
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 160–171
August 11-16, 2024 ©2024 Association for Computational Linguistics

LinguaLinked: Distributed Large Language Model Inference on Mobile
Devices

Junchen Zhao*
UC Irvine

junchez3@uci.edu

Yurun Song*
UC Irvine

yuruns@uci.edu

Simeng Liu
UC Irvine

simenl3@uci.edu

Ian G. Harris
UC Irvine

harris@ics.uci.edu

Sangeetha Abdu Jyothi
UC Irvine, VMware Research
sangeetha.aj@uci.edu

Abstract

Deploying Large Language Models (LLMs)
locally on mobile devices presents a signif-
icant challenge due to their extensive mem-
ory requirements. In this paper, we introduce
LinguaLinked, a system for decentralized, dis-
tributed LLM inference on mobile devices. Lin-
guaLinked enables collaborative execution of
the inference task across multiple trusted de-
vices and ensures data privacy by processing in-
formation locally. LinguaLinked uses three key
strategies. First, an optimized model assign-
ment technique segments LLMs and uses linear
optimization to align segments with each de-
vice’s capabilities. Second, an optimized data
transmission mechanism ensures efficient and
structured data flow between model segments
while also maintaining the integrity of the orig-
inal model structure. Finally, LinguaLinked in-
corporates a runtime load balancer that actively
monitors and redistributes tasks among mobile
devices to prevent bottlenecks, enhancing the
system’s overall efficiency and responsiveness.
We demonstrate that LinguaLinked facilitates
efficient LLM inference while maintaining con-
sistent throughput and minimal latency through
extensive testing across various mobile devices,
from high-end to low-end Android devices.

1 Introduction

The past decade has witnessed a seismic shift in the
machine learning (ML) landscape, particularly with
the rise of large language models (LLMs), which
are built atop transformer decoders (Vaswani et al.,
2023). These LLMs (Brown et al., 2020; Kaplan
et al., 2020, Hoffmann et al., 2022; Chowdhery
et al., 2022; Zhang et al., 2022; Touvron et al.,
2023; Workshop et al., 2023) have achieved state-
of-art performance on Natural Language Process-
ing (NLP) benchmarks such as text generation,
question answering, machine translation, and text

0* Equally contributed.

Figure 1: ’Trusted’ mobile devices working collabora-
tively for LLM inference in LinguaLinked.

summarization, and led to commercial offerings
such as OpenAI ChatGPT and Github Copilot. Re-
cent research has established that as the number of
parameters in these models increases, they demon-
strate enhanced capabilities in various language
tasks (Alabdulmohsin et al., 2022; Clark et al.,
2022; Huang et al., 2020; Patel and Pavlick, 2022,
Hendrycks et al., 2021; Cobbe et al., 2021).

However, deploying these LLMs on mobile de-
vices is challenging due to their significant mem-
ory and processing requirements. Traditional
server-based inference raises privacy and band-
width issues. An alternative is distributed infer-
ence, where LLMs are split into smaller segments
across multiple devices, reducing the need for
heavy model weight quantization and maintaining
accuracy. While previous studies have looked into
distributed model deployment on mobile comput-
ing platforms (Hu et al., 2019; Naveen et al., 2021;
Zeng et al., 2021; Zhou et al., 2019), these have
largely concentrated on smaller-scale models used
in computer vision applications, which have a much
smaller memory footprint compared to LLMs and

1
160



(3) System Monitor

Device Metrics

Coordinator Server

Local Mobile Devices

(8) Optimized Communication

(4) Primary
Optimizer

(6) Secondary Optimizer

(5) Optimized Model
Assignment

(7) Runtime Load-
Balancing

LinguaLinked

(1) LLM &
Computational Graph

(2) Subgraph Extraction
& Compilation

Figure 2: Overview of LinguaLinked System Design.

typically do not need iterative inference.
In this paper, we present LinguaLinked1, a de-

centralized distributed inference system for LLM
deployment on mobile devices. The core concept
behind LinguaLinked is distributing model seg-
ments across ’trusted’ devices shown in Figure 1,
such as personal smartphones and tablets. This
approach overcomes the limitations of individual
device capacities, privacy concerns, and bandwidth
constraints. However, it faces challenges like man-
aging diverse device capabilities, handling data de-
pendencies between model segments, and adjusting
to dynamic resource availability.

LinguaLinked addresses these challenges with
three key components: optimized model assign-
ment that aligns model segments with device ca-
pabilities while minimizing data transmission, run-
time load balancing to redistribute tasks and pre-
vent bottlenecks, and optimized communication
to ensure efficient data exchange between model
segments. We perform a thorough evaluation of
LinguaLinked on high-end and low-end Android
devices. In a single-threaded setting, compared
to the baseline, LinguaLinked achieves an infer-
ence performance acceleration of approximately
1.11× to 1.61× across both quantized and full-
precision models. With multi-threading, the system
exhibits further improvements, achieving acceler-
ation rates of approximately 1.73× to 2.65× for
both quantized and full-precision models. Run-
time load balancing yields an overall inference ac-
celeration of 1.29× to 1.32×. Importantly, our
findings indicate that LinguaLinked’s performance

1https://github.com/zjc664656505/
LinguaLinked-Inference

gains are more pronounced with larger models, sug-
gesting enhanced scalability and effectiveness in
handling complex, resource-intensive tasks. We
develop an Android application to demonstrate Lin-
guaLinked’s effectiveness in a typical mobile com-
puting environment, showing how LLMs can oper-
ate on devices with diverse capabilities.

2 Related Works

Autoregressive LLMs and Computational Chal-
lenges. Recent advancements in NLP have been
driven by autoregressive LLMs like GPT-3 (Brown
et al., 2020), OPT (Zhang et al., 2022), and LLaMA
(Touvron et al., 2023), which generate text sequen-
tially. While effective for tasks such as language
generation and translation, their sequential nature
leads to computational inefficiencies, especially for
longer texts (Lin et al., 2021; Floridi and Chiriatti,
2020; Lee, 2023). Traditionally, these models have
been processed on centralized servers (Aminabadi
et al., 2022; Borzunov et al., 2022; Du et al., 2023),
with innovations aimed at reducing latency and
enhancing efficiency (Wang et al., 2023; Romero
et al., 2021; Gunasekaran et al., 2022). However,
centralization raises privacy concerns and can intro-
duce latency due to data transmission requirements
(Khowaja et al., 2023; Sebastian, 2023; Renaud
et al., 2023; Kshetri, 2023; Elbamby et al., 2019;
Liang et al., 2020a; Park et al., 2019; Mao et al.,
2017b).
Mobile Constraints and Model Optimization.
Deploying LLMs on mobile devices presents chal-
lenges due to limited computational and memory
resources (Wu et al., 2019; Zhao et al., 2022; Chen
and Ran, 2019; Zhang et al., 2019). Techniques like

2
161

https://github.com/zjc664656505/LinguaLinked-Inference
https://github.com/zjc664656505/LinguaLinked-Inference


quantization (Gholami et al., 2022; Bondarenko
et al., 2021; Coelho et al., 2021), distillation (Liang
et al., 2020b; Gu et al., 2023; Jiao et al., 2019), and
pruning (Blalock et al., 2020; Hoefler et al., 2021;
Liang et al., 2021) help mitigate these issues but
may compromise model performance. Frameworks
such as TensorFlow Lite (TensorFlow, 2023), TVM
(Chen et al., 2018), and ONNXRuntime (Runtime,
2023), along with advanced quantization methods
(Yao et al., 2022; Frantar et al., 2022; Xiao et al.,
2023), facilitate mobile deployment, yet challenges
persist, especially on lower-end devices.
Distributed Inference Solutions. Addressing
the limitations of single-device deployment, dis-
tributed inference strategies like LinguaLinked
partition LLMs across multiple devices, reducing
the memory load on individual devices and en-
abling broader device participation in inference
tasks. Frameworks such as DeepHome (Hu et al.,
2019), MODNN (Mao et al., 2017a), and EdgeFlow
(Hu and Li, 2022) have explored data parallelism
and model partitioning, primarily for vision mod-
els. However, the adaptation of these strategies
for LLMs on mobile devices remains an underex-
plored area, with a need for solutions that consider
real-time device performance fluctuations and load
balancing (Xu et al., 2022).

3 LinguaLinked

As shown in Figure 2, the LinguaLinked system fa-
cilitates LLM distribution across mobile devices by
transforming the LLM into a computational graph
on a coordinator server, then partitioning it into
sub-modules for optimized allocation to devices
based on their performance metrics. It employs
primary and secondary optimizers for task distri-
bution and load balancing, with a communication
strategy that minimizes data transmission between
devices, ensuring efficiency and privacy as all data
remains local to the devices.

3.1 System Monitor

The system monitor in LinguaLinked is comprised
of server and device modules to track and man-
age performance metrics like bandwidth, latency,
memory, and processing speed across devices. The
server module controls monitoring activities and
processes data for optimization, while the device
module assesses performance indicators. Band-
width is measured by transferring data between
devices and calculating the transfer rate, while pro-

Figure 3: Android chat application that runs full-
precision BLOOM 1.7b on 2 Google Pixel 7 pro.
The demo video can be found at https://youtu.be/
4UhXzKUkOuI

cessing speed (FLOP/s) is determined by timing
a test model’s execution on each device, offering
insights into the system’s operational efficiency.

3.2 Optimized Model Assignment

Subgraph Extraction from LLMs. The first step
in preparing LLMs for mobile deployment involves
converting them into computational graphs and
then segmenting these graphs into smaller, inde-
pendent subgraphs. These subgraphs are designed
to operate separately on different devices, and their
extraction is based purely on the computational
characteristics of the LLM, without considering
the current state of the devices. Nodes within the
graph that process inputs from a single node and
output to multiple nodes are identified as key points
for partitioning. These nodes typically represent
distinct layers or operations within the model, mak-
ing them ideal for creating subgraphs that can be
independently executed. The process results in a
series of subgraphs, each representing a functional
segment of the original LLM, allowing for efficient
distribution across the available mobile devices.
Subgraph Dependency Search. To handle de-
pendencies between nodes in separate subgraphs
of an LLM, we employ a subgraph dependency
search algorithm, creating two key maps: the resid-
ual dependency map (RDM) and the sequential

3
162

https://youtu.be/4UhXzKUkOuI
https://youtu.be/4UhXzKUkOuI


dependency map (SDM). The SDM tracks direct
dependencies between adjacent subgraphs, ensur-
ing that outputs from one subgraph serve as inputs
for the next. The RDM identifies dependencies be-
tween non-adjacent subgraphs, capturing instances
where a subgraph relies on nodes from an earlier
subgraph, not directly preceding it.
Model Assignment Optimization. After segment-
ing LLMs into subgraphs, the next step involves as-
signing these subgraphs as executable sub-modules
to mobile devices, considering device constraints
and aiming to minimize computation and data trans-
mission times. This involves compiling subgraphs
into sub-modules, profiling each for FLOP count,
memory needs, and data output size, and then us-
ing this information alongside device performance
metrics to optimize sub-module allocation. The
optimization termed as a primary optimizer, for-
mulated as a linear optimization problem, balances
local computation and data transmission efforts to
reduce total inference time. Constraints ensure that
the memory usage of sub-modules on any device
does not exceed a predetermined portion of the
device’s available memory.

3.3 Runtime Load Balancing

Load Balancing Optimization. The load balanc-
ing mechanism refines the initial model assignment
optimization termed as a secondary optimizer by in-
troducing a strategy to overlap sub-modules across
devices, categorizing them as movable or unmov-
able. Movable sub-modules can be dynamically
allocated or removed to balance the load, whereas
unmovable ones stay fixed. This approach uses
linear programming to minimize data transmission
and optimize memory usage, enhancing system
performance and robustness during intensive tasks.
The optimization allows for potential overlaps of
sub-modules to the left or right of their current
allocation, improving memory utilization within
device constraints and facilitating efficient load dis-
tribution across the network.

Figure 4: System Design For Device Communication.

3.4 Optimized Communication

Model Deployment with Load Balancing. Lin-
guaLinked initiates load balancing based on real-
time device performance metrics. When an imbal-
ance is detected, it combines the initial model as-
signment with the secondary optimization to update
the task distribution. Unmovable modules remain
in place, while movable modules are reassigned as
dictated by the load balancing optimization. De-
vices then adjust their loads according to this new
strategy, pausing computations only locally to re-
duce disruptions.
Decentralized Device Communication. In our
system, devices communicate in a decentralized,
ring-structured manner, where each device sequen-
tially receives, computes, and forwards data to the
next device until it reaches the Header again, as
illustrated with a solid red line in Figure 4. This
efficient communication is facilitated by a mes-
sage queue utilizing the ROUTER-DEALER pat-
tern, allowing devices to alternate between sending
(ROUTER) and receiving (DEALER) roles, which
enhances scalability and ensures balanced load dis-
tribution. The cycle of data processing involves
devices acting first as receivers to perform compu-
tations, then as senders to pass on results, main-
taining a continuous and organized flow of data
throughout the network.
Multi-Threaded Inference. Our system imple-
ments multi-threaded inference, allowing paral-
lel processing where each thread independently
manages a task and progresses to the next one
immediately after completion. Due to the non-
threadsafe nature of message queue sockets, we
ensure thread safety by using multiple sockets
and ports instead of sharing or locking sockets
in multi-threads, thereby preventing performance
bottlenecks and reducing communication latency.
Furthermore, multi-threaded inference boosts CPU
efficiency by accommodating varying batch sizes
and enabling flexible processing strategies, such
as dividing large batches into smaller mini-batches
or adjusting batch sizes dynamically, optimizing
system performance.

Sequential & Residual Communication. In
sequential communication, devices in our system
form a circuit where each transmits data to the next
in line, creating a flow where only sequential data
is exchanged. It leads to inefficiencies as devices
pass along residual data not immediately needed
by them. To overcome these limitations, we intro-

4
163



duced a residual communication strategy, allowing
for direct transmission of data to target devices,
as depicted by green dashed lines in Figure 4. It
reduces unnecessary data carriage and latency.

Pixel 7 pro CUBOT X30
SoC Google Tensor G2 Mediatek MT6771
CPU Cortex-X1/A78/A55 Cortex-A73/A53
RAM 12GB 8GB
OS Android 13 Android 10

Table 1: Test Hardware Platforms in Evaluation.

3.5 Implementation and Methodology
LinguaLinked Prototype. We build Lin-
guaLinked atop PyTorch (Paszke et al., 2019),
leveraging the torch.fx library (Reed et al., 2022)
for computational subgraph extraction and PyTorch
sub-module compilation, with performance pro-
filing done via Deepspeed (Rasley et al., 2020).
These sub-modules are then prepared for mobile
deployment by conversion to ONNX format (Bai
et al., 2019) and optimized using int8 precision
quantization through ONNXRuntime (Runtime,
2023). Optimization for model distribution and
load balancing is achieved with the MILP solver
Gurobipy (Gurobi Optimization, LLC, 2023), al-
lowing the deployment of optimized sub-modules
on mobile devices through an Android applica-
tion that utilizes ONNXRuntime’s C++ API. For
efficient mobile device communication and dis-
tributed inference, ZeroMQ (Zer) with a ROUTER-
DEALER socket pattern is integrated, enhancing
asynchronous communication in the mobile envi-
ronment.
Chat Application. We develop an Android ap-
plication that allows users to chat with LLMs in
a distributed decentralized way as shown in Fig-
ure 3. Our application features two distinct modes:
header and worker. The header mode focuses on di-
rect user interaction with the LLM such as sending
prompts and receiving responses. In contrast, the
worker mode dedicates itself to the heavy lifting
of model computation, showcasing the synergy be-
tween devices to accomplish LLM inference tasks
efficiently.

4 Evaluation

4.1 Evaluation Setup
Hardware. In evaluating the LinguaLinked system,
we utilize four mobile devices: three Google Pixel
7 Pros and one CUBOT X30. The specific hard-
ware configurations of these devices are detailed

in Table 1. Our analysis focuses on CPU perfor-
mance, reflecting the system’s compatibility with
the current CPU-only support of ONNXRuntime
for LLMs. This approach is deliberate, anticipating
future integration with GPU acceleration capabili-
ties as ONNXRuntime evolves, thereby highlight-
ing our system’s adaptability and the consistency
of its performance evaluation across varying hard-
ware source.
Evaluation Tasks. Our system’s performance is
assessed through text generation tasks, using the
Wikitext-2 (Merity et al., 2016) with 100 randomly
selected samples.
Evaluation Models. Evaluation leverages the
BLOOM series LLMs (Workshop et al., 2023), in-
cluding BLOOM 3b, BLOOM 1.7b, and BLOOM
1.1b models, in both full and int8 precision for-
mats.
Baseline for Comparison. We established a base-
line for assessing on-device distributed inference of
LLMs, assigning an equal number of sub-modules
(m/n) to each of the n mobile devices, irrespective
of their specific hardware or network conditions.
This approach allows for a comparison of system
throughput between our uniform distribution strat-
egy and both our optimized model assignment and
runtime load balancing strategies, in the absence of
prior focused research in this area.

Model Device Config
Device
Number

Thread
Number

Avg. Time/Token
(s)

Baseline
BLOOM3b-int8 2P+1C 3 1 2.526
BLOOM1.7b-int8 2P+1C 3 1 1.466
BLOOM1.1b-int8 2P+1C 3 1 1.017
BLOOM3b-full 3P+1C 4 1 5.222
BLOOM1.7b-full 3P+1C 4 1 3.159
BLOOM1.1b-full 3P+1C 4 1 1.967

Optimized
BLOOM3b-int8 2P+1C 3 1 1.576
BLOOM1.7b-int8 2P+1C 3 1 0.944
BLOOM1.1b-int8 2P+1C 3 1 0.653
BLOOM3b-full 3P+1C 4 1 3.944
BLOOM1.7b-full 3P+1C 4 1 2.520
BLOOM1.1b-full 3P+1C 4 1 1.793

Table 2: Inference Throughput Comparison of Baseline
and Optimized Strategies for Model Assignment in Het-
erogeneous Devices. On the Device Config column, P
indicates Google Pixel 7pro and C indicates CubotX30.

4.2 Performance
Optimized Model Assignment Performance. In
heterogeneous device environments, optimized
model assignment significantly enhances inference
throughput compared to baseline strategies, as in-
dicated by the data in Table 2. For int8 quantized
models, throughput increases are notable: BLOOM
3b achieves a 1.61× improvement, while BLOOM

5
164



1.7b and 1.1b models see 1.55× and 1.56× en-
hancements, respectively. Full-precision models
also benefit, with BLOOM 3b, 1.7b, and 1.1b mod-
els experiencing improvements of 1.32×, 1.25×,
and 1.11×, respectively.
The trend is clear—larger models, such as the
BLOOM 3b, exhibit greater gains, suggesting that
optimization strategies yield more significant ben-
efits for models with higher computational needs.
This pattern underscores the efficacy of optimized
model assignment in improving the efficiency of
model deployment and inference performance in
diverse computing landscapes.
Multi-threaded Inference Performance. Our
study investigates the benefits of multi-threading on
inference throughput for both int8 quantized and
full-precision BLOOM models, focusing on text
generation task as indicated by the data in Table 3.
Conducted on three Google Pixel 7 Pro devices, we
report that quantized models show a marked per-
formance improvement in multi-threaded setups
for text generation. Specifically, the BLOOM 3b
quantized model’s throughput increases by 1.81
× with two threads and 2.52 × with five threads
compared to a single-threaded baseline. Similarly,
the BLOOM 1.7b and 1.1b models demonstrate
significant speed-ups, with the 1.7b model dou-
bling its throughput with two threads and reach-
ing a 2.65× increase with five threads, and the
1.1b model achieving a 1.73 × speed-up with two
threads and a 2.3× increase with five threads.
Full-precision models also benefit from multi-
threading, albeit to a lesser extent. The BLOOM 3b
full-precision model sees a 1.67 × speed-up with
two threads and a 1.97 × increase with five threads.
The 1.7b and 1.1b models exhibit speed-ups of
1.54 and 1.58 ×, respectively, with two threads,
and 1.83 and 1.79 × with five threads.

Quantized Experiment/Int8
Model Avg. Compute Time/Token (s)/Thread Number
Thread Number 1 2 3 4 5
BLOOM3b-int8 1.145 0.634 0.526 0.472 0.455
BLOOM1.7b-int8 0.740 0.389 0.336 0.302 0.279
BLOOM1.1b-int8 0.464 0.269 0.230 0.207 0.202

Full Precision Experiment
Model Avg. Compute Time/Token (s)/ Thread Number
Thread Number 1 2 3 4 5
BLOOM3b-full 2.687 1.611 1.492 1.444 1.368
BLOOM1.7b-full 1.675 1.088 0.972 0.903 0.918
BLOOM1.1b-full 1.105 0.700 0.623 0.632 0.617

Table 3: Multi-threading Throughput for Text Genera-
tion on 3 Google Pixel 7 Pro using Optimized Model
Assignment Strategy.

Figure 5: Load Balancer Launched at Runtime.

Micro-Benchmarking the Runtime Load Bal-
ancer. In our study, we also investigate the ef-
fects of runtime load balancing on the BLOOM
1.7b model in both full precision and int8 quan-
tized formats across three devices, including two
high-end and one low-end phone. Initially, model
partitions are unevenly distributed, causing the low-
end phone to be overloaded. Upon activating the
load balancer after processing two samples and
continuing with ten more, we observe a significant
improvement in processing efficiency.
Figure 5 illustrates that enabling load balancing
from the second sample noticeably decreases infer-
ence latency. For the full precision model, enabling
load balancing cuts down latency from 4.624 sec-
onds to 3.587 seconds per token, showcasing an
improvement by reallocating 8 sub-modules and
overcoming a notable overhead from reloading ses-
sions onto alternate devices.
For the quantized model, activating the load bal-
ancer reduces latency from 2.756 to 2.087 seconds
per token, with a less substantial reloading over-
head compared to the full precision model due to
the smaller size of quantized sub-modules.
Inference times for the quantized model prove to
be more stable across generation tasks than for the
full precision model.
Overall, the implementation of runtime load bal-
ancing results in an average improvement of 30%
in acceleration, effectively demonstrating the ben-
efits of dynamically adjusting workloads among
devices with varying processing capabilities.

4.3 Sequential and Residual Communication

To demonstrate the efficacy of residual over sequen-
tial communication, we conducted experiments
measuring communication times, employing the
Network Temporal Protocol (NTP) for precise syn-

6
165



chronization and utilizing the system clock for
nanosecond accuracy in runtime measurement.

By comparing these methods using three low-

Hop1 Hop2 Hop3 Total Res Hop
Seq 0.2489s 0.2580s 0.0770s 0.5839s ——
Res 0.2347s 0.2463s 0.0779s 0.5589s 0.0111s

Table 4: Residual and Sequential Communication Per-
formance

end smartphones and the quantized BLOOM 3b
model, recording average delays from ten trials.
The results, detailed in Table 4 and Figure 4,
show that sequential communication incurs higher
delays due to multiple transmission steps and the
need for activations to be processed before residual
data can be sent. Sequential transmission involved
hops with an average data size of 1.5 MB, while
residual communication transmitted about 15 KB
directly, allowing it to operate in parallel and more
efficiently than the sequential method. Note that
as the number of residual connections and the size
of the model increase, the saved time will likewise
increase.

5 Discussion

A major direction for expanding LinguaLinked in-
volves adapting it for distributed fine-tuning on mo-
bile devices, allowing model customization based
on user interactions and local data, paving the
way for personalized AI applications while pre-
serving data privacy. We also envision extending
LinguaLinked to handle multi-modality models,
enhancing its applicability in diverse real-world
scenarios.

To further improve LinguaLinked, we envision
more advanced model computational graph parti-
tioning strategies involving further optimizations
on task divisions better aligned with device capa-
bilities. Moreover, integrating advanced load bal-
ancing algorithms that account for not only com-
putational capabilities but also battery life and user
engagement patterns will ensure a holistic approach
to distributed computing on mobile platforms.

Finally, the implications of this research are sig-
nificant for AI policy, as it challenges the prevail-
ing reliance on cloud infrastructure and centralized
data centers for AI deployment. By demonstrating
the potential to deploy AI systems from a network
of mobile devices, our work suggests a paradigm
where the ’means of production’ for AI can be
decentralized and localized. This model of deploy-

ment could lead to a future where AI systems are
both operated and fine-tuned locally using a diverse
array of small devices. Such a setup could make AI
systems more difficult to regulate, as the distribu-
tion and localization of AI technologies allow for
widespread, generic hardware use.

6 Conclusion

In this work, we introduce LinguaLinked, a sys-
tem for decentralized LLM inference on mobile de-
vices. To the best of our knowledge, LinguaLinked
is the first work that exploits deploying LLM dis-
tributively on mobile devices. LinguaLinked im-
plemented optimized model assignment strategy,
network communication and runtime load balanc-
ing mechanism to accelerate the distributed LLM
inference on mobile devices. This approach tackles
the complexities of deploying both full precision
and quantized LLMs of various sizes within mobile
computing environments.

7 Limitations

Our results demonstrate promising advancements
in distributed LLM inference on mobile devices
but also underscore several limitations. Key among
these are the overheads from load balancing and
constraints of current hardware and software frame-
works. As tools like ONNXRuntime evolve to sup-
port GPU acceleration, we expect significant en-
hancements in LinguaLinked’s performance. Fur-
thermore, exploring advanced quantization tech-
niques and communication mechanisms could lead
to more efficient distributed inference systems.

At the same time, a critical focus for future
iterations of LinguaLinked is energy efficiency.
We find that the continuous intensive inference
tasks, especially with full-precision models, sig-
nificantly drain battery life and cause overheating,
leading to performance degradation. To address
this, we aim to incorporate energy-efficient comput-
ing strategies that balance computational demands
with energy consumption and thermal management.
This could include adaptive algorithms to modulate
computational load based on the device’s energy
state, and hardware-specific optimizations leverag-
ing low-power processing cores for specific tasks.

Furthermore, when designing our system with
privacy in mind, we primarily contrast it with tra-
ditional server-based inference systems, operating
under the assumption that all inference tasks are
conducted locally on ’trusted’ mobile devices. This

7
166



setup should inherently protect user privacy. How-
ever, we recognize potential scenarios where this
assumption may fail. For instance, if a device be-
comes compromised or if unauthorized access is
obtained, sensitive local data could be at risk. More-
over, our trust model does not address potential
side-channel attacks, which could allow attackers
to derive sensitive information from the model’s
intermediate activations. These vulnerabilities un-
derscore the need for more comprehensive, multi-
layered security protocols that extend beyond sim-
ple device trust, aiming to robustly safeguard user
data in diverse and adversarial environments.

Finally, due to the absence of standardized evalu-
ation benchmarks for distributed LLM inference on
mobile devices, we have created our own baselines
to assess our system’s performance. However, the
lack of universally accepted benchmarks and previ-
ous research in this domain complicates the task of
conducting thorough comparisons for future work.
It is crucial for future research to focus on devel-
oping standardized benchmarks in this field. Es-
tablishing such benchmarks would facilitate more
uniform comparisons between different systems,
enhance the clarity of potential improvements, and
identify the most effective strategies for distributed
LLM inference on mobile platforms.

References
Zeromq. https://zeromq.org/. (Accessed on
11/29/2023).

Ibrahim Alabdulmohsin, Behnam Neyshabur, and Xi-
aohua Zhai. 2022. Revisiting neural scaling laws in
language and vision.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–15. IEEE.

Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. Onnx:
Open neural network exchange. https://github.
com/onnx/onnx.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state
of neural network pruning? Proceedings of machine
learning and systems, 2:129–146.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming

the challenges of efficient transformer quantization.
arXiv preprint arXiv:2109.12948.

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers,
Max Ryabinin, Younes Belkada, Artem Chu-
machenko, Pavel Samygin, and Colin Raffel. 2022.
Petals: Collaborative inference and fine-tuning of
large models. arXiv preprint arXiv:2209.01188.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Jiasi Chen and Xukan Ran. 2019. Deep learning with
edge computing: A review. Proceedings of the IEEE,
107(8):1655–1674.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. Tvm: An auto-
mated end-to-end optimizing compiler for deep learn-
ing.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur
Mensch, Michela Paganini, Jordan Hoffmann, Bog-
dan Damoc, Blake A. Hechtman, Trevor Cai, Se-
bastian Borgeaud, George van den Driessche, Eliza
Rutherford, T. W. Hennigan, Matthew G. Johnson,
Katie Millican, Albin Cassirer, Chris Jones, Elena
Buchatskaya, David Budden, L. Sifre, Simon Osin-
dero, Oriol Vinyals, Jack W. Rae, Erich Elsen, Koray
Kavukcuoglu, and Karen Simonyan. 2022. Unified

8
167

https://zeromq.org/
http://arxiv.org/abs/2209.06640
http://arxiv.org/abs/2209.06640
https://github.com/onnx/onnx
https://github.com/onnx/onnx
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://api.semanticscholar.org/CorpusID:246473179


scaling laws for routed language models. In Interna-
tional Conference on Machine Learning.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Claudionor N Coelho, Aki Kuusela, Shan Li, Hao
Zhuang, Jennifer Ngadiuba, Thea Klaeboe Aarrestad,
Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol,
and Sioni Summers. 2021. Automatic heterogeneous
quantization of deep neural networks for low-latency
inference on the edge for particle detectors. Nature
Machine Intelligence, 3(8):675–686.

Jiangsu Du, Jiazhi Jiang, Jiang Zheng, Hongbin Zhang,
Dan Huang, and Yutong Lu. 2023. Improving com-
putation and memory efficiency for real-world trans-
former inference on gpus. ACM Transactions on
Architecture and Code Optimization, 20(4):1–22.

Mohammed S Elbamby, Cristina Perfecto, Chen-Feng
Liu, Jihong Park, Sumudu Samarakoon, Xianfu Chen,
and Mehdi Bennis. 2019. Wireless edge computing
with latency and reliability guarantees. Proceedings
of the IEEE, 107(8):1717–1737.

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:1–14.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. 2022. A
survey of quantization methods for efficient neural
network inference. In Low-Power Computer Vision,
pages 291–326. Chapman and Hall/CRC.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang.
2023. Knowledge distillation of large language mod-
els. arXiv preprint arXiv:2306.08543.

Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Tay-
lan Kandemir, and Chita R Das. 2022. Cocktail:
A multidimensional optimization for model serv-
ing in cloud. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
22), pages 1041–1057.

Gurobi Optimization, LLC. 2023. Gurobi Optimizer
Reference Manual.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry-
den, and Alexandra Peste. 2021. Sparsity in deep
learning: Pruning and growth for efficient inference
and training in neural networks. The Journal of Ma-
chine Learning Research, 22(1):10882–11005.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models.

Chenghao Hu and Baochun Li. 2022. Distributed in-
ference with deep learning models across heteroge-
neous edge devices. In IEEE INFOCOM 2022-IEEE
Conference on Computer Communications, pages
330–339. IEEE.

Zhiming Hu, Ahmad Bisher Tarakji, Vishal Raheja,
Caleb Phillips, Teng Wang, and Iqbal Mohomed.
2019. Deephome: Distributed inference with hetero-
geneous devices in the edge. In The 3rd International
Workshop on Deep Learning for Mobile Systems and
Applications, pages 13–18.

Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. Swa-
padvisor: Pushing deep learning beyond the gpu
memory limit via smart swapping. In Proceedings
of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’20, page 1341–1355,
New York, NY, USA. Association for Computing
Machinery.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Sunder Ali Khowaja, Parus Khuwaja, and Kapal Dev.
2023. Chatgpt needs spade (sustainability, privacy,
digital divide, and ethics) evaluation: A review. arXiv
preprint arXiv:2305.03123.

Nir Kshetri. 2023. Cybercrime and privacy threats of
large language models. IT Professional, 25(3):9–13.

Minhyeok Lee. 2023. A mathematical interpretation of
autoregressive generative pre-trained transformer and
self-supervised learning. Mathematics, 11(11).

Fan Liang, Wei Yu, Xing Liu, David Griffith, and Nada
Golmie. 2020a. Toward edge-based deep learning in
industrial internet of things. IEEE Internet of Things
Journal, 7(5):4329–4341.

9
168

https://api.semanticscholar.org/CorpusID:246473179
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.1007/s11023-020-09548-1
https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2203.15556
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.1145/3373376.3378530
http://arxiv.org/abs/2001.08361
https://doi.org/10.3390/math11112451
https://doi.org/10.3390/math11112451
https://doi.org/10.3390/math11112451


Kevin J Liang, Weituo Hao, Dinghan Shen, Yufan
Zhou, Weizhu Chen, Changyou Chen, and Lawrence
Carin. 2020b. Mixkd: Towards efficient distilla-
tion of large-scale language models. arXiv preprint
arXiv:2011.00593.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi,
and Xiaotong Zhang. 2021. Pruning and quantiza-
tion for deep neural network acceleration: A survey.
Neurocomputing, 461:370–403.

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R.
Gormley, and Jason Eisner. 2021. Limitations of
autoregressive models and their alternatives.

Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher
Krieger, and Yiran Chen. 2017a. Modnn: Local
distributed mobile computing system for deep neural
network. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, pages 1396–
1401. IEEE.

Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang,
and Khaled B Letaief. 2017b. A survey on mo-
bile edge computing: The communication perspec-
tive. IEEE communications surveys & tutorials,
19(4):2322–2358.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Soumyalatha Naveen, Manjunath R Kounte, and Mo-
hammed Riyaz Ahmed. 2021. Low latency deep
learning inference model for distributed intelligent
iot edge clusters. IEEE Access, 9:160607–160621.

Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and
Mérouane Debbah. 2019. Wireless network in-
telligence at the edge. Proceedings of the IEEE,
107(11):2204–2239.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary.

Roma Patel and Ellie Pavlick. 2022. Mapping language
models to grounded conceptual spaces. In Interna-
tional Conference on Learning Representations.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

James K. Reed, Zachary DeVito, Horace He, Ansley
Ussery, and Jason Ansel. 2022. Torch.fx: Practical
program capture and transformation for deep learning
in python.

Karen Renaud, Merrill Warkentin, and George Wester-
man. 2023. From ChatGPT to HackGPT: Meeting
the Cybersecurity Threat of Generative AI. MIT
Sloan Management Review.

Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. 2021. {INFaaS}: Automated
model-less inference serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21), pages
397–411.

ONNX Runtime. 2023. Onnx runtime. Available from:
https://onnxruntime.ai/.

Glorin Sebastian. 2023. Do chatgpt and other ai chat-
bots pose a cybersecurity risk?: An exploratory study.
International Journal of Security and Privacy in Per-
vasive Computing (IJSPPC), 15(1):1–11.

TensorFlow. 2023. Tensorflow lite. Available from:
https://www.tensorflow.org/lite.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need.

Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo.
2023. Tabi: An efficient multi-level inference sys-
tem for large language models. In Proceedings of
the Eighteenth European Conference on Computer
Systems, pages 233–248.

BigScience Workshop, :, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, Matthias Gallé, Jonathan
Tow, Alexander M. Rush, Stella Biderman, Albert
Webson, Pawan Sasanka Ammanamanchi, Thomas
Wang, Benoît Sagot, Niklas Muennighoff, Albert Vil-
lanova del Moral, Olatunji Ruwase, Rachel Bawden,
Stas Bekman, Angelina McMillan-Major, Iz Belt-
agy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pe-
dro Ortiz Suarez, Victor Sanh, Hugo Laurençon,
Yacine Jernite, Julien Launay, Margaret Mitchell,
Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor
Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers,
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou,
Chris Emezue, Christopher Klamm, Colin Leong,
Daniel van Strien, David Ifeoluwa Adelani, Dragomir
Radev, Eduardo González Ponferrada, Efrat Lev-
kovizh, Ethan Kim, Eyal Bar Natan, Francesco De
Toni, Gérard Dupont, Germán Kruszewski, Giada
Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran,
Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar
Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse
Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg,
Joseph Tobing, Joydeep Bhattacharjee, Khalid Al-
mubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra,

10
169

http://arxiv.org/abs/2010.11939
http://arxiv.org/abs/2010.11939
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://openreview.net/forum?id=gJcEM8sxHK
https://openreview.net/forum?id=gJcEM8sxHK
http://arxiv.org/abs/2112.08429
http://arxiv.org/abs/2112.08429
http://arxiv.org/abs/2112.08429
https://onnxruntime.ai/
https://www.tensorflow.org/lite
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


Leon Weber, Long Phan, Loubna Ben allal, Lu-
dovic Tanguy, Manan Dey, Manuel Romero Muñoz,
Maraim Masoud, María Grandury, Mario Šaško,
Max Huang, Maximin Coavoux, Mayank Singh,
Mike Tian-Jian Jiang, Minh Chien Vu, Moham-
mad A. Jauhar, Mustafa Ghaleb, Nishant Subramani,
Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen,
Omar Espejel, Ona de Gibert, Paulo Villegas, Pe-
ter Henderson, Pierre Colombo, Priscilla Amuok,
Quentin Lhoest, Rheza Harliman, Rishi Bommasani,
Roberto Luis López, Rui Ribeiro, Salomey Osei,
Sampo Pyysalo, Sebastian Nagel, Shamik Bose,
Shamsuddeen Hassan Muhammad, Shanya Sharma,
Shayne Longpre, Somaieh Nikpoor, Stanislav Silber-
berg, Suhas Pai, Sydney Zink, Tiago Timponi Tor-
rent, Timo Schick, Tristan Thrush, Valentin Danchev,
Vassilina Nikoulina, Veronika Laippala, Violette
Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Ta-
lat, Arun Raja, Benjamin Heinzerling, Chenglei Si,
Davut Emre Taşar, Elizabeth Salesky, Sabrina J.
Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea
Santilli, Antoine Chaffin, Arnaud Stiegler, Debajy-
oti Datta, Eliza Szczechla, Gunjan Chhablani, Han
Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan
Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Sai-
ful Bari, Maged S. Al-shaibani, Matteo Manica, Ni-
hal Nayak, Ryan Teehan, Samuel Albanie, Sheng
Shen, Srulik Ben-David, Stephen H. Bach, Taewoon
Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Ur-
mish Thakker, Vikas Raunak, Xiangru Tang, Zheng-
Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri,
Hadar Tojarieh, Adam Roberts, Hyung Won Chung,
Jaesung Tae, Jason Phang, Ofir Press, Conglong Li,
Deepak Narayanan, Hatim Bourfoune, Jared Casper,
Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia
Zhang, Mohammad Shoeybi, Myriam Peyrounette,
Nicolas Patry, Nouamane Tazi, Omar Sanseviero,
Patrick von Platen, Pierre Cornette, Pierre François
Lavallée, Rémi Lacroix, Samyam Rajbhandari, San-
chit Gandhi, Shaden Smith, Stéphane Requena, Suraj
Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet
Singh, Anastasia Cheveleva, Anne-Laure Ligozat,
Arjun Subramonian, Aurélie Névéol, Charles Lover-
ing, Dan Garrette, Deepak Tunuguntla, Ehud Reiter,
Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bog-
danov, Genta Indra Winata, Hailey Schoelkopf, Jan-
Christoph Kalo, Jekaterina Novikova, Jessica Zosa
Forde, Jordan Clive, Jungo Kasai, Ken Kawamura,
Liam Hazan, Marine Carpuat, Miruna Clinciu, Na-
joung Kim, Newton Cheng, Oleg Serikov, Omer
Antverg, Oskar van der Wal, Rui Zhang, Ruochen
Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani
Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun,
Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov,
Vladislav Mikhailov, Yada Pruksachatkun, Yonatan
Belinkov, Zachary Bamberger, Zdeněk Kasner, Al-
ice Rueda, Amanda Pestana, Amir Feizpour, Ammar
Khan, Amy Faranak, Ana Santos, Anthony Hevia,
Antigona Unldreaj, Arash Aghagol, Arezoo Abdol-
lahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh
Behroozi, Benjamin Ajibade, Bharat Saxena, Car-
los Muñoz Ferrandis, Daniel McDuff, Danish Con-
tractor, David Lansky, Davis David, Douwe Kiela,

Duong A. Nguyen, Edward Tan, Emi Baylor, Ez-
inwanne Ozoani, Fatima Mirza, Frankline Onon-
iwu, Habib Rezanejad, Hessie Jones, Indrani Bhat-
tacharya, Irene Solaiman, Irina Sedenko, Isar Ne-
jadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis
Sanz, Livia Dutra, Mairon Samagaio, Maraim El-
badri, Margot Mieskes, Marissa Gerchick, Martha
Akinlolu, Michael McKenna, Mike Qiu, Muhammed
Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Ra-
jani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel,
Ran An, Rasmus Kromann, Ryan Hao, Samira Al-
izadeh, Sarmad Shubber, Silas Wang, Sourav Roy,
Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le,
Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap,
Alfredo Palasciano, Alison Callahan, Anima Shukla,
Antonio Miranda-Escalada, Ayush Singh, Benjamin
Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag
Jain, Chuxin Xu, Clémentine Fourrier, Daniel León
Periñán, Daniel Molano, Dian Yu, Enrique Manjava-
cas, Fabio Barth, Florian Fuhrimann, Gabriel Altay,
Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec,
Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi,
Jonas Golde, Jose David Posada, Karthik Ranga-
sai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa
Shinzato, Madeleine Hahn de Bykhovetz, Maiko
Takeuchi, Marc Pàmies, Maria A Castillo, Mari-
anna Nezhurina, Mario Sänger, Matthias Samwald,
Michael Cullan, Michael Weinberg, Michiel De
Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank,
Myungsun Kang, Natasha Seelam, Nathan Dahlberg,
Nicholas Michio Broad, Nikolaus Muellner, Pascale
Fung, Patrick Haller, Ramya Chandrasekhar, Renata
Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline
Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda,
Shlok S Deshmukh, Shubhanshu Mishra, Sid Ki-
blawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Ku-
mar, Stefan Schweter, Sushil Bharati, Tanmay Laud,
Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Ya-
nis Labrak, Yash Shailesh Bajaj, Yash Venkatraman,
Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli
Xie, Zifan Ye, Mathilde Bras, Younes Belkada, and
Thomas Wolf. 2023. Bloom: A 176b-parameter
open-access multilingual language model.

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen, Sy Choudhury, Marat Dukhan, Kim Hazel-
wood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. 2019.
Machine learning at facebook: Understanding infer-
ence at the edge. In 2019 IEEE international sym-
posium on high performance computer architecture
(HPCA), pages 331–344. IEEE.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Yuzhe Xu, Thaha Mohammed, Mario Di Francesco, and
Carlo Fischione. 2022. Distributed assignment with
load balancing for dnn inference at the edge. IEEE
Internet of Things Journal, 10(2):1053–1065.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.

11
170

http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100


Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Jun-
shan Zhang. 2021. Coedge: Cooperative dnn infer-
ence with adaptive workload partitioning over het-
erogeneous edge devices. IEEE/ACM Trans. Netw.,
29(2):595–608.

Chaoyun Zhang, Paul Patras, and Hamed Haddadi. 2019.
Deep learning in mobile and wireless networking: A
survey. IEEE Communications surveys & tutorials,
21(3):2224–2287.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Tianming Zhao, Yucheng Xie, Yan Wang, Jerry Cheng,
Xiaonan Guo, Bin Hu, and Yingying Chen. 2022.
A survey of deep learning on mobile devices: Ap-
plications, optimizations, challenges, and research
opportunities. Proceedings of the IEEE, 110(3):334–
354.

Li Zhou, Mohammad Hossein Samavatian, Anys Bacha,
Saikat Majumdar, and Radu Teodorescu. 2019. Adap-
tive parallel execution of deep neural networks on
heterogeneous edge devices. In Proceedings of the
4th ACM/IEEE Symposium on Edge Computing, SEC
’19, page 195–208, New York, NY, USA. Association
for Computing Machinery.

12
171

https://doi.org/10.1109/TNET.2020.3042320
https://doi.org/10.1109/TNET.2020.3042320
https://doi.org/10.1109/TNET.2020.3042320
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://doi.org/10.1145/3318216.3363312
https://doi.org/10.1145/3318216.3363312
https://doi.org/10.1145/3318216.3363312

