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Abstract

The impressive capabilities in Large Language
Models (LLMs) provide a powerful approach
to reimagine users’ typing experience. This
paper demonstrates the Proofread feature in
Gboard, a virtual keyboard running on mobile
phones. Proofread enables seamless sentence-
level and paragraph-level corrections with a
single tap. We describe the complete system
in this paper, from data generation, metrics
design to model tuning and deployment. To
obtain models with sufficient quality, we im-
plement a careful data synthetic pipeline tai-
lored to online use cases, design multifaceted
metrics, employ a two-stage tuning approach
to acquire the dedicated LLM for the feature:
the Supervised Fine Tuning (SFT) for founda-
tional quality, followed by the Reinforcement
Learning (RL) tuning approach for targeted re-
finement. Specifically, we find sequential tun-
ing on Rewrite and proofread tasks yields the
best quality in SFT stage, and propose global
and direct rewards in the RL tuning stage to
seek further improvement. Extensive experi-
ments on a human-labeled golden set showed
our tuned PaLM2-XS model achieved 85.56%
good ratio. We launched the feature to Pixel
8 devices by serving the model on TPU v5
in Google Cloud, with thousands of daily ac-
tive users. Serving latency was significantly
reduced by quantization, bucket inference, text
segmentation, and speculative decoding. Our
demo could be seen in Youtube.

1 Introduction

Gboard is an statistical-decoding-based keyboard
on mobile devices developed by Google. Decoding
(Ouyang et al., 2017) is necessary due to the error-
prone process of "fat finger" touch input on small
screens. According to Azenkot and Zhai (2012),
the per-letter error rate is around 8%-9% without
decoding.

∗Equal contribution, alphabetical order. Correspondence
to {renjieliu,zhangyx,yunzhu}@google.com.

Gboard provides various error correction fea-
tures, some active (automatic) and other passive
(require the user’s further manual action and se-
lection) to provide a smooth typing experience
(Ouyang et al., 2017). Active key correction (KC),
and active auto correction (AC), word completions
and next-word predictions support the users to type
the current word and next word by fixing typos and
providing multiple word candidates in the sugges-
tion bar or inline (smart compose). Post correc-
tion (PC) supports fixing errors in last one or more
committed words. Furthermore, The more passive
Spell Checker and Grammar Checker supported by
small-sized logistic regression and seq2seq models
respectively detect the possible errors in committed
sentences and mark them with red underlines, users
can fix the errors by clicking the incorrect words
and commit the correct words from the displayed
candidates.

There are two types of user experience limita-
tions with the existing correction approaches. First,
users still have to type relatively slowly and ac-
curately to avoid making too many or too severe
errors that the small (but instantly fast) on-device
correction models such as KC, AC and PC can-
not handle due to their limited ability to model
longer-span context. Second, users need to man-
ually engage in the multi-step passive correction
features, such as the grammar checker and the spell
checker, to correct the committed words one after
another.

Supervising the committed words while typ-
ing and fixing errors sequentially by editing after
commit take users’ cognitive and visual-motor re-
sources and slow down their typing speed. One
desired pattern of fast typing users of Gboard is
to focus on keyboard only without checking the
committed words while typing. To this end, a high
quality sentence-or-higher-level correction feature
is often called for, in order to help those ”fast and
sloppy” users who prefer to focus on typing then
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switch to error corrections at a higher level.
In this paper, we propose the Proofread fea-

ture to alleviate the pain points of fast typers by
providing the sentence-level and paragraph-level
error fixes with only one-tap. Proofread falls into
the area of Grammatical Error Correction (GEC),
which has a long history of research from rule-
based to statistical approaches to neural network
models (Bryant et al., 2023). The astonishing capa-
bility growth of Large Language Models (LLMs),
offers a new opportunity to unlock the high quality
sentence-level grammar fixes.

We present the entire system to tune and serve
the LLM model behind Proofread in this paper.
The system consist of four parts, data generation,
metrics design, model tuning and model serving.
Firstly, dataset is generated by a carefully designed
error synthetic framework which integrates errors
frequently made on keyboard to simulate the users’
input, several further steps are conducted to ensure
the data distribution is close to Gboard domain
maximally. Secondly, several metrics are designed
to measure the model from various dimensions. As
the answers are always not unique specifically for
long examples, the metric combined with gram-
mar error existence check and same meaning check
based on LLMs are considered as the key metrics
for comparing the model quality. Thirdly, inspired
by InstructGPT (Ouyang et al., 2022), Supervised
Fine-tuning followed by the Reinforcement Learn-
ing (RL) tuning is adopted to obtain the LLM dedi-
cated for Proofread feature. Results suggested that
our rewrite task tuning and reinforcement learn-
ing recipe significantly improves the proofreading
performance of the foundation models. To reduce
the serving cost, we build our feature on top of the
medium sized LLM PaLM2-XS, which could be
fit int a single TPU v5 after 8-bit quantization. We
further optimize latency with bucket keys, segmen-
tation and speculative decoding (Leviathan et al.,
2023). Our model now is launched to benefit thou-
sands of users with Pixel 8 devices.

Figure 1 exhibits our model quality on one
extreme corrupted case from Andrej Karpathy1,
which indicates our tuned model is strong enough
to handle various of heavy typo errors made by
users.

The contribution of this paper can be summa-
rized as follows:

• We propose the Proofread feature supported

1https://twitter.com/karpathy/status/1725553780878647482

by the high quality LLM to boost the user
typing experiences of Gboard. We finally
launched the feature to real users with Pixel
8 devices, thousands of users benefit from it
daily.

• We design and implement the whole system
from data generation, metrics design to model
tuning and deployment.

• We obtain a high quality model with cau-
tiously synthetic data generation, multiple
phased supervised fine-tuning and RL tun-
ing. Specifically, we propose the Global Re-
ward and Direct Reward in RL tuning stage,
which improve the model significantly. Re-
sults shows that RL tuning could help reduce
the grammar error significantly and thus the
Bad ratio of PaLM2-XS model is reduced by
5.74% relatively.

• We deploy the model to TPU v5 in Cloud with
highly optimized latency acquired by quanti-
zation, buckets, input segmentation and spec-
ulative decoding. Our results suggested that
speculative decoding reduced the median la-
tency by 39.4%.

2 Related Work

2.1 Controllable Text Generation

Controllable text generation using transformer-
based pre-trained language models has become a
rapid growing yet challenging new research hotspot
(Zhang et al., 2023). Proofread falls into this scope
with the requirement of modifying the input to fix
the grammar errors without changing the original
intention in the corrupted text.

Lots of applications could inherit from control-
lable text generation. Shu et al. (2023); Zhu et al.
(2023) focus on text rewrite tasks, including para-
phrasing (Xu et al., 2012; Siddique et al., 2020),
style transfer (Riley et al., 2020; Zhang et al., 2020;
Reif et al., 2021) and sentence fusion (Mallinson
et al., 2022) and so on. Similarly, Text editing
(Malmi et al., 2022) task also covers a wide range
of sub-tasks such as paraphrasing, style transfer,
spelling and grammatical error correction (Napoles
et al., 2017), formalization (Rao and Tetreault,
2018), simplification (Xu et al., 2016) and elab-
oration (Logan IV et al., 2021).

Unlike these mentioned works, our paper only
addresses a single application – Proofread but
provides systematic approaches that optimize the
model from different perspective such as quality,
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Figure 1: Proofread demo on a heavy corrupted text, the feature is triggered by clicking the "A" button in the left
figure.

latency and resource usage.

2.2 Grammatical Error Correction (GEC)

Proofread falls into the area of GEC. Bryant et al.
(2023) offers a comprehensive survey of the his-
tory and the current state of GEC. Specifically, be-
fore LLM, the popular solutions of GEC are edit-
based approaches which corrections are applied on
a sequence labelling (Omelianchuk et al., 2020) or
sequence-to-sequence basis (Stahlberg and Kumar,
2020).

The recent studies to apply LLM to GEC mainly
focus on prompting the LLM rather than supervised
fine-tuning. Wu et al. (2023) compares ChatGPT to
Grammarly, Coyne et al. (2023) compares GPT-3.5
and GPT-4 to two GEC system on English bench-
marks. Davis et al. (2024) conducts a more com-
prehensive study by evaluating seven open-source
and three commercial LLMs on four established
GEC benchmarks.

Following the LLM trend, our system is built
upon latest LLM backbone. But we apply instruc-
tion tuning approach to customize the LLM.

2.3 Instruction Tuning(IT)

Instruction tuning has been proven to be an effi-
cient approach to boost model performance and
generalization to unseen tasks (Chung et al., 2022;
Sanh et al., 2021). Reinforcement learning with
human feedback (RLHF) is leveraged to further
extend instruction tuning in InstructGPT (Ouyang
et al., 2022). Reinforcement learning with AI feed-
back (RLAIF) (Bai et al., 2022) could alleviate

the heavy human preference data dependency, Zhu
et al. (2023); Cheng et al. (2021) further replace
the reward model in RLAIF with a heuristic model,
which will be adopted in this paper to boost the
quality. Our instruction tuning approach is inspired
by the previous works and also follows the 2-step
tuning process. We designed the synthetic data
generation and RL strategy in a heuristic way that
favors the proofreading task.

2.4 Latency Optimization

Numerous techniques aim to speed up inference of
LLMs, which can be categorized into two major
lines according to the focus point. The first line
mainly focuses on model or algorithm side, includ-
ing model compression with pruning (Xia et al.,
2023b) and sparsity (Xia et al., 2023a), quantiza-
tion (Dettmers et al., 2022), small model design
(Timiryasov and Tastet, 2023; Liu et al., 2024), at-
tention computation optimizations like low-rank
approximation (Katharopoulos et al., 2020), sparse
attention (Roy et al., 2021) etc.

The other line explores acceleration along with
hardwares, exemplified works includes FlashAt-
tention (Dao et al., 2022), FlexGen (Sheng
et al., 2023), which considers hardware scheduling
and weight movement, and speculative decoding
(Leviathan et al., 2023; Chen et al., 2023), which
leverages the parallism of hardwares to pre-conduct
computation with sampling method.

We adopt quantization and speculative decod-
ing to accelerate the inference speed in the model
deployment.
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3 Dataset

The upper half of Figure 2 illustrates the pipeline to
generate the dataset. We initially sample data from
the web crawled dataset, which is then processed
by a GEC model to fix the grammar errors. Each
item in the dataset consists of a source sentence
with several possible reference sentences.

Grammar errors are then synthesized into the
source sentence to simulate users’ inputs, various
kinds of errors which frequently happen in Gboard
real scenarios are involved in this step, including:

• character omission, e.g., "hello" as "hllo"
• character insertion, e.g., "hello" as "hpello"
• transposition, e.g., "hello" as "hlelo"
• double tap, e.g., "hello" as "heello"
• omit double characters, e.g., "hello" as "helo"
• Gaussian-based positional errors, e.g., "hello"

as "jello"
To align the dataset with real use cases, the data

with synthetic errors are then passed to the Gboard
simulator to fix errors by leveraging Gboard’s built-
in literal decoding, KC and AC functions. More-
over, several heuristic rules were then applied to
fix cases such as emoji/emoticons alignment, date
time formatting, and URL patterns.

The last step is to filter the noise data by utilizing
LLM with careful designed instructions to avoid
polluting the model. Data is diagnosed by various
dimensions, including:

• The reference sentence still has errors remain-
ing.

• The reference sentence itself is not fluent or
clear enough.

• The reference sentence has different meaning
as the source sentence.

• The reference sentence has different tones,
aspects and tense from the source sentence.

To maximally benefit the model quality, the cri-
teria above coordinates to the metrics defined in
the following section.

An example of the synthetic dataset is showcased
below:

Source: "Good Moning! hey si, how. a u
dou?"
Reference1: "Good morning! Hey sir, how
are you doing?"
Reference2: "Good morning! Hey sister, how
are you doing?"

Moreover, part of the examples labeled by hu-
man rater are used as the golden set for evaluation.

4 Metrics

It’s of key importance to define the correct metrics
which are aligned to user experiences online before
the feature goes to public. In this section, several
metrics are designed to measure the model quality.

Given the three elements, input (corrupted text),
answer (predicted candidate from the model) and
target (ground truth), we present the following met-
rics.

• EM / Exact Match Ratio: ratio of answer
equal to target exactly.

• NEM / Normalized Exact Match Ratio : ratio
of answer equal to target ignoring capitaliza-
tion and punctuation.

• Error Ratio: ratio of answer containing gram-
mar errors, which is conducted by LLM with
specific instruction.

• Diff Meaning Ratio: ratio of answer and target
don’t have the same meaning, which is also
conducted by LLM with specific instruction.

• Good Ratio: ratio of answer without grammar
error and has the same meaning with target.

• Bad Ratio: ratio of answer either have gram-
mar error or has different meaning with target.

From the definition, the Good/Bad ratios com-
bining Error check and Diff Meaning check, are the
primary metrics due to their robustness from LLM.
The bad ratio is a bit more important as it portrays
how much the users could tolerate the errors made
by model. The combination of Error / Diff Mean-
ing checks is also leveraged as the reward in RL
phase of model tuning. EM/NEM ratios are refer-
enced as supporting indicators as they are too strict
for examples with multiple references.

5 Model tuning

The lower half of Figure 2 illustrates the tuning
steps of the model for Proofread. We start from
instruction-tuned models. PaLM2-XS model from
Anil et al. (2023) is the candidate model.

5.1 Supervised Fine-tuning

The initial step after choosing the checkpoint is to
fine-tune the model on the rewrite dataset, which
contains hundreds of text rewriting tasks from Shu
et al. (2023); Zhu et al. (2023). We assume that
fine-tuning on similar tasks is beneficial to the final
quality of Proofread. After that, the models are
fine-tuned on synthetic dataset.

The evaluation results of multiple phased tuning
are displayed in Table 1. It’s natural to observe
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Figure 2: Data synthesis and Model tuning pipeline

that after supervised fine-tuning on the synthetic
dataset, the model quality can be largely improved
from 65.48% to 83.80%. An interesting finding is
that though fine-tuning on Rewrite dataset degrades
the quality, sequential fine-tuning on Rewrite and
Proofread datasets yields the best results with Good
ratio 84.68% and Bad ratio 15.32%, which we ar-
gue the robustness is enhanced by the large size
of the combined dataset, by comparing M2 and
M3, we can further conclude that Rewrite tuning
contributes to the intent preservation.

5.2 Reinforcement Learning

RLAIF is leveraged with heuristic rewards in our
model tuning following Zhu et al. (2023) to avoid
relying on human labelers. Two alternative heuris-
tic rewards based on LLM are designed in this
paper.

• Global Reward: With few-shot examples,
the LLM tells whether a candidate is a good
fix of the corrupted inputs.

• Direct Reward: As the goal is to improve
the Good Ratio, we directly convert the gram-
mar error check and diff meaning check into
rewards, both relying on LLM and will be
combined as the final reward. This requires
the ground truth included in the example.

Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is facilitated to optimize the model.
KL divergence is involved to help model keep the
ability to recover the original text (Peters et al.,
2010; Mitchell et al., 2023).

The second part of Table 1 exhibits the results
of RL tuning with different rewards. It’s observed
that the Bad ratio of PaLm2-XS model could be
improved by 3.65% and 5.74% relatively through
applying the RL with Global Reward and RL with
Direct Reward respectively.

Specifically, RL excels at reducing the gram-
matical error but struggles to maintain meaning
alignment between prediction and ground truth by
comparing M3, M4 and M5. We argue that the op-
timizing meaning is inherently more subjective and
complex comparing than grammar. Additionally,
RL reduces the EM and NEM ratios, indicating
a shift in the output distribution for both correct
and incorrect cases. While increasing the KL diver-
gence penalty can mitigate this (See M5 and M6), it
doesn’t significantly improve the Good/Bad ratios.
We suspect the defined metrics might have inherent
conflicts. Future work will reply on online metrics
and real user data to drive further improvement.

6 Model Serving

Google’s TPUv5e (Google, 2023) is utilized to
serve the Proofread model, which is the latest
Google TPU chip with 16GB HBM. 8-bit quanti-
zation is facilitated to reduce the memory footprint
and latency without observing quality degradation.

In the context of our research, which predomi-
nantly focuses on deployment within chat applica-
tions, it has been observed that the average sentence
length seldom exceeds 20 words. Consequently,
we have established a discrete set of bucket keys,
specifically [16, 32, 64, 128], to categorize the
input data accordingly. Furthermore, we have cali-
brated the temperature parameter to a value of 0.3,
aiming to maintain a constrained level of creativ-
ity in the proofreading outcomes, thereby ensuring
relevance and coherence.

To be capable of handling more extensive docu-
ments, a systematic approach is employed wherein
the document is segmented into individual para-
graphs. All paragraphs are then processed in paral-
lel, allowing for a more manageable and efficient
analysis.
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Table 1: The metrics of PaLM2-XS tuned on various phases on the Golden dataset. The upper half focuses on the
supervised fine-tuning, and model variants in Reinforcement Learning phase are listed in the lower half.

Model ID PaLM variant EM(%) NEM(%) Good(%) Bad(%) DIFF(%) ERROR(%)
M0 PALM2-XS 29.96 45.80 65.48 34.52 18.56 30.32
M1 M0 + Rewrite 23.44 40.90 59.48 40.52 19.04 37.04
M2 M0 + Proofread 37.88 55.30 83.80 16.20 12.08 8.12
M3 M0 + Rewrite + Proofread 39.16 56.20 84.68 15.32 10.60 9.68
M4 M3 + RL Global Reward 35.92 53.80 85.24 14.76 11.12 6.80
M5 M3 + RL Direct Reward 32.20 50.20 85.56 14.44 11.52 5.68
M6 M5 + Large weight on KL 39.08 55.40 84.76 15.24 10.96 8.88

Figure 3: Example of the speculative decoding process
for the proofreading task. The words in green color are
selected draft by the LLM. This process speeds up the
decoding without quality regression.

Table 2: Latency improvement with speculative decod-
ing.

Decoding Latency (ms)
Baseline 314.4

+ speculative 190.6 (-39.4%)

Additionally, our methodology incorporates the
use of speculative decoding (Leviathan et al., 2023),
complemented by heuristic drafter models that are
tailored to align with user history patterns. Un-
der our proofreading case, the initial input would
naturally fit into the speculative draft so external
drafter models are needed. We share an example to
illustrate the process in Figure 3. This innovative
approach significantly contributes to the reduction
of operational costs. Through empirical evaluation
in Table 2, we have recorded a 39.4% reduction on
median latency per serving request, as measured
on Tensor Processing Unit (TPU) cycles, under-
scoring the efficiency of our system in real-time
applications.

7 Conclusions

This paper presents a novel Proofread feature im-
plemented within Gboard, powered by a carefully
refined LLM. Our work demonstrates the signifi-
cant potential of LLMs to enhance the users’ typ-
ing experiences by providing high-quality sentence-
and paragraph-level corrections. We detailed our
comprehensive approach, encompassing synthetic
data generation pipeline aligned with real-world
use cases, multifaceted metrics design, two-stage
model tuning (multiple phased SFT followed by
RL) and the efficient model deployment.

Specifically, our findings reveal that rewrite task
tuning benefited the SFT model by enhancing the
meaning alignment ability of the model. Addi-
tionally, we discovered the value of global and
direct rewards during RL tuning, which could fur-
ther improve the model by reduce grammar errors
significantly. Rigorous experiments demonstrated
that our tuned PaLM2-XS model achieved an im-
pressive 85.56% good ratio and 14.44% bad ratio.
The successful deployment of the model on TPU
v5, leveraging optimizations such as quantization,
bucket inference and speculative decoding, high-
lights its real-world viability.

This work underscores the transformative power
of LLMs in the realm of user input experiences. Fu-
ture research directions include leveraging real-user
data, multilingual adaption, personalized assistance
for diverse writing styles and privacy-preserving
on-device solutions. This technology has the po-
tential to fundamentally improve how we interact
with our devices.
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