D R
string2string

Mirac Suzgun Stuart M. Shieber Dan Jurafsky
Stanford University Harvard University Stanford University
In memory of Lynn.
Abstract (e.g., parsing and compiling), as well as computa-

We introduce string2string, an open-source
library that offers a comprehensive suite of ef-
ficient algorithms for a broad range of string-
to-string problems. It includes traditional al-
gorithmic solutions as well as recent advanced
neural approaches to tackle various problems
in string alignment, distance measurement,
lexical and semantic search, and similarity
analysis—along with several helpful visualiza-
tion tools and metrics to facilitate the interpre-
tation and analysis of these methods. Notable
algorithms featured in the library include the
Smith-Waterman algorithm for pairwise local
alignment, the Hirschberg algorithm for global
alignment, the Wagner-Fischer algorithm for
edit distance, BARTScore and BERTScore for
similarity analysis, the Knuth-Morris-Pratt al-
gorithm for lexical search, and Faiss for se-
mantic search. In addition, it wraps existing
efficient and widely-used implementations of
certain frameworks and metrics, such as sacre-
BLEU and ROUGE. Overall, the library aims
to provide extensive coverage and increased
flexibility in comparison to existing libraries
for strings. It can be used for many down-
stream applications, tasks, and problems in
natural-language processing, bioinformatics,
and computational social sciences. It is im-
plemented in Python, easily installable via pip,
and accessible through a simple API. Source
code, documentation, and tutorials are all avail-
able on our GitHub page: https://github.com/
stanf"ordnlp/stringZString.1

1 Introduction

String-to-string problems have a wide range of ap-
plications in various domains and fields, such as
natural-language processing (e.g., information ex-
traction, spell checking, and semantic search), com-
putational molecular biology (e.g., DNA sequence
alignment), programming languages and compilers

Correspondence to: msuzgun@cs. stanford. edu.

tional social sciences and digital humanities (e.g.,
lexical and semantic analysis of literary texts).

The current state of string-to-string processing,
alignment, distance, similarity, and search algo-
rithms is marked by a multitude of implementa-
tions in many programming languages, such as
C++, Java, and Python, but these implementations
are not unified and lack flexibility, modularity, and
comprehensive documentation, hindering their ac-
cessibility to users. Thus, there is a need for a
unified platform that combines these functionali-
ties into one accessible and comprehensive system.

In this work, we present an open-source library
that offers a broad collection of algorithms and tech-
niques for the alignment, manipulation, and evalua-
tion of string-to-string mappings.”> These problems
include measuring the lexical distance between
two strings (e.g., under the Levenshtein edit dis-
tance metric), computing the local or global align-
ment between two DNA sequences (e.g., based on
a substitution matrix such as BLOSUM), calcu-
lating the semantic similarity between two texts
(e.g., using BART-embeddings), and performing
efficient semantic search (e.g., via the Faiss library
by FAIR (Johnson et al., 2019)).

The string2string library has been purpose-
fully crafted to prioritize key design principles, in-
cluding modularity, completeness, efficiency, flexi-
bility, and clarity. As an open-source initiative, the
library will continue to grow and adapt to meet the
evolving of its user community in the future, and
we are commiitted to ensuring that the library re-
mains a flexible, accessible, and dynamic resource,
capable of accommodating the changing landscape
of string-to-string problems and tasks.

*We define a string as an ordered collection of characters—
such as letters, numerals, symbols—which serves as a repre-
sentation of a unit of information, text, or data. Strings can be
used to represent anything, from simple sentences to complex
nucleic acid sequences or elaborate computer programs.

278

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 278-285
August 11-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/stanfordnlp/string2string
https://github.com/stanfordnlp/string2string
msuzgun@cs.stanford.edu

-

Jaccard similarity \

Jaro(-Winkler) similarity —

Similarity

LCSubsequence similarity «~—
Cosine similarity —

ST BT

Levenshtein edit distance \

—-{0)
Hamming distance ~—_| I
)

Damerau-Levenshtein distance ~

L

Distance
Jaccard distance

Visualization of alignments and score matrices

o

N,—

éfringvs'rﬁ n\g\

Library

/ Local alignment Smith-Waterman
Needleman-Wunsch
0-0-0 Global alignment <
_— g)
O—O—O Hirschberg
0-0-0 —— Longest common substring
Alignment —— Longest common subsequence

\ Dynamic time warping

Rabin-Karp

\ /@ __— Lexical search < Bayer-Moore

Search

Knuth-Morris-Pratt

\ Semantic search with Faiss

1 GloVe and fastText word embeddings

Sentence/document embeddings

* Metrics

Exact match

ROUGE

SBLEU

/

Figure 1: The string2string library provides a bro

ad set of algorithms and techniques to tackle a variety of

problems and tasks involving the pairwise alignment, comparison, evaluation, manipulation, and processing of string-

to-string mappings. It includes the implementation of

widely-used algorithms, such as Smith-Waterman (Smith

and Waterman, 1981) for local alignment, Knuth-Morris-Pratt (Knuth et al., 1977) for identical string matching
(search), and Wagner-Fisher (Wagner and Fischer, 1974) for edit distance, as well as recent neural approaches, such
as BERTScore (Zhang et al., 2020) and BARTScore (Yuan et al., 2021) for semantic similarity measurements and
Faiss (Johnson et al., 2019) for semantic search. The library has been designed to support not only individual strings
but also lists of strings so that users can align and compare strings at the token, word, or sentence levels. It further
contains visualization features to allow users to visualize alignments and score matrices of strings.

2 Related Work

The fields of natural-language processing and ma-
chine learning have a long-standing and exemplary
tradition of fostering a culture that values open-
source tools and libraries. While designing our own
string-to-string library, which includes both tradi-
tional algorithmic and neural approaches to various
problems, we have drawn inspirations from Natural
Language Toolkit (NLTK; Bird and Loper (2004)),
Gensim (Rehiifek and Sojka, 2010), OpenGrm
Ngram (Roark et al., 2012), Stanford CoreNLP
Toolkit (Manning et al., 2014), OpenNMT (Klein
et al., 2017), tensor2tensor (Vaswani et al., 2018),
AllenNLP (Gardner et al., 2018), fairseq (Ott et al.,
2019), spaCy (Neumann et al., 2019), Stanza (Qi
et al., 2020), Transformers (Wolf et al., 2020), and
Torch-Struct (Rush, 2020), among many others.

3 Overview of Algorithms

The string2string library offers a rich collection
of algorithmic solutions to tackle a wide range of
string-to-string problems and tasks. We have clus-
tered these algorithms into four categories: pair-

wise alignment, distance measurement, similarity
analysis, and search.® Each category contains a
suite of efficient algorithms that are tailored to ad-
dress specific problems within their respective do-
main. In what follows, we provide a brief overview
of these algorithms, along with the associated prob-
lems or tasks they are designed to solve.

3.1 Pairwise Alignment

Pairwise string alignment is the problem of iden-
tifying an optimal alignment between two strings,
such as nucleotide sequences in DNA or paragraphs
in a text. This task involves aligning them in a way
that maximizes the number of matching symbols
while allowing for gaps or mismatches where nec-
essary. Pairwise string alignment is a widely-used
technique that plays a crucial role in tasks such as
DNA sequence alignment, database searching, and
phylogenetic analysis.

As exhibited in Table 1, the library, in its current
state, provides efficient solutions to local align-
ment, global alignment, longest common substring

3By duality, distance measurement methods can naturally
be used for string similarity analysis, and vice versa.

279

Pairwise Alignment

Local alignment : The best possible matching substring or subsequence alignment between two strings—based on a substitution

matrix and gap penalty function—allowing for gaps and mismatches within a specified region of the input sequences.
* (a) Dynamic programming solution (Smith and Waterman, 1981): O(nm) in terms of space and time.

Global alignment : The best possible alignment between two strings over their entire length.

* (a) Dynamic programming solution (Needleman and Wunsch, 1970): O(nm) in terms of space and time.
* (b) Divide-and-conquer + dynamic programming solution (Hirschberg, 1975): O(m) in terms of space and O(nm) time.

Longest common substring : The longest contiguous substring that appears in both strings.
* (a) Dynamic programming solution: O(nm) in terms of space and time.

Longest common subsequence : The longest possible sequence of symbols that appears in the same order in both strings.

* (a) Dynamic programming solution: O (nm) in terms of space and time.

Dynamic time warping (DTW) : The optimal warp path that minimizes the distance between sequences of varying length.

* (a) Dynamic programming solution (Sakoe and Chiba, 1978): O(nm) in terms of space and time.
* (b) Space-time improved version of (a) via Hirschberg (1975)’s algorithm: Reduces space complexity to O(m).

Distance

Levenshtein edit distance : The minimum number of insertions, deletions, and substitutions needed to convert .S into 7T".
* (a) Dynamic programming solution (Wagner and Fischer, 1974): O(nm) in terms of space and time.
* (b) Space-improved version of (a): Reduces space complexity to O(m) by storing only two rows.

Hamming distance : The total number of indices at which strings, .S and T, of equal length differ.

* (a) Naive solution: O(n) in terms of space and time.

Damerau-Levenshtein distance : The minimum number of insertions, deletions, substitutions, and adjacent transpositions needed

to convert S into 7T'.

* (a) Dynamic programming solution (simple extension of the Wagner-Fisher algorithm): O(nm) in terms of space and time.
* (b) Space-improved version of (a): Reduces space complexity to O(m) by storing only two rows.

Jaccard distance : The inverse of Jaccard similarity (that is, 1.0 - Jaccard similarity coefficient).

* (a) Naive solution: O(n) in terms of space and time.

Table 1: Overview of the pairwise string alignment and distance problems addressed by the library, along with the
algorithmic approaches employed to solve them. In all instances, we assume that we are given two strings, S and 7',
over a finite alphabet X, where where n = |S|, m = |T, and k = |X|, with m < n. Also, whenever possible, we
include the brute-force and memoized solutions to these problems (as in the case of edit distance, for instance).

(LCSubstring), longest common subsequence (LC-
Subsequence), and dynamic time warping (DTW)
problems. It is worth noting that all of the prob-
lems and tasks covered in this suite can be solved
using standard dynamic programming-based solu-
tions. Alternative approaches to long sequence or
string alignment problems, such as FASTA (Lip-
man and Pearson, 1985) and BLAST (Altschul
et al., 1990), also exist; they offer improved effi-
ciency through the use of probabilistic or heuristic
methods, but they do not always guarantee opti-
mal solutions and may sacrifice accuracy for speed.
Due to their ability to handle large datasets quickly
and provide reasonably accurate results, BLAST
and FASTA are still widely used in bioinformatics,
and for that reason, we plan on including them in
the string2string library in the future.

3.2 Distance

String distance refers to the problem of quantifying
the extent to which two given strings are dissimilar
based on a distance function. The Levenshtein edit
distance metric, for instance, corresponds to the
minimum number of insertion, deletion, or substi-
tution operations required to transform one string
into another. It has a famous dynamic program-
ming solution, which is often referred to as the
Wagner-Fischer algorithm (Wagner and Fischer,
1974). In this library, we provide an implementa-
tion of the Wagner-Fischer algorithm, which has
a quadratic time and space complexity, as well as
an improved version of it, which reduces the over-
all space complexity to linear.* We further cover
and provide efficient solutions to the Hamming dis-

*Incidentally, we highlight an important discovery by
Backurs and Indyk (2015) that the edit distance between two
strings cannot be computed in strongly subquadratic time,
unless the strong exponential time hypothesis is false.

280

Similarity

Jaccard similarity : The size of the set of unique symbols that appear in both strings (i.e., in the intersection) divided by the size

of the set of the union of the symbols in both strings.
* (a) Naive solution: O(n) in terms of space and time.

Jaro(-Winkler) similarity : A measure of similarity based on matching symbols and transpositions in two strings.
* (a) Naive solution: O(nm) in terms of time and O(n) in terms of space.

LCSubsequence similarity : A degree of similarity between two strings based on the length of their longest common subsequence.

* (a) Based on the efficient solution to the longest common subsequence problem."’

Cosine similarity : The similarity between two strings based on the angle between their corresponding vector representations.

* (a) Utilizes numpy and torch functions: O(E) in terms of time and O(E) in terms of space.

BERTScore (Zhang et al., 2020): A measure of semantic similarity that employs contextualized embeddings derived from the

pre-trained BERT model (Devlin et al., 2019) to estimate the semantic closeness between two pieces of text.
* (a) Adaptation of the original BERTScore implementation: O(nm) in terms of time and O(nm - E) in terms of space.

BARTScore (Yuan et al., 2021): A measure of semantic similarity that utilizes the pre-trained BART model (Lewis et al., 2020)

and that achieves high correlation with human judgements.

* (a) Adaptation of the original BARTScore implementation: O(nm) in terms of time and O(nm - E) in terms of space.

Search

Lexical search :

* (a) Naive (brute-force) search: O(mn) in terms of match time and O(1) in terms of space.

* (b) Rabin-Karp algorithm (Karp and Rabin, 1987): O(mn) in terms of match time and O(1) in terms of space.

* (c) Boyer-Moore algorithm (Boyer and Moore, 1977): O(mn) in terms of match time and O(|X|) in terms of space..
* (d) Knuth-Morris-Pratt algorithm (Knuth et al., 1977): O(n) in terms of match time and O(m) in terms of space.

Semantic search :

* (a) FAISS (Johnson et al., 2019): @ (log? n) in terms of match time and O(n - E) in terms of space.®

Table 2: Overview of the string similarity and search solutions used in the library. As in Table 1, we assume
that we are provided with two strings, S and T', over a finite alphabet &, where n = |S|, m = |T|, and k = |X|,
with m < n. Furthermore, we use E' to denote the size of the embedding space (or token), whenever applicable.
Both the Rabin-Karp and Knuth-Morris-Pratt algorithms require ©(m) time for pre-processing and O (n) time for
searching, whereas the Boyer-Moore algorithm has a pre-processing time complexity of © (m+ k). In terms of space,
the Rabin-Karp, Boyer-Moore, and Knuth-Morris-Pratt algorithms require ©(1), ©(k). and ©(m), respectively.
Footnote *: Please refer to Eqn. (11) in (Suzgun et al., 2022a) for a mathematical formulation of LCSubsequence
similarity. Note that the authors call this similarity measure “Sim-LCS.” Footnote ¢: We assume that the dimension
(size) of the two vectors are both E. Footnote ®: We invite our readers to look at the blogpost by Feinberg (2019)
for a detailed analysis of Facebook Al Research’s Faiss algorithm.

tance, Damerau-Levenshtein distance, and Jaccard
distance problems, as shown in Table 1.

One noteworthy feature of the library is that it
allows the user to specify the weight of string op-
erations (insertions, deletions, substitutions, and
transpositions) depending on the distance function
of choice. Furthermore, it can compute the distance
between not only string pairs but also pairs of lists
of strings, thereby not limiting the users to make
comparisons only at the character or symbol level.

3.3 Similarity

String similarity refers to the problem of measuring
the degree to which two given strings are similar to
each other based on a similarity function—which
can be defined on various criteria, such as charac-
ter matching, longest common substring or subse-
quence comparison, or structural alignment. There
is a natural duality between string similarity mea-
sures and string distance measures, which means

that it is possible to convert one into the other with
ease; hence, it is often the case that one uses string
similarity and distance measures interchangeably.

Jaccard similarity, Jaro similarity, Jaro-Winkler
similarity, LCSubsequence similarity, cosine sim-
ilarity, BERTScore, and BARTScore are among
the similarity measures that are covered in the li-
brary. The first four can be seen as lexical similarity
measures, as they assess surface or structural close-
ness, whereas the remaining three can be regarded
as semantic similarity measures, as they take the
implied meaning of the constituents of the given
strings into account.

The present library provides users with the abil-
ity to calculate cosine similarity not only between
individual words—via pre-trained GloVe (Penning-
ton et al., 2014) or fastText (Joulin et al., 2016)
word embeddings—but also for longer pieces
of text such as sentences, paragraphs, or even
documents—via averaged or last-token embed-

281

dings obtained from a neural language model such
as BERT (Devlin et al., 2019). As we also mention
in Section 4, this feature enables users to compare
the semantic similarity of longer segments of text
in only a few lines of code, providing greater flexi-
bility in text analysis tasks.

3.4 Search

String search, also known as string matching, refers
to the problem of determining whether a given
pattern string exists inside a longer string. The
brute-force approach to string search would in-
volve examining each position of the longer string
to determine if it matches the pattern string; how-
ever, this method can be inefficient, particularly
when dealing with large strings. In the library, we
therefore include the Rabin-Karp (Karp and Rabin,
1987), Boyer-Moore (Boyer and Moore, 1977), and
Knuth-Morris-Pratt (Knuth et al., 1977) algorithms
for identical string matching as well.

The library additionally provides support for se-
mantic search via Facebook AI Research’s Faiss
library (Johnson et al., 2019), which, in essence,
allows efficient similarity search and clustering of
dense vectors. In contrast to the previous setup for
identical string matching, Faiss initially requires
the user to provide a list of strings (texts) as a cor-
pus and creates a fixed-vector representation of
each string using a neural language model.’ Once
the initialization of the corpus is done, one can per-
form “queries” on the corpus. Given a new query,
one can automatically get the embedding of that
query, map it onto the embedding space of the cor-
pus, and return the nearest neighbours of the query
on the embedding space, thereby finding the texts
that are semantically closest to the query.

As one might imagine, string search algorithms
are highly practical tools that have a wide range
of applications across different fields. These algo-
rithms allow users to locate and retrieve specific
patterns within a long text or a large corpus. For
instance, the string search algorithms covered in
the string2string library—as shown in Table 2—
can be used for pattern recognition, DNA matching,
plagiarism detection, and data mining, among many
other downstream applications and tasks.

>The user is provided with the flexibility to determine how
to obtain a fixed embedding for each text. Specifically, the
user has the option to choose between different embedding
methods, such as averaging the token embeddings or selecting
the embedding of the final token in the sequence.

Alighment of Sequences with Needleman-Wunsch Algorithm

st D E = - n .
Seqz- |:| = “ . |Z|

Figure 2: Alignment of two sequences of strings, [ATT
G GC GC A C G]land [X ATT GC GC A A GJ, as obtained
by the Needleman-Wunsch algorithm (Needleman and
Waunsch, 1970). Our library allows users to visualize the
pairwise alignment between strings (or lists of strings).

4 Additional Features

One noteworthy feature of the library is its ability
to simplify the use of the GloVe (Pennington et al.,
2014) or fastText (Joulin et al., 2016) word embed-
dings by enabling users to download and use them
with just one line of code. This streamlined pro-
cess not only saves users time and effort but also
eliminates the need for additional installations or
complex configurations. By providing this feature,
we have sought to make the library more accessible
to users and encourage the use of pre-trained word
embeddings in various string-to-string tasks and ap-
plications, such as measuring the cosine similarity
between two words.®

Similarly, users can seamlessly get the averaged
or last token embeddings of a piece of text from a
pre-trained language model that is hosted on Hug-
ging Face Models (Wolf et al., 2020) or on their
local path in a few lines of code, and we provide
both CPU and GPU support for these computations.

Finally, we note that the library offers various vi-
sualization capabilities that allow users to visually
inspect the alignment between two strings or the
score matrix of the distance or similarity between
them. This functionality facilitates the understand-
ing and interpretation of the output of various al-
gorithms and can aid in the selection of the most
suitable algorithm for a given task. By incorporat-
ing this feature into the library, we aim to enhance
the user experience and provide intuitive means of
interpreting the outputs.” Figure 2 shows a simple
alignment between two lists of strings, as generated
by our library.

®Notably, fastText offers pre-trained word embeddings for
157 languages—trained on Common Crawl and Wikipedia—
that one can easily download and use with our library.

"For instance, our library provides a practical, hands-on
tutorial focused on the HUPD (Suzgun et al., 2022b), a large
patent corpus. This tutorial showcases the efficient use of our
library’s functionalities and features for performing semantic
search and visualizing the textual content of patent documents.

282

5 Library Design Principles

We have endeavoured to build a comprehensive and
easy-to-use platform for numerous string-to-string
processing, comparison, manipulation, and search
algorithms. We have purposefully structured and
organized the library to allow easy customization,
functional extension, and modular integration.

Completeness. The library offers a comprehen-
sive set of classical algorithms as well as neural ap-
proaches to tackle a wide range of string-to-string
problems. We have intentionally included both ef-
ficient and simpler solutions, such as brute-force
and memoization-based approaches, where appro-
priate. By providing multiple solutions to the same
problem, the library allows users to compare and
contrast the performance of different algorithmic
methods. This approach enhances users’ under-
standing of the trade-offs between different algo-
rithmic solutions and helps them appreciate the
strengths and limitations of each approach.

Modularity. To improve the efficiency and main-
tainability of the codebase, we have adopted a mod-
ular design approach that breaks down the code into
smaller and self-contained modules. This approach
simplifies the process of adding new features and
functionalities and modifying existing ones for de-
velopers, while also enabling efficient testing, de-
bugging, and overall maintenance of the library.
The modular design has allowed us to quickly lo-
cate and fix any errors, without disrupting the en-
tire codebase, during development. Moreover, this
modular approach ensures that the library is scal-
able and adaptable to future updates and changes,
which should enable us to easily improve the li-
brary’s functionality and expand its use in various
tasks and applications moving forward.

Efficiency. We have taken great care to en-
sure that the algorithm implementations are effi-
cient both computationally and memory-wise so
that they could easily handle large datasets and
complex tasks. We provide basic support for
process-based parallelism via Python’s inherent
multiprocessing package, as well as joblib.
Additionally, we provide GPU support for neural-
based approaches, whenever applicable. While
we strive to balance efficiency and clarity, we ac-
knowledge that in some cases, trade-offs may exist
between the two. In such cases, we have placed
greater emphasis on clarity, ensuring that the algo-
rithms are transparent and easy to understand, even
at the cost of some efficiency. Nonetheless, we be-

lieve that the library’s overall efficiency, combined
with its transparency and comprehensibility, makes
it a valuable resource for the community.

Support for List of Strings. The library has been
designed to support not only individual strings but
also lists of strings—whenever possible, enabling
users to align or compare strings at the subword or
token level. This feature provides greater flexibil-
ity in the library’s use cases, as it allows users to
analyze and compare more complex data structures
beyond only individual strings. By supporting lists
of strings, the library can handle a wider range of
textual input types and structures.

Strong Typing. The use of strong typing require-
ments is an essential aspect of the library, as it en-
sures that the inputs are always consistent and accu-
rate, which is crucial for generating reliable results.
By carefully annotating all the arguments of the
algorithms used in the library, we have sought to in-
crease the robustness and reliability of the codebase.
This approach has helped prevent input-related er-
rors, such as incorrect data type or format, from
occurring during execution.

Accessibility. The library has been implemented
in Python, a programming language which has been
the core of many natural-language processing tools
and applications in academia and industry. The
string2string library is “pip”-installable and can
be integrated into common machine learning and
natural-language processing frameworks such as
PyTorch, TensorFlow, and scikit-learn.

Open-Source Effort. The library is—and will
remain—free and accessible to all users. We hope
that this approach will promote community-driven
development and encourage collaboration among
researchers and developers, enabling them to con-
tribute to and improve the library.

6 Conclusion

We introduced string2string, an open-source li-
brary that offers a large collection of algorithms for
a broad range of string-to-string problems. The li-
brary is implemented in Python, hosted on GitHub,
and installable via pip. It contains extensive doc-
umentation along with several hands-on tutorials
to aid users to explore and utilize the library effec-
tively. With the help of the open-source commu-
nity, we hope to grow and improve the library. We
encourage users to feel free to provide us with feed-
back, report any issues, and propose new features
to expand the functionality and scope of the library.

283

https://docs.python.org/3/library/multiprocessing.html
https://joblib.readthedocs.io/en/latest/

Acknowledgements

We would like to express our deepest apprecia-
tion to Corinna Coupette for providing us with the
inspiration to create this open-source library. Fur-
thermore, we would like to thank Sarah DeMott,
Sebastian Gehrmann, Elena Glassman, Tayfun Giir,
Daniel E. Ho, Sule Kahraman, Deniz Keles, Scott
D. Kominers, Christopher Manning, Luke Melas-
Kyriazi, Tolilopé Ogtinrémi, Alexander “Sasha”
Rush, George Saussy, Kutay Serova, Holger Spa-
mann, Kyle Swanson, and Garrett Tanzer for their
valuable comments, useful suggestions, and sup-
port. We owe a special debt of gratitude to Federico
Bianchi for inspecting our code, documentation,
and tutorials many times and providing us with
such helpful and constructive feedback.

References

SF Altschul, W Gish, W Miller, EW Myers, and DJ Lip-
man. 1990. Basic local alignment search tool. Jour-
nal of Molecular Biology, 215(3):403-410.

Arturs Backurs and Piotr Indyk. 2015. Edit distance
cannot be computed in strongly subquadratic time
(unless SETH is false). In Proceedings of the Forty-
Seventh Annual ACM Symposium on Theory of Com-
puting, STOC *15, page 51-58, New York, NY, USA.
Association for Computing Machinery.

Steven Bird and Edward Loper. 2004. NLTK: The natu-
ral language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214-217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Robert S. Boyer and J. Strother Moore. 1977. A
fast string searching algorithm. Commun. ACM,
20(10):762-772.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Vlad Feinberg. 2019. Facebook AI similarity search
(FAISS), part II. Accessed on March 13, 2023.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1-6,
Melbourne, Australia. Association for Computational
Linguistics.

Daniel S. Hirschberg. 1975. A linear space algo-
rithm for computing maximal common subsequences.
Communications of the ACM, 18(6):341-343.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535-547.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. FastText.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Richard M Karp and Michael O Rabin. 1987. Efficient
randomized pattern-matching algorithms. IBM Jour-
nal of Research and Development, 31(2):249-260.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In Pro-
ceedings of ACL 2017, System Demonstrations, pages
67-72, Vancouver, Canada. Association for Compu-
tational Linguistics.

Donald E. Knuth, James H. Morris, Jr., and Vaughan R.
Pratt. 1977. Fast pattern matching in strings. SIAM
Journal on Computing, 6(2):323-350.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 7871-7880.

David J Lipman and William R Pearson. 1985. Rapid
and sensitive protein similarity searches. Science,
227(4693):1435-1441.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 55-60, Balti-
more, Maryland. Association for Computational Lin-
guistics.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443-453.

Mark Neumann, Daniel King, 1z Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319-327, Florence, Italy. Association for
Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for

284

https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/2746539.2746612
https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://vladfeinberg.com/2019/07/18/faiss-pt-2.html
https://vladfeinberg.com/2019/07/18/faiss-pt-2.html
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501
https://aclanthology.org/P17-4012
https://aclanthology.org/P17-4012
https://doi.org/10.1137/0206024
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/N19-4009

sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48-53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101-108, Online. As-
sociation for Computational Linguistics.

Radim Rehiifek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks, pages 45-50, Valletta,
Malta. ELRA. http://is.muni.cz/publication/
884893/en.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar software
libraries. In Proceedings of the ACL 2012 System
Demonstrations, pages 61-66, Jeju Island, Korea.
Association for Computational Linguistics.

Alexander Rush. 2020. Torch-Struct: Deep structured
prediction library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335-342,
Online. Association for Computational Linguistics.

Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic pro-
gramming algorithm optimization for spoken word
recognition. /IEEE transactions on acoustics, speech,
and signal processing, 26(1):43-49.

T. F. Smith and Michael S. Waterman. 1981. Identifica-
tion of common molecular subsequences. Journal of
molecular biology, 147 1:195-7.

Mirac Suzgun, Luke Melas-Kyriazi, and Dan Jurafsky.
2022a. Follow the wisdom of the crowd: Effective
text generation via minimum Bayes risk decoding.
arXiv preprint arXiv:2211.07634.

Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K
Sarkar, Scott Duke Kominers, and Stuart M Shieber.
2022b. The Harvard USPTO Patent Dataset: A
Large-Scale, Well-Structured, and Multi-Purpose
Corpus of Patent Applications. arXiv preprint
arXiv:2207.04043.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws, Llion
Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki Parmar,
Ryan Sepassi, Noam Shazeer, and Jakob Uszkoreit.

2018. Tensor2tensor for neural machine translation.
CoRR, abs/1803.07416.

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168-173.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
BARTScore: Evaluating generated text as text gener-
ation. In Advances in Neural Information Processing
Systems, volume 34, pages 27263-27277. Curran As-
sociates, Inc.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Interna-
tional Conference on Learning Representations.

285

https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://aclanthology.org/P12-3011
https://aclanthology.org/P12-3011
https://aclanthology.org/P12-3011
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://arxiv.org/abs/2211.07634
https://arxiv.org/abs/2211.07634
https://arxiv.org/abs/2207.04043
https://arxiv.org/abs/2207.04043
https://arxiv.org/abs/2207.04043
http://arxiv.org/abs/1803.07416
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

