
ing methods and provide an integrated approach to
fine-tune over 100 LLMs with a diverse range of
efficient fine-tuning techniques. Additionally, we
offer a flexible web UI LLAMABOARD, enabling
customized fine-tuning and evaluation of LLMs
without coding efforts. We empirically validate the

efficiency and effectiveness of our framework on
language modeling and text generation tasks.

We will consistently keep LLAMAFACTORY syn-
chronous with the state-of-the-art models and effi-
cient fine-tuning techniques. We also welcome con-
tributions from the open-source community. The
road map of LLAMAFACTORY including:

(1) Enabling fine-tuning for models that supports
a wider range of modalities, e.g., the audio and
video modalities (Zhu et al., 2024).

(2) Integrating more parallel training strategies,
e.g., sequence parallelism (Jacobs et al., 2023) and
tensor parallelism (Shoeybi et al., 2019).

(3) Exploring stronger fine-tuning methods for
conversational models, e.g., self-play (Chen et al.,
2024b; Yuan et al., 2024).

7 Broader Impact and Responsible Use

LLAMAFACTORY has attracted a large number of
individuals interested in LLMs to explore the pos-
sibility of customizing models. This contributes
significantly to the growth of the open-source com-
munities. It is gaining increasing attention and is
being featured in Awesome Transformers2 as a rep-
resentative of efficient fine-tuning frameworks for
LLMs. We anticipate that practitioners build their
LLMs upon our framework that bring benefits to
society. Adherence to the model license is manda-
tory when using LLAMAFACTORY for fine-tuning
LLMs, thus preventing from any potential misuse.
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