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Abstract

Deploying Large Language Models (LLMs)
locally on mobile devices presents a signif-
icant challenge due to their extensive mem-
ory requirements. In this paper, we introduce
LinguaLinked, a system for decentralized, dis-
tributed LLM inference on mobile devices. Lin-
guaLinked enables collaborative execution of
the inference task across multiple trusted de-
vices and ensures data privacy by processing in-
formation locally. LinguaLinked uses three key
strategies. First, an optimized model assign-
ment technique segments LLMs and uses linear
optimization to align segments with each de-
vice’s capabilities. Second, an optimized data
transmission mechanism ensures efficient and
structured data flow between model segments
while also maintaining the integrity of the orig-
inal model structure. Finally, LinguaLinked in-
corporates a runtime load balancer that actively
monitors and redistributes tasks among mobile
devices to prevent bottlenecks, enhancing the
system’s overall efficiency and responsiveness.
We demonstrate that LinguaLinked facilitates
efficient LLM inference while maintaining con-
sistent throughput and minimal latency through
extensive testing across various mobile devices,
from high-end to low-end Android devices.

1 Introduction

The past decade has witnessed a seismic shift in the
machine learning (ML) landscape, particularly with
the rise of large language models (LLMs), which
are built atop transformer decoders (Vaswani et al.,
2023). These LLMs (Brown et al., 2020; Kaplan
et al., 2020, Hoffmann et al., 2022; Chowdhery
et al., 2022; Zhang et al., 2022; Touvron et al.,
2023; Workshop et al., 2023) have achieved state-
of-art performance on Natural Language Process-
ing (NLP) benchmarks such as text generation,
question answering, machine translation, and text

0* Equally contributed.

Figure 1: ’Trusted’ mobile devices working collabora-
tively for LLM inference in LinguaLinked.

summarization, and led to commercial offerings
such as OpenAI ChatGPT and Github Copilot. Re-
cent research has established that as the number of
parameters in these models increases, they demon-
strate enhanced capabilities in various language
tasks (Alabdulmohsin et al., 2022; Clark et al.,
2022; Huang et al., 2020; Patel and Pavlick, 2022,
Hendrycks et al., 2021; Cobbe et al., 2021).

However, deploying these LLMs on mobile de-
vices is challenging due to their significant mem-
ory and processing requirements. Traditional
server-based inference raises privacy and band-
width issues. An alternative is distributed infer-
ence, where LLMs are split into smaller segments
across multiple devices, reducing the need for
heavy model weight quantization and maintaining
accuracy. While previous studies have looked into
distributed model deployment on mobile comput-
ing platforms (Hu et al., 2019; Naveen et al., 2021;
Zeng et al., 2021; Zhou et al., 2019), these have
largely concentrated on smaller-scale models used
in computer vision applications, which have a much
smaller memory footprint compared to LLMs and

1
160



(3) System Monitor

Device Metrics

Coordinator Server

Local Mobile Devices

(8) Optimized Communication

(4) Primary
Optimizer

(6) Secondary Optimizer

(5) Optimized Model
Assignment

(7) Runtime Load-
Balancing

LinguaLinked

(1) LLM &
Computational Graph

(2) Subgraph Extraction
& Compilation

Figure 2: Overview of LinguaLinked System Design.

typically do not need iterative inference.
In this paper, we present LinguaLinked1, a de-

centralized distributed inference system for LLM
deployment on mobile devices. The core concept
behind LinguaLinked is distributing model seg-
ments across ’trusted’ devices shown in Figure 1,
such as personal smartphones and tablets. This
approach overcomes the limitations of individual
device capacities, privacy concerns, and bandwidth
constraints. However, it faces challenges like man-
aging diverse device capabilities, handling data de-
pendencies between model segments, and adjusting
to dynamic resource availability.

LinguaLinked addresses these challenges with
three key components: optimized model assign-
ment that aligns model segments with device ca-
pabilities while minimizing data transmission, run-
time load balancing to redistribute tasks and pre-
vent bottlenecks, and optimized communication
to ensure efficient data exchange between model
segments. We perform a thorough evaluation of
LinguaLinked on high-end and low-end Android
devices. In a single-threaded setting, compared
to the baseline, LinguaLinked achieves an infer-
ence performance acceleration of approximately
1.11× to 1.61× across both quantized and full-
precision models. With multi-threading, the system
exhibits further improvements, achieving acceler-
ation rates of approximately 1.73× to 2.65× for
both quantized and full-precision models. Run-
time load balancing yields an overall inference ac-
celeration of 1.29× to 1.32×. Importantly, our
findings indicate that LinguaLinked’s performance

1https://github.com/zjc664656505/
LinguaLinked-Inference

gains are more pronounced with larger models, sug-
gesting enhanced scalability and effectiveness in
handling complex, resource-intensive tasks. We
develop an Android application to demonstrate Lin-
guaLinked’s effectiveness in a typical mobile com-
puting environment, showing how LLMs can oper-
ate on devices with diverse capabilities.

2 Related Works

Autoregressive LLMs and Computational Chal-
lenges. Recent advancements in NLP have been
driven by autoregressive LLMs like GPT-3 (Brown
et al., 2020), OPT (Zhang et al., 2022), and LLaMA
(Touvron et al., 2023), which generate text sequen-
tially. While effective for tasks such as language
generation and translation, their sequential nature
leads to computational inefficiencies, especially for
longer texts (Lin et al., 2021; Floridi and Chiriatti,
2020; Lee, 2023). Traditionally, these models have
been processed on centralized servers (Aminabadi
et al., 2022; Borzunov et al., 2022; Du et al., 2023),
with innovations aimed at reducing latency and
enhancing efficiency (Wang et al., 2023; Romero
et al., 2021; Gunasekaran et al., 2022). However,
centralization raises privacy concerns and can intro-
duce latency due to data transmission requirements
(Khowaja et al., 2023; Sebastian, 2023; Renaud
et al., 2023; Kshetri, 2023; Elbamby et al., 2019;
Liang et al., 2020a; Park et al., 2019; Mao et al.,
2017b).
Mobile Constraints and Model Optimization.
Deploying LLMs on mobile devices presents chal-
lenges due to limited computational and memory
resources (Wu et al., 2019; Zhao et al., 2022; Chen
and Ran, 2019; Zhang et al., 2019). Techniques like
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quantization (Gholami et al., 2022; Bondarenko
et al., 2021; Coelho et al., 2021), distillation (Liang
et al., 2020b; Gu et al., 2023; Jiao et al., 2019), and
pruning (Blalock et al., 2020; Hoefler et al., 2021;
Liang et al., 2021) help mitigate these issues but
may compromise model performance. Frameworks
such as TensorFlow Lite (TensorFlow, 2023), TVM
(Chen et al., 2018), and ONNXRuntime (Runtime,
2023), along with advanced quantization methods
(Yao et al., 2022; Frantar et al., 2022; Xiao et al.,
2023), facilitate mobile deployment, yet challenges
persist, especially on lower-end devices.
Distributed Inference Solutions. Addressing
the limitations of single-device deployment, dis-
tributed inference strategies like LinguaLinked
partition LLMs across multiple devices, reducing
the memory load on individual devices and en-
abling broader device participation in inference
tasks. Frameworks such as DeepHome (Hu et al.,
2019), MODNN (Mao et al., 2017a), and EdgeFlow
(Hu and Li, 2022) have explored data parallelism
and model partitioning, primarily for vision mod-
els. However, the adaptation of these strategies
for LLMs on mobile devices remains an underex-
plored area, with a need for solutions that consider
real-time device performance fluctuations and load
balancing (Xu et al., 2022).

3 LinguaLinked

As shown in Figure 2, the LinguaLinked system fa-
cilitates LLM distribution across mobile devices by
transforming the LLM into a computational graph
on a coordinator server, then partitioning it into
sub-modules for optimized allocation to devices
based on their performance metrics. It employs
primary and secondary optimizers for task distri-
bution and load balancing, with a communication
strategy that minimizes data transmission between
devices, ensuring efficiency and privacy as all data
remains local to the devices.

3.1 System Monitor

The system monitor in LinguaLinked is comprised
of server and device modules to track and man-
age performance metrics like bandwidth, latency,
memory, and processing speed across devices. The
server module controls monitoring activities and
processes data for optimization, while the device
module assesses performance indicators. Band-
width is measured by transferring data between
devices and calculating the transfer rate, while pro-

Figure 3: Android chat application that runs full-
precision BLOOM 1.7b on 2 Google Pixel 7 pro.
The demo video can be found at https://youtu.be/
4UhXzKUkOuI

cessing speed (FLOP/s) is determined by timing
a test model’s execution on each device, offering
insights into the system’s operational efficiency.

3.2 Optimized Model Assignment

Subgraph Extraction from LLMs. The first step
in preparing LLMs for mobile deployment involves
converting them into computational graphs and
then segmenting these graphs into smaller, inde-
pendent subgraphs. These subgraphs are designed
to operate separately on different devices, and their
extraction is based purely on the computational
characteristics of the LLM, without considering
the current state of the devices. Nodes within the
graph that process inputs from a single node and
output to multiple nodes are identified as key points
for partitioning. These nodes typically represent
distinct layers or operations within the model, mak-
ing them ideal for creating subgraphs that can be
independently executed. The process results in a
series of subgraphs, each representing a functional
segment of the original LLM, allowing for efficient
distribution across the available mobile devices.
Subgraph Dependency Search. To handle de-
pendencies between nodes in separate subgraphs
of an LLM, we employ a subgraph dependency
search algorithm, creating two key maps: the resid-
ual dependency map (RDM) and the sequential
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dependency map (SDM). The SDM tracks direct
dependencies between adjacent subgraphs, ensur-
ing that outputs from one subgraph serve as inputs
for the next. The RDM identifies dependencies be-
tween non-adjacent subgraphs, capturing instances
where a subgraph relies on nodes from an earlier
subgraph, not directly preceding it.
Model Assignment Optimization. After segment-
ing LLMs into subgraphs, the next step involves as-
signing these subgraphs as executable sub-modules
to mobile devices, considering device constraints
and aiming to minimize computation and data trans-
mission times. This involves compiling subgraphs
into sub-modules, profiling each for FLOP count,
memory needs, and data output size, and then us-
ing this information alongside device performance
metrics to optimize sub-module allocation. The
optimization termed as a primary optimizer, for-
mulated as a linear optimization problem, balances
local computation and data transmission efforts to
reduce total inference time. Constraints ensure that
the memory usage of sub-modules on any device
does not exceed a predetermined portion of the
device’s available memory.

3.3 Runtime Load Balancing

Load Balancing Optimization. The load balanc-
ing mechanism refines the initial model assignment
optimization termed as a secondary optimizer by in-
troducing a strategy to overlap sub-modules across
devices, categorizing them as movable or unmov-
able. Movable sub-modules can be dynamically
allocated or removed to balance the load, whereas
unmovable ones stay fixed. This approach uses
linear programming to minimize data transmission
and optimize memory usage, enhancing system
performance and robustness during intensive tasks.
The optimization allows for potential overlaps of
sub-modules to the left or right of their current
allocation, improving memory utilization within
device constraints and facilitating efficient load dis-
tribution across the network.

Figure 4: System Design For Device Communication.

3.4 Optimized Communication

Model Deployment with Load Balancing. Lin-
guaLinked initiates load balancing based on real-
time device performance metrics. When an imbal-
ance is detected, it combines the initial model as-
signment with the secondary optimization to update
the task distribution. Unmovable modules remain
in place, while movable modules are reassigned as
dictated by the load balancing optimization. De-
vices then adjust their loads according to this new
strategy, pausing computations only locally to re-
duce disruptions.
Decentralized Device Communication. In our
system, devices communicate in a decentralized,
ring-structured manner, where each device sequen-
tially receives, computes, and forwards data to the
next device until it reaches the Header again, as
illustrated with a solid red line in Figure 4. This
efficient communication is facilitated by a mes-
sage queue utilizing the ROUTER-DEALER pat-
tern, allowing devices to alternate between sending
(ROUTER) and receiving (DEALER) roles, which
enhances scalability and ensures balanced load dis-
tribution. The cycle of data processing involves
devices acting first as receivers to perform compu-
tations, then as senders to pass on results, main-
taining a continuous and organized flow of data
throughout the network.
Multi-Threaded Inference. Our system imple-
ments multi-threaded inference, allowing paral-
lel processing where each thread independently
manages a task and progresses to the next one
immediately after completion. Due to the non-
threadsafe nature of message queue sockets, we
ensure thread safety by using multiple sockets
and ports instead of sharing or locking sockets
in multi-threads, thereby preventing performance
bottlenecks and reducing communication latency.
Furthermore, multi-threaded inference boosts CPU
efficiency by accommodating varying batch sizes
and enabling flexible processing strategies, such
as dividing large batches into smaller mini-batches
or adjusting batch sizes dynamically, optimizing
system performance.

Sequential & Residual Communication. In
sequential communication, devices in our system
form a circuit where each transmits data to the next
in line, creating a flow where only sequential data
is exchanged. It leads to inefficiencies as devices
pass along residual data not immediately needed
by them. To overcome these limitations, we intro-
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duced a residual communication strategy, allowing
for direct transmission of data to target devices,
as depicted by green dashed lines in Figure 4. It
reduces unnecessary data carriage and latency.

Pixel 7 pro CUBOT X30
SoC Google Tensor G2 Mediatek MT6771
CPU Cortex-X1/A78/A55 Cortex-A73/A53
RAM 12GB 8GB
OS Android 13 Android 10

Table 1: Test Hardware Platforms in Evaluation.

3.5 Implementation and Methodology
LinguaLinked Prototype. We build Lin-
guaLinked atop PyTorch (Paszke et al., 2019),
leveraging the torch.fx library (Reed et al., 2022)
for computational subgraph extraction and PyTorch
sub-module compilation, with performance pro-
filing done via Deepspeed (Rasley et al., 2020).
These sub-modules are then prepared for mobile
deployment by conversion to ONNX format (Bai
et al., 2019) and optimized using int8 precision
quantization through ONNXRuntime (Runtime,
2023). Optimization for model distribution and
load balancing is achieved with the MILP solver
Gurobipy (Gurobi Optimization, LLC, 2023), al-
lowing the deployment of optimized sub-modules
on mobile devices through an Android applica-
tion that utilizes ONNXRuntime’s C++ API. For
efficient mobile device communication and dis-
tributed inference, ZeroMQ (Zer) with a ROUTER-
DEALER socket pattern is integrated, enhancing
asynchronous communication in the mobile envi-
ronment.
Chat Application. We develop an Android ap-
plication that allows users to chat with LLMs in
a distributed decentralized way as shown in Fig-
ure 3. Our application features two distinct modes:
header and worker. The header mode focuses on di-
rect user interaction with the LLM such as sending
prompts and receiving responses. In contrast, the
worker mode dedicates itself to the heavy lifting
of model computation, showcasing the synergy be-
tween devices to accomplish LLM inference tasks
efficiently.

4 Evaluation

4.1 Evaluation Setup
Hardware. In evaluating the LinguaLinked system,
we utilize four mobile devices: three Google Pixel
7 Pros and one CUBOT X30. The specific hard-
ware configurations of these devices are detailed

in Table 1. Our analysis focuses on CPU perfor-
mance, reflecting the system’s compatibility with
the current CPU-only support of ONNXRuntime
for LLMs. This approach is deliberate, anticipating
future integration with GPU acceleration capabili-
ties as ONNXRuntime evolves, thereby highlight-
ing our system’s adaptability and the consistency
of its performance evaluation across varying hard-
ware source.
Evaluation Tasks. Our system’s performance is
assessed through text generation tasks, using the
Wikitext-2 (Merity et al., 2016) with 100 randomly
selected samples.
Evaluation Models. Evaluation leverages the
BLOOM series LLMs (Workshop et al., 2023), in-
cluding BLOOM 3b, BLOOM 1.7b, and BLOOM
1.1b models, in both full and int8 precision for-
mats.
Baseline for Comparison. We established a base-
line for assessing on-device distributed inference of
LLMs, assigning an equal number of sub-modules
(m/n) to each of the n mobile devices, irrespective
of their specific hardware or network conditions.
This approach allows for a comparison of system
throughput between our uniform distribution strat-
egy and both our optimized model assignment and
runtime load balancing strategies, in the absence of
prior focused research in this area.

Model Device Config
Device
Number

Thread
Number

Avg. Time/Token
(s)

Baseline
BLOOM3b-int8 2P+1C 3 1 2.526
BLOOM1.7b-int8 2P+1C 3 1 1.466
BLOOM1.1b-int8 2P+1C 3 1 1.017
BLOOM3b-full 3P+1C 4 1 5.222
BLOOM1.7b-full 3P+1C 4 1 3.159
BLOOM1.1b-full 3P+1C 4 1 1.967

Optimized
BLOOM3b-int8 2P+1C 3 1 1.576
BLOOM1.7b-int8 2P+1C 3 1 0.944
BLOOM1.1b-int8 2P+1C 3 1 0.653
BLOOM3b-full 3P+1C 4 1 3.944
BLOOM1.7b-full 3P+1C 4 1 2.520
BLOOM1.1b-full 3P+1C 4 1 1.793

Table 2: Inference Throughput Comparison of Baseline
and Optimized Strategies for Model Assignment in Het-
erogeneous Devices. On the Device Config column, P
indicates Google Pixel 7pro and C indicates CubotX30.

4.2 Performance
Optimized Model Assignment Performance. In
heterogeneous device environments, optimized
model assignment significantly enhances inference
throughput compared to baseline strategies, as in-
dicated by the data in Table 2. For int8 quantized
models, throughput increases are notable: BLOOM
3b achieves a 1.61× improvement, while BLOOM
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1.7b and 1.1b models see 1.55× and 1.56× en-
hancements, respectively. Full-precision models
also benefit, with BLOOM 3b, 1.7b, and 1.1b mod-
els experiencing improvements of 1.32×, 1.25×,
and 1.11×, respectively.
The trend is clear—larger models, such as the
BLOOM 3b, exhibit greater gains, suggesting that
optimization strategies yield more significant ben-
efits for models with higher computational needs.
This pattern underscores the efficacy of optimized
model assignment in improving the efficiency of
model deployment and inference performance in
diverse computing landscapes.
Multi-threaded Inference Performance. Our
study investigates the benefits of multi-threading on
inference throughput for both int8 quantized and
full-precision BLOOM models, focusing on text
generation task as indicated by the data in Table 3.
Conducted on three Google Pixel 7 Pro devices, we
report that quantized models show a marked per-
formance improvement in multi-threaded setups
for text generation. Specifically, the BLOOM 3b
quantized model’s throughput increases by 1.81
× with two threads and 2.52 × with five threads
compared to a single-threaded baseline. Similarly,
the BLOOM 1.7b and 1.1b models demonstrate
significant speed-ups, with the 1.7b model dou-
bling its throughput with two threads and reach-
ing a 2.65× increase with five threads, and the
1.1b model achieving a 1.73 × speed-up with two
threads and a 2.3× increase with five threads.
Full-precision models also benefit from multi-
threading, albeit to a lesser extent. The BLOOM 3b
full-precision model sees a 1.67 × speed-up with
two threads and a 1.97 × increase with five threads.
The 1.7b and 1.1b models exhibit speed-ups of
1.54 and 1.58 ×, respectively, with two threads,
and 1.83 and 1.79 × with five threads.

Quantized Experiment/Int8
Model Avg. Compute Time/Token (s)/Thread Number
Thread Number 1 2 3 4 5
BLOOM3b-int8 1.145 0.634 0.526 0.472 0.455
BLOOM1.7b-int8 0.740 0.389 0.336 0.302 0.279
BLOOM1.1b-int8 0.464 0.269 0.230 0.207 0.202

Full Precision Experiment
Model Avg. Compute Time/Token (s)/ Thread Number
Thread Number 1 2 3 4 5
BLOOM3b-full 2.687 1.611 1.492 1.444 1.368
BLOOM1.7b-full 1.675 1.088 0.972 0.903 0.918
BLOOM1.1b-full 1.105 0.700 0.623 0.632 0.617

Table 3: Multi-threading Throughput for Text Genera-
tion on 3 Google Pixel 7 Pro using Optimized Model
Assignment Strategy.

Figure 5: Load Balancer Launched at Runtime.

Micro-Benchmarking the Runtime Load Bal-
ancer. In our study, we also investigate the ef-
fects of runtime load balancing on the BLOOM
1.7b model in both full precision and int8 quan-
tized formats across three devices, including two
high-end and one low-end phone. Initially, model
partitions are unevenly distributed, causing the low-
end phone to be overloaded. Upon activating the
load balancer after processing two samples and
continuing with ten more, we observe a significant
improvement in processing efficiency.
Figure 5 illustrates that enabling load balancing
from the second sample noticeably decreases infer-
ence latency. For the full precision model, enabling
load balancing cuts down latency from 4.624 sec-
onds to 3.587 seconds per token, showcasing an
improvement by reallocating 8 sub-modules and
overcoming a notable overhead from reloading ses-
sions onto alternate devices.
For the quantized model, activating the load bal-
ancer reduces latency from 2.756 to 2.087 seconds
per token, with a less substantial reloading over-
head compared to the full precision model due to
the smaller size of quantized sub-modules.
Inference times for the quantized model prove to
be more stable across generation tasks than for the
full precision model.
Overall, the implementation of runtime load bal-
ancing results in an average improvement of 30%
in acceleration, effectively demonstrating the ben-
efits of dynamically adjusting workloads among
devices with varying processing capabilities.

4.3 Sequential and Residual Communication

To demonstrate the efficacy of residual over sequen-
tial communication, we conducted experiments
measuring communication times, employing the
Network Temporal Protocol (NTP) for precise syn-
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chronization and utilizing the system clock for
nanosecond accuracy in runtime measurement.

By comparing these methods using three low-

Hop1 Hop2 Hop3 Total Res Hop
Seq 0.2489s 0.2580s 0.0770s 0.5839s ——
Res 0.2347s 0.2463s 0.0779s 0.5589s 0.0111s

Table 4: Residual and Sequential Communication Per-
formance

end smartphones and the quantized BLOOM 3b
model, recording average delays from ten trials.
The results, detailed in Table 4 and Figure 4,
show that sequential communication incurs higher
delays due to multiple transmission steps and the
need for activations to be processed before residual
data can be sent. Sequential transmission involved
hops with an average data size of 1.5 MB, while
residual communication transmitted about 15 KB
directly, allowing it to operate in parallel and more
efficiently than the sequential method. Note that
as the number of residual connections and the size
of the model increase, the saved time will likewise
increase.

5 Discussion

A major direction for expanding LinguaLinked in-
volves adapting it for distributed fine-tuning on mo-
bile devices, allowing model customization based
on user interactions and local data, paving the
way for personalized AI applications while pre-
serving data privacy. We also envision extending
LinguaLinked to handle multi-modality models,
enhancing its applicability in diverse real-world
scenarios.

To further improve LinguaLinked, we envision
more advanced model computational graph parti-
tioning strategies involving further optimizations
on task divisions better aligned with device capa-
bilities. Moreover, integrating advanced load bal-
ancing algorithms that account for not only com-
putational capabilities but also battery life and user
engagement patterns will ensure a holistic approach
to distributed computing on mobile platforms.

Finally, the implications of this research are sig-
nificant for AI policy, as it challenges the prevail-
ing reliance on cloud infrastructure and centralized
data centers for AI deployment. By demonstrating
the potential to deploy AI systems from a network
of mobile devices, our work suggests a paradigm
where the ’means of production’ for AI can be
decentralized and localized. This model of deploy-

ment could lead to a future where AI systems are
both operated and fine-tuned locally using a diverse
array of small devices. Such a setup could make AI
systems more difficult to regulate, as the distribu-
tion and localization of AI technologies allow for
widespread, generic hardware use.

6 Conclusion

In this work, we introduce LinguaLinked, a sys-
tem for decentralized LLM inference on mobile de-
vices. To the best of our knowledge, LinguaLinked
is the first work that exploits deploying LLM dis-
tributively on mobile devices. LinguaLinked im-
plemented optimized model assignment strategy,
network communication and runtime load balanc-
ing mechanism to accelerate the distributed LLM
inference on mobile devices. This approach tackles
the complexities of deploying both full precision
and quantized LLMs of various sizes within mobile
computing environments.

7 Limitations

Our results demonstrate promising advancements
in distributed LLM inference on mobile devices
but also underscore several limitations. Key among
these are the overheads from load balancing and
constraints of current hardware and software frame-
works. As tools like ONNXRuntime evolve to sup-
port GPU acceleration, we expect significant en-
hancements in LinguaLinked’s performance. Fur-
thermore, exploring advanced quantization tech-
niques and communication mechanisms could lead
to more efficient distributed inference systems.

At the same time, a critical focus for future
iterations of LinguaLinked is energy efficiency.
We find that the continuous intensive inference
tasks, especially with full-precision models, sig-
nificantly drain battery life and cause overheating,
leading to performance degradation. To address
this, we aim to incorporate energy-efficient comput-
ing strategies that balance computational demands
with energy consumption and thermal management.
This could include adaptive algorithms to modulate
computational load based on the device’s energy
state, and hardware-specific optimizations leverag-
ing low-power processing cores for specific tasks.

Furthermore, when designing our system with
privacy in mind, we primarily contrast it with tra-
ditional server-based inference systems, operating
under the assumption that all inference tasks are
conducted locally on ’trusted’ mobile devices. This
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setup should inherently protect user privacy. How-
ever, we recognize potential scenarios where this
assumption may fail. For instance, if a device be-
comes compromised or if unauthorized access is
obtained, sensitive local data could be at risk. More-
over, our trust model does not address potential
side-channel attacks, which could allow attackers
to derive sensitive information from the model’s
intermediate activations. These vulnerabilities un-
derscore the need for more comprehensive, multi-
layered security protocols that extend beyond sim-
ple device trust, aiming to robustly safeguard user
data in diverse and adversarial environments.

Finally, due to the absence of standardized evalu-
ation benchmarks for distributed LLM inference on
mobile devices, we have created our own baselines
to assess our system’s performance. However, the
lack of universally accepted benchmarks and previ-
ous research in this domain complicates the task of
conducting thorough comparisons for future work.
It is crucial for future research to focus on devel-
oping standardized benchmarks in this field. Es-
tablishing such benchmarks would facilitate more
uniform comparisons between different systems,
enhance the clarity of potential improvements, and
identify the most effective strategies for distributed
LLM inference on mobile platforms.
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