
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), pages 136–151
August 11-16, 2024 ©2024 Association for Computational Linguistics

LOCALRQA: From Generating Data to Locally Training, Testing, and
Deploying Retrieval-Augmented QA Systems

Xiao Yu*, Yunan Lu∗, Zhou Yu
Department of Computer Science, Columbia University, New York, NY

{xy2437, yl4021, zy2461}@columbia.edu

Abstract
Retrieval-augmented question-answering sys-
tems combine retrieval techniques with large
language models to provide answers that are
more accurate and informative. Many existing
toolkits allow users to quickly build such sys-
tems using off-the-shelf models, but they fall
short in supporting researchers and developers
to customize the model training, testing, and de-
ployment process. We propose LOCALRQA1,
an open-source toolkit that features a wide se-
lection of model training algorithms, evaluation
methods, and deployment tools curated from
the latest research. As a showcase, we build QA
systems using online documentation obtained
from Databricks and Faire’s websites. We find
7B-models trained and deployed using LOCAL-
RQA reach a similar performance compared to
using OpenAI’s text-ada-002 and GPT-4-turbo.

1 Introduction

Retrieval-augmented question-answering (RQA)
systems enhance large language models (LLMs)
by enabling them to search through a large col-
lection of documents before answering a user’s
query. These systems have shown improved per-
formance in providing more accurate, informative,
and factually grounded answers compared to us-
ing LLMs alone (Guu et al., 2020; Izacard et al.,
2022; Shi et al., 2023). Many existing toolkits,
such as LlamaIndex (Liu, 2022) and LangChain
(Chase, 2022), allow users to quickly build such
an RQA system using off-the-shelf models such as
text-ada-002 (OpenAI, 2022a) and GPT-4 (OpenAI,
2023). However, developers often find it costly to
rely on these paid services, but also face difficul-
ties to train/deploy smaller models with competi-
tive performance. Researchers face even greater
hurdles: they need to modify models/training al-
gorithms, compare against prior work, and obtain

* denotes equal contribution.
1GitHub: https://github.com/jasonyux/LocalRQA,

YouTube: https://youtu.be/MEtFIcw7clY.

documents

generator

chat

human eval

serving evaluation

retriever

trainers

Tr
ai

ni
ng

QA generation

Figure 1: Given a collection of documents, LOCALRQA
provides tools to generate RQA data, to train and test
open-source models, and to deploy the RQA system for
human evaluation or as an interactive chatbot.

human evaluation for their RQA system — all of
which are largely neglected by existing toolkits.

We introduce LOCALRQA, an open-source
toolkit that enables researchers and developers to
easily train, test, and deploy RQA systems using
techniques from recent research. Given a collec-
tion of documents, users can use pre-built pipelines
in our framework to quickly assemble an RQA
system using the best off-the-shelf models. Alter-
natively, users can create their own training data,
train open-source models using algorithms from lat-
est research, and deploy a local RQA system that
achieves similar performance compared to using
paid services such as OpenAI’s models.

To our knowledge, LOCALRQA is the first
toolkit that provides a wide range of training al-
gorithms and automatic evaluation metrics curated
from the latest research (see Table 1 and Ap-
pendix A). This not only helps researchers to de-
velop new RQA approaches and compare with
prior work, but also helps developers to train and
deploy more cost-effective models. Specifically,
we provide many training algorithms for retrievers
such as: distilling from an encoder-decoder’s cross-
attention scores (Izacard and Grave, 2020a), distill-
ing from a decoder’s language modeling probability
(Shi et al., 2023), and using contrastive learning

136

https://github.com/jasonyux/LocalRQA
https://youtu.be/MEtFIcw7clY

Easy Assembly Flexible Training Automatic Evaluation Local Deployment

Haystack (Pietsch et al., 2019) ✓ ✗ ✓ ✗

LangChain (Chase, 2022) ✓ ✗ ✗ ✗

LLamaIndex (Liu, 2022) ✓ ✗ ✓ ✗

FastRAG (Izsak et al., 2023) ✓ ✗ ✗ ✗

LOCALRQA (Ours) ✓ ✓ ✓ ✓

Table 1: Comparing LOCALRQA to related toolkits. Easy Assembly indicates that there are ready-made pipelines
to allow users to easily assemble an RQA system; Flexible Training indicates if there is more than one training
algorithm for retrievers/generators; Automatic Evaluation indicates if the toolkit provides automatic evaluation
methods; and Local Deployment indicates if the toolkit supports methods to locally deploy their RQA system and
allow external users to interact with them through a web interface.

approaches (Karpukhin et al., 2020; Wang et al.,
2022, 2023). We also provide training algorithms
for generative models such as: supervised fine-
tuning using gold question-passage-answer pairs
(Lewis et al., 2021), fine-tuning with a frozen re-
triever (Guu et al., 2020), and fusion-in-decoder
training (Izacard and Grave, 2020b; Izacard et al.,
2022). Then, to automatically evaluate the sys-
tem’s performance, we implement metrics used in
retrieval and question-answering domains, such as
Recall@k, ROUGE (Lin, 2004), and GPT-4 Eval
(Zheng et al., 2023a; Liu et al., 2023).

Furthermore, LOCALRQA provides two deploy-
ment methods to support researchers and develop-
ers to obtain human feedback for their RQA sys-
tems. First, we offer a static evaluation webpage
where users can directly assess the system’s per-
formance using a test dataset. This can be used
to complement automatic evaluation. Next, we of-
fer an interactive chat webpage where users can
chat with the system and rate the helpfulness and
correctness of each generated response. These rat-
ings can be used to further improve models’ ca-
pability using techniques such as Reinforcement
Learning from Human Feedback (RLHF, Ouyang
et al. (2022)). To reduce latency and improve user
experiences, our toolkit also integrates acceleration
frameworks used to speed up document retrieval
(Johnson et al., 2019) and LLM inference (Hug-
gingface, 2023; Kwon et al., 2023; Zheng et al.,
2023b). Together with our large collection of train-
ing algorithms and automatic metrics, LOCALRQA
opens the possibility of future work to easily train,
test, and deploy novel RQA approaches.

2 Background

RQA systems combine retrievers with powerful
LLMs to provide answers that are more accurate
and informative. Given a user query, a retriever first

selects k most relevant passages from a collection
of documents. Then, a generative model produces
an answer conditioned on the user’s query, selected
passages, and a chat history. Popular methods to
achieve this include concatenating all inputs into
a single string and generating with decoder-only
models (Chase, 2022; Ram et al., 2023), or process-
ing the k passages in parallel and generating with
fusion-in-decoder techniques (Izacard and Grave,
2020b; Izacard et al., 2022).

3 LOCALRQA

We introduce LOCALRQA, a Python-based toolkit
designed to help users flexibly train, test, and de-
ploy RQA systems. As shown in Figure 2, our
toolkits employ a modular design to allow users to:
generate and prepare RQA data (Section 3.1), train
retrieval and generative models (Section 3.2 and
Section 3.3), build an RQA system (Section 3.4),
evaluate the system (Section 3.5), and finally de-
ploy the system (Section 3.6).

3.1 Prepare Data
A prerequisite for training and evaluating RQA sys-
tems is a dataset of (question, answer, passage)
pairs, denoted as ⟨q, a, p⟩. However, full ⟨q, a, p⟩
pairs may not always be available in practice. To
cater to various scenarios, our toolkit provides: 1)
scripts to generate ⟨q, a, p⟩ pairs from a collection
of documents, and 2) scripts to convert existing QA
datasets into ⟨q, a, p⟩ pairs. These scripts can be
useful for researchers to create RQA datasets for
new domains, or for developers to prepare train-
ing/testing data for specific applications.

Generate RQA Data Given a collection of docu-
ments, our scripts first use a sampling algorithm to
select a set of gold (and hard negative) documents,
and then use LLMs to generate questions and an-
swers from each gold document (see Appendix C

137

- LangChain
- LlamaIndex

- NQ, TriviaQA...
- Data Generation

- SFT w/ ground-truth
- Train w/ retriever
- Fusion-in-Decoder

- Contrastive learning
- Distillation from LM, ...

- Recall@k
- ROUGE, GPT-4 Eval,
- Inference speed

- Recall@k
- Search speed

- FAISS
- TGI, vLLM, ...

- RQA chatbot
- Human Eval

a Prepare b Train d Evaluate e Deploy

 LocalRQA

RQA Data

Data Connectors

Retriever Trainers

Generator Trainers

Retrieval Eval

c Assemble

RQA Pipeline

Generator
E2E Eval

Acceleration

Interactive UI

Retriever

RQA Pipeline

(post-process)

+

=

+

Figure 2: An overview of the LOCALRQA toolkit, which supports the entire pipeline of developing an RQA system:
from data processing to training, testing, and serving an RQA system. Different from many existing toolkits, we
feature a wide selection of training, testing, and serving methods curated from the latest RQA research.

for more details). These scripts can be used to
create ⟨q, a, p⟩ pairs not only from a collection of
documents, but also from a collection of ⟨q, p⟩ pairs
(e.g., from information retrieval datasets).

Convert from Existing Datasets Many existing
QA datasets include supporting passages for each
gold question-answer pair. We provide scripts to
download and reformat these datasets into ⟨q, a, p⟩
pairs compatible with the rest of our toolkit. This
includes popular datasets such as Natural Questions
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), and MS-Marco (Bajaj et al., 2018). These
scripts allow researchers to easily compare against
prior work that also uses these datasets.

3.2 Train Retrievers
Given a dataset of ⟨q, a, p⟩ pairs, users can train a
retriever to select the most relevant passages for
a given query. Prior work shows that using better
retrievers often leads to more performant RQA sys-
tems (Karpukhin et al., 2020), and that fine-tuning
them with task-specific data can greatly improve
their performance (Izacard et al., 2021; Wang et al.,
2022). To this end, LOCALRQA implements: 1)
lexical-based and embedding-based methods, and
2) various trainers that finetune open-source em-
bedding models to achieve a better performance.

Supported Models For lexical-based methods,
we support BM25 (Trotman et al., 2014). For
embedding-based methods, we support all hugging-
face (Wolf et al., 2020) encoder models such as
Contriever (Izacard et al., 2021), E5 (Wang et al.,
2022), and BGE (Xiao et al., 2023).

Trainers We implement trainers for encoders
that distill from a down-stream LM, and trainers

that perform contrastive learning using a dataset
of ⟨q, p⟩ pairs (and optionally hard negative exam-
ples). This includes trainers that: (1) distill from
cross-attention scores of an encoder-decoder model
(Izacard and Grave, 2020a); (2) distill from a de-
coder model’s LM probability (Shi et al., 2023);
and (3) train using contrastive learning (Izacard
et al., 2021; Wang et al., 2022, 2023)). We provide
easy-to-use Python scripts for each trainer, where
all training hyperparameters can be specified in a
single command line.

3.3 Train Generative Models

Besides improving retrievers, using better gener-
ative models can more effectively incorporate re-
trieved passages. To this end, our toolkit provides:
1) direct support for many open-source generative
models, and 2) various training algorithms to fine-
tune these models to improve their task-specific
performance.

Supported Models We support all huggingface
(Wolf et al., 2020) decoder-only models such as
LLaMA-2 (Touvron et al., 2023), and all T5 based
encoder-decoder models such as FLAN-T5 (Chung
et al., 2022). The former is compatible with our
supervised trainers, and the latter is compatible
with our fusion-in-decoder trainers.

Trainers We implement supervised fine-tuning
trainers that concatenate input queries with ground-
truth or retrieved passages, and fusion-in-decoder
trainers that process retrieved passages in parallel.
This includes trainers that: (1) supervised finetune
a decoder using ground-truth ⟨q, a, p⟩ pairs (Lewis
et al., 2021); (2) supervised finetune a decoder with
a frozen retriever (Guu et al., 2020); and (3) train

138

an encoder-decoder with fusion-in-decoder training
(Izacard and Grave, 2020b; Izacard et al., 2022).
We provide easy-to-use Python scripts for each
trainer, where all training hyperparameters can be
specified in a single command line.

3.4 Assemble an RQA System
Given a retriever and a generative model, users can
now assemble an end-to-end RQA system. Similar
to frameworks such as LlamaIndex, LOCALRQA
uses a modular design to support arbitrary combi-
nations of retrievers, generative models, as well
as user-defined modules (see ?? for more details),
such as safety filters and decision planners (Kim
et al., 2023; Peng et al., 2023). For a quick start,
users can use ready-made RQA pipelines to assem-
ble a system within five lines of code (Listing 1).
These built-in pipelines support: retrievers avail-
able on huggingface, retrievers trained from Sec-
tion 3.2, BM25 (Robertson and Zaragoza, 2009),
and OpenAI embedding models (OpenAI, 2022a);
generative models available on huggingface, mod-
els trained from Section 3.3, and OpenAI models
such as ChatGPT (OpenAI, 2022b).

Alternatively, a user can also customize an RQA
pipeline by implementing new/modifying exist-
ing modules. As an example, we provide an im-
plementation of a (dummy) safety filter added to
the SimpleRQA pipeline in Listing 2 in Appendix.
In Listing 2, the DontKnowSafetyFilter module
will ignore the answers generated by the previous
components of the SimpleRQA modules, and al-
ways return “I don’t know.” as an answer.

In general, users can easily add new modules to
an existing pipeline by: 1) implementing a class
that inherits from Component, which requires defin-
ing a run method and run_input_keys, and 2)
append the module to the components field. Alter-
atively, researchers can create a fully customized
pipeline by inheriting from the RQAPipeline class.
For more documentation and examples, please refer
to our GitHub pages.

3.5 Evaluate an RQA System
Given an RQA system, LOCALRQA implements
many automatic evaluation metrics to help users
measure their system’s performance. This can
be used by researchers to compare their system’s
performance against prior work, or by develop-
ers to find the most cost-effective models/training
methods suitable for their applications. We pro-
vide scripts to automatically evaluate the perfor-

Listing 1 Assembling an RQA system.
1 from local_rqa import ...
2 ### pre-built RQA Pipeline
3 rqa = SimpleRQA.from_scratch(
4 database_path="db_path/",
5 embedding_model_name_or_path="...",
6 qa_model_name_or_path="...",
7)
8 response = rqa.qa(
9 batch_questions=['What is ...?'],

10 batch_dialogue_session=[
11 DialogueSession()
12],
13)

mance of any RQA system that inherits from the
RQAPipeline class. These scripts will also save
the evaluation results in a JSONL file, which can
be used to further obtain human evaluation using
our serving methods (see Section 3.6). We describe
the supported automatic metrics below.

Retrieval To test the performance of a retriever,
we provide an evaluation script that measures: (1)
Recall@k and nDCG@k score, and (2) runtime.
Recall and nDCG scores are often used in informa-
tion retrieval benchmarks such as BEIR (Thakur
et al., 2021) and MTEB (Muennighoff et al., 2022).
Runtime is important for real-world applications.

End-to-End To test the end-to-end performance
of an RQA system, we provide an automatic evalua-
tion script that measures: (1) retrieval performance
such as Recall@k; (2) generation performance such
as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004) and GPT-4 Eval (Zheng et al., 2023a; Liu
et al., 2023); and (3) end-to-end metrics such as
runtime. BLEU and ROUGE scores are often used
in open-ended generation tasks such as machine
translation and summarization. GPT-4 Eval is a re-
cent method using GPT-4 (OpenAI, 2023) to evalu-
ate the quality of model-generated responses (Liu
et al., 2023; Zheng et al., 2023a).

3.6 Deploy an RQA System
Finally, researchers and developers may want to
showcase their RQA systems to the public, or to
collect human feedback to further improve their
systems using techniques such as RLHF (Ouyang
et al., 2022). We provide: (1) support for efficient
retrieval and LLM inference acceleration methods
to reduce latency during interactive chats, and (2)

139

> python local_rqa/serve/gradio_web_server.py \
��model_id simple_rqa \
��example "What is xxx?"

3 launch UI

chat logs5

analysis/RLHF

"state": {"history":}, "model": "simple_rqa", "timestamp": "...", ...

> python local_rqa/serve/controller.py

1 launch controller

> python local_rqa/serve/model_worker.py \
��document_path data/document_db.pkl \
��index_path data/document_index \
��embedding_model_name_or_path xxx \
��qa_model_name_or_path yyy \
��model_id simple_rqa

2 launch model server

web UI4

retrieved
documents

a

chat windowb

chat input boxc

rating model's responsed

"state": {"history":}, "model": "simple_rqa", "timestamp": "...", ...

"state": {"history":}, "model": "simple_rqa", "timestamp": "...", ...

Figure 3: Researchers can launch an interactive chat page with LOCALRQA using three commands. LOCALRQA
uses a model controller back-end (Zheng et al., 2023a) to handle load-balancing. Chat histories are automatically
saved for researchers to conduct further analysis or model training.

implementations to easily launch an interactive chat
webpage or a static evaluation webpage, given a
user-built RQA system.

Acceleration Frameworks To speed up docu-
ment retrieval, we support FAISS (Johnson et al.,
2019), a library for efficient similarity search across
billion-scale document datasets. To speed up LLM
inference, we support Text Generation Inference
(TGI, Huggingface (2023)), vLLM (Kwon et al.,
2023), and SGLang (Zheng et al., 2023b). These in-
ference acceleration frameworks support many de-
coder architectures such as LLaMA-2 and encoder-
decoder architectures such as FLAN-T5.

Interactive UIs We provide (1) a static evalu-
ation webpage where users directly evaluate the
quality of pre-generated responses (e.g., computed
from a test set); and (2) an interactive chat web-
page where users can chat with a system and rate
the correctness and helpfulness of each response.
Both web interfaces can be easily launched with
our toolkits, which not only support a variety of
models (see Section 3.4) but also integrate with
acceleration frameworks mentioned in the previ-
ous paragraph. See Figure A1 for an example of
the human evaluation page, and Figure 3 for the
interactive chat page.

4 Applications

To showcase our toolkit, we built two RQA systems
using data scraped from Databricks and Faire’s on-
line documentations (under consent). Databricks
provides the world’s first data intelligence platform
powered by generative AI, providing products that
facilitate building, sharing, and maintaining data at
scale. Faire is an online wholesale marketplace that
connects independent retailers and brands around
the world. Since the documents we obtained in-
clude many company/product-specific details, we
believe this is an ideal use case for RQA systems.

First, we describe the documentation datasets
we collected in Section 4.1. Then, we describe
our model training, baselines, and evaluation pro-
cedures in Section 4.2, Section 4.3, and Section 4.4.
Finally, we present our main results in Section 4.5.

4.1 Datasets

Databricks We use data provided by Databricks’
technical team, which includes documentations
such as API references and technical tutorials from
docs.databricks.com and kb.databricks.com.
After applying our data processing scripts, we ob-
tain a dataset of 11,136 passages with a maximum
length of 400 tokens. See Appendix E for examples
of preprocessed documents.

140

docs.databricks.com
kb.databricks.com

Retriever Generator
Databricks Faire

Retrieval Generation Retrieval Generation

Recall@1 Recall@4 ROUGE-L GPT4-Acc Recall@1 Recall@4 ROUGE-L GPT4-Acc

text-ada-002 GPT-3.5-turbo 47.36 67.11 46.47 86.84 44.00 76.00 35.59 81.33
text-ada-002 GPT-4-turbo 47.36 67.11 36.62 89.47 44.00 76.00 32.55 86.67

Contriever (DCA) FastChat-T5-3B (FiD) 34.21 50.00 20.20 19.73 26.67 65.33 23.64 44.00
Contriever (RPG) StableLM-3B (SFT) 28.94 53.94 43.30 52.63 34.66 68.00 47.53 68.00
Contriever (CTL) StableLM-3B (SFT) 28.94 60.52 45.86 61.33 42.66 69.33 46.27 72.00

Contriever (CTL) Vicuna-7B (SFT) 28.94 60.52 42.95 72.37 42.66 69.33 45.72 75.68
E5 (CTL) Vicuna-7B (SFT) 34.21 77.63 45.35 73.68 40.00 76.00 46.16 76.00
Contriever (CTL) Vicuna-7B (SwR) 28.94 60.52 44.10 60.53 42.66 69.33 48.72 76.00
E5 (CTL) Vicuna-7B (SwR) 34.21 77.63 50.02 69.33 40.00 76.00 47.98 72.00

E5 (CTL) Starling-7B (SFT) 34.21 77.63 42.06 72.36 40.00 76.00 46.32 78.67
E5 (CTL) Mistral-7B (SFT) 34.21 77.63 51.56 80.26 40.00 76.00 49.63 77.33
BGE (CTL) Starling-7B (SFT) 39.47 77.63 51.67 76.32 37.33 77.33 50.64 86.67
BGE (CTL) Mistral-7B (SFT) 39.47 77.63 49.49 77.63 37.33 77.33 51.18 84.00

Table 2: Retrieval-augmented QA systems locally trained and tested using the LOCALRQA framework. Training
algorithm used is denoted as “model(trainer name)”. All generation results use the top-4 passages retrieved. GPT4-
Acc is GPT-4 evaluation of whether the generated answer is correct. Best is highlighted in bold, and runner-up is
highlighted in gray.

Faire We first crawled guides and FAQ docu-
ments from faire.com/support, and then pro-
cessed the data to only keep raw texts (e.g., re-
moving image hyperlinks). Similar to Databricks,
we then apply the data processing scripts and ob-
tain a dataset of 1,758 passages. See Appendix F
for examples of preprocessed documents.

Since both datasets only contain document pas-
sages p, we use LOCALRQA to generate ⟨q, a, p⟩
pairs for training and testing. See Appendix H for
more details.

4.2 Models and Training Algorithms

LOCALRQA supports a large variety of models and
training algorithms. To demonstrate the flexibility
of our toolkit, we experiment with all available
trainers and the most capable open-source models.

Retrievers We consider the best open-source en-
coder models according to the MTEB benchmark
(Muennighoff et al., 2022) as of Jan 24, 2024. How-
ever, as these models vary greatly in capability
and size, for simplicity we use the best models of
similar sizes. This includes E5-base (Wang et al.,
2022), Contriever-base (Izacard et al., 2021), and
BGE-base (Xiao et al., 2023). We also consider
all trainers in our toolkit including: (1) distilling
from cross-attention scores, denoted as DCA; (2)
distilling LM probability, denoted as RPG; and (3)
training with contrastive learning, denoted as CTL.

Generators We consider the best generator mod-
els according to the Chatbot Arena leaderboard
(Zheng et al., 2023a) as of Jan 24, 2024. Since
training LLMs is time and resource intensive, we

focus on the best open-source models up to 7B
parameters. This includes encoder-decoder mod-
els such as FastChat-T5-3B (Zheng et al., 2023a;
Chung et al., 2022), and decoder-only models such
as: StableLM-3B (Tow et al., 2023), Vicuna-7B
(Chiang et al., 2023), Starling-7B (Zhu et al., 2023),
and Mistral-7B (Jiang et al., 2023). We also con-
sider all trainers in our toolkit including: (1) super-
vised fine-tuning, denoted as SFT; (2) supervised
fine-tuning with a frozen retriever, denoted as SwR;
and (3) fusion-in-decoder training, denoted as FiD.

4.3 Baselines

Since LOCALRQA features developing new RQA
systems locally, we compare against the most pow-
erful models accessible remotely. This include us-
ing text-ada-002 (OpenAI, 2022a) as the retriever,
and prompting GPT-3.5-turbo (ChatGPT) and GPT-
4-turbo as the generative models.

4.4 Metrics

We present a subset of automatic evaluation metrics
from LOCALRQA, and also include human evalua-
tions on the best-performing models using UIs from
Section 3.6. To measure retrievers’ performance,
we report Recall@1 and Recall@4 which are com-
monly used in information retrieval (Thakur et al.,
2021; Muennighoff et al., 2022). To measure the
final generation performance, we report ROUGE-L
(Lin, 2004) and GPT-4 Eval (Zheng et al., 2023a;
Liu et al., 2023), which are used in open-domain
generation tasks (Zheng et al., 2023a). For the best
models, we additionally perform human evaluation
and report the accuracy of the generated answers.

141

faire.com/support

Retriever Generator
Databricks Faire
Human-Acc Human-Acc

text-ada-002 GPT-3.5-turbo 78.00 86.00
text-ada-002 GPT-4-turbo 84.00 88.00

E5 (CTL) Mistral-7B (SFT) 78.00 90.00
BGE (CTL) Starling-7B (SFT) 80.00 88.00

Table 3: Comparing the best LOCALRQA-trained mod-
els in Table 2 against ChatGPT and GPT-4. Human-Acc
is authors’ judgement of whether the final answer is
correct. We use the first 50 test samples for evaluation.

4.5 Main Results

Table 2 presents our non-exhaustive combination of
retrievers and generators trained and tested using
LOCALRQA. First, we find contrastive learning
(CTL) most effective for training retrievers. We
believe this is because CTL was also used to pre-
train all the encoders we investigated (Izacard et al.,
2021; Wang et al., 2022; Xiao et al., 2023). We
also find that simple supervised fine-tuning (SFT)
with gold ⟨q, a, p⟩ pairs is suitable for generators,
given the answers in the training data are generated
only using the gold passage.

Next, we find using more powerful retriever mod-
els (BGE-base and E5-base) and generator models
(Mistral-7B and Starling-7B) improves Recall@4
and GPT4-Acc score. This is understandable since
these models have a better base performance. We
also find that ROUGE-L does not correlate well
with GPT4-Acc (or our human evaluation). This
is consistent with Cohan and Goharian (2016);
Nekvinda and Dušek (2021), since open-ended gen-
erations are inherently difficult to evaluate using
automatic metrics.

Lastly, we use the best models from Table 2 ac-
cording to GPT4-Acc scores, and further validate
their performance with our human evaluation UI
(see Section 3.6). In Table 3, we find the best local
models reach a similar performance as the Ope-
nAI’s baselines, despite being only 7B in size (see
Appendix G for some examples). These results un-
derscores the effectiveness of our toolkit in training
and developing cost-effective RQA systems.

5 Conclusion

We present LOCALRQA, a Python-based toolkit
designed to help users develop novel retrieval-
augemented QA systems. Different from existing
frameworks such as LlamaIndex and LangChain,
our toolkit features a wide collection of train-
ing algorithms, evaluation metrics, and deploy-

ment methods to help users quickly develop cost-
effective RQA systems. Strong results using mod-
els and training algorithms from recent research
pave the way for future work to explore RQA meth-
ods in both practical and academic settings.

6 Limitations and Future Work

Model Size We performed all of our experiments
using a single A100 80G GPU, and investigated
a large combination of model choices and train-
ing methods. Therefore, we considered the best-
performing models up to 7B parameters due to time
and resource concerns. We believe experimenting
with larger, more capable models could further im-
prove the systems’ performance, and we leave this
for future work.

More Training Algorithms Besides providing
tools to help users easily build an RQA system,
LOCALRQA features a collection of training al-
gorithms and evaluation methods curated from
latest research. However, this collection is non-
exhaustive (Zhong et al., 2022; Asai et al., 2022;
Min et al., 2023; Asai et al., 2023; Ram et al., 2023).
We commit to add support for more models, train-
ing algorithms, and testing methods to reflect on-
going advancements in RQA research.

Compute Requirement LOCALRQA features
methods to help users develop novel RQA systems
locally. Compared with using paid services such as
OpenAI’s text-ada-002 and GPT-4, this approach
is less expensive but requires access to compute re-
sources (e.g., GPUs). To make our toolkit more ac-
cessible, we not only support open-source models
from huggingface of various sizes, but also support
using “remote” models such as OpenAI’s ChatGPT
and GPT-4.

7 Ethical Considerations

Our work describes a toolkit that can be used to
help researchers develop new RQA systems. LO-
CALRQA offers a suite of tools, starting from data
generation to locally training, testing, and serv-
ing an RQA system. While most toolkits are not
designed for unethical usage, there is often poten-
tial for abuse in their applications. In our demo
(Section 4), we apply our toolkit to train RQA sys-
tems based on documentations obtained from two
companies’ website, Databricks and Faire. How-
ever, since our toolkit can be used with any kind of
data, it is possible to use it for unethical tasks, such

142

as scamming and generating harmful responses
(Gehman et al., 2020; Welbl et al., 2021). We do
not condone the use of LOCALRQA for any unlaw-
ful or morally unjust purposes.

8 Acknowledgement

We thank Xiangrui Meng and Quinn Leng from
Databricks, and Wenhao Liu from Faire for their
valuable support and discussions.

References
Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan,

Abdulrahman Alfozan, and James Zou. 2019. Gradio:
Hassle-free sharing and testing of ML models in the
wild.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen tau Yih. 2022. Task-aware retrieval
with instructions.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to re-
trieve, generate, and critique through self-reflection.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. Ms marco: A human gener-
ated machine reading comprehension dataset.

Harrison Chase. 2022. LangChain.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Arman Cohan and Nazli Goharian. 2016. Revisiting
summarization evaluation for scientific articles. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 806–813, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training.

Huggingface. 2023. Large language model text genera-
tion inference.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Gautier Izacard and Edouard Grave. 2020a. Distilling
knowledge from reader to retriever for question an-
swering.

Gautier Izacard and Edouard Grave. 2020b. Leveraging
passage retrieval with generative models for open
domain question answering.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022. Atlas: Few-shot learning with retrieval
augmented language models.

Peter Izsak, Moshe Berchansky, Daniel Fleischer, and
Ronen Laperdon. 2023. fastRAG: Efficient Retrieval
Augmentation and Generation Framework.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen tau Yih. 2020. Dense passage retrieval for open-
domain question answering.

Jinhwa Kim, Ali Derakhshan, and Ian G. Harris. 2023.
Robust safety classifier for large language models:
Adversarial prompt shield. ArXiv, abs/2311.00172.

143

https://doi.org/10.48550/arXiv.1906.02569
https://doi.org/10.48550/arXiv.1906.02569
https://doi.org/10.48550/arXiv.1906.02569
http://arxiv.org/abs/2211.09260
http://arxiv.org/abs/2211.09260
http://arxiv.org/abs/2310.11511
http://arxiv.org/abs/2310.11511
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://github.com/langchain-ai/langchain
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://aclanthology.org/L16-1130
https://aclanthology.org/L16-1130
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
http://arxiv.org/abs/2002.08909
http://arxiv.org/abs/2002.08909
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/2007.0128
https://arxiv.org/abs/2007.0128
https://arxiv.org/abs/2007.0128
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
https://github.com/IntelLabs/fastrag
https://github.com/IntelLabs/fastrag
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906
https://api.semanticscholar.org/CorpusID:264833136
https://api.semanticscholar.org/CorpusID:264833136

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Jerry Liu. 2022. LlamaIndex.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Sewon Min, Weijia Shi, Mike Lewis, Xilun Chen, Wen
tau Yih, Hannaneh Hajishirzi, and Luke Zettlemoyer.
2023. Nonparametric masked language modeling.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Tomáš Nekvinda and Ondřej Dušek. 2021. Shades of
bleu, flavours of success: The case of multiwoz.

OpenAI. 2022a. New and improved embedding model.

OpenAI. 2022b. OpenAI: Introducing ChatGPT.

OpenAI. 2023. GPT-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back.

Malte Pietsch, Timo Möller, Bogdan Kostic, Julian
Risch, Massimiliano Pippi, Mayank Jobanputra, Sara
Zanzottera, Silvano Cerza, Vladimir Blagojevic,
Thomas Stadelmann, Tanay Soni, and Sebastian Lee.
2019. Haystack: the end-to-end NLP framework for
pragmatic builders.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen tau Yih. 2023. Replug: Retrieval-augmented
black-box language models.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

144

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.5281/zenodo.1234
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
http://arxiv.org/abs/2212.01349
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
http://arxiv.org/abs/2106.05555
http://arxiv.org/abs/2106.05555
https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/chatgpt
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
https://github.com/deepset-ai/haystack
https://github.com/deepset-ai/haystack
http://arxiv.org/abs/2302.00083
http://arxiv.org/abs/2302.00083
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2301.12652
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Jonathan Tow, Marco Bellagente, Dakota Mahan, and
Carlos Riquelme. 2023. Stablelm 3b 4e1t.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 19th Australasian
Document Computing Symposium, ADCS ’14, page
58–65, New York, NY, USA. Association for Com-
puting Machinery.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2023. SimLM: Pre-training with repre-
sentation bottleneck for dense passage retrieval. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2244–2258, Toronto, Canada.
Association for Computational Linguistics.

Johannes Welbl, Amelia Glaese, Jonathan Uesato,
Sumanth Dathathri, John Mellor, Lisa Anne Hen-
dricks, Kirsty Anderson, Pushmeet Kohli, Ben Cop-
pin, and Po-Sen Huang. 2021. Challenges in detox-
ifying language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 2447–2469, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff
Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Chris-
tos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2023b. Efficiently program-
ming large language models using sglang.

Zexuan Zhong, Tao Lei, and Danqi Chen. 2022. Train-
ing language models with memory augmentation.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness and harmlessness with rlaif.

145

https://huggingface.co/stabilityai/stablelm-3b-4e1t
https://doi.org/10.1145/2682862.2682863
https://doi.org/10.1145/2682862.2682863
http://arxiv.org/abs/2212.03533
http://arxiv.org/abs/2212.03533
https://aclanthology.org/2023.acl-long.125
https://aclanthology.org/2023.acl-long.125
https://doi.org/10.18653/v1/2021.findings-emnlp.210
https://doi.org/10.18653/v1/2021.findings-emnlp.210
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2312.07104
http://arxiv.org/abs/2312.07104
http://arxiv.org/abs/2205.12674
http://arxiv.org/abs/2205.12674

A Comparison against Existing Toolkits

Many existing toolkits, such as Haystack,
LangChain, and LLamaIndex help users quickly
build an RQA system (Pietsch et al., 2019; Chase,
2022; Liu, 2022). However, these frameworks pro-
vide very little support for researchers to train, test,
and serve their RQA systems using recent advances
in retrieval-augmented QA research. For instance,
LlamaIndex only includes basic supervised finetun-
ing methods to train “LLaMA-2 for better text-to-
SQL”, or finetune “GPT-3.5-turbo to distill GPT-
4”2. We provide three different retriever training
algorithms (Section 3.2) and three different genera-
tor training algorithms (Section 3.3). We highlight
our main contributions compared to other existing
toolkits in Table 1.

B Supported Data Formats

LOCALRQA support data coming from many dif-
ferent sources, by providing integration with frame-
works such as LangChain (Chase, 2022) and Lla-
maIndex (Liu, 2022). This not only includes load-
ing data of different formats (e.g., JSON, HTML,
PDF files), but also data from different locations
(e.g., Google Drive, S3 bucket, websites and more).
For more details on data loading, please refer to
our project website.

C Details on Data Generation

LOCALRQA provides data generation scripts that
can be used to create questions q from a set of
documents p, and answers from a set of ⟨q, p⟩ pairs.
These scripts can also be easily modified to use: 1)
custom prompts to generate a question or answer,
and 2) custom filtering functions to use a subset of
the documents for question/answer generation.

Question Generation Given a set of documents,
LOCALRQA first creates a set of gold passages by
sampling. Since contrastive learning (Section 3.2)
benefits from using hard negative passages (related
passages but does not contain the answer), we also
sample nearby passages as hard negatives. This is
achieved by first organizing all passages according
to their source si (e.g., URL or title):

{ps00 , ps01 , ..., ps0n , ps10 , ps11 ...}
and then sample from {psj}j ̸=i as hard negatives
for psi . Next, an LLM of choice (e.g., ChatGPT) is

2https://docs.llamaindex.ai/en/stable/
optimizing/fine-tuning/fine-tuning.html, visited on
Feb 12, 2024.

prompted to generate k questions given a sampled
gold passage. To filter duplicate questions, LOCAL-
RQA uses ROUGE-L score (Lin, 2004) to remove
questions with high word overlap with others.

Answer Generation Given a set of ⟨q, p⟩ pairs,
LOCALRQA prompts an LLM of choice (e.g.,
GPT-4) to generate answers conditioned on the
question q and the gold passage p.

See Appendix E for examples on how to cus-
tomize the data generation scripts and Appen-
dices E and F for examples commands.

D More Details on Serving RQA Pipelines

LOCALRQA offers two serving methods: 1) an
interactive chat page where users can chat with
an RQA system while also providing ratings for
each generated response, and 2) a static evalua-
tion page where users directly evaluate the qual-
ity (e.g., accuracy, helpfulness, harmlesness) of
the pre-generated response. The front-end UIs are
created using Gradio (Abid et al., 2019), and the
model back-end (for interactive chat) is modified
from Zheng et al. (2023a). We provide an exam-
ple of using each serving method in Figure 3 and
Figure A1, respectively.

E More Details on Databricks Demo

Collected Documents We use documents pro-
vided by Databrick’s technical team, which are
already cleaned and parsed into markdown format.
We present an example in Table A1.

QA Generation We generate questions and an-
swers using the data generation scripts in LOCAL-
RQA. We first customize the prompts and filtering
functions in order to obtain high-quality questions
based mostly on technical tutorials rather than ver-
sion release notes3. This only requires:

1. creating a new python script with from
scripts.data.doc_to_q import *

2. defining a custom prompt and filter function

3. assigning filter_fn=your_filter_fn
and doc2q_prompt=YOUR_PROMPT in the
imported main function

For a complete example, please refer to our
scripts/data/doc_to_q_databricks.py. Fi-
nally, we run the above question generation script

3https://docs.databricks.com/en/release-notes/
runtime/index.html

146

https://docs.llamaindex.ai/en/stable/optimizing/fine-tuning/fine-tuning.html
https://docs.llamaindex.ai/en/stable/optimizing/fine-tuning/fine-tuning.html
https://docs.databricks.com/en/release-notes/runtime/index.html
https://docs.databricks.com/en/release-notes/runtime/index.html

Databricks Example Document Faire Example Document

content

Step 3: Configure access to the ‘default.people10m‘ table
Enable the user you created in [Step 1](#add-a-user) to access
the ‘default.people10m‘ table you created in [Step 3](#create-
a-table).
You can configure access using [Data Explorer](#data-explorer)
or [SQL editor](#sql-editor).

Data explorer
- Click the <Data Icon> **Data** in the sidebar.
- In the drop-down list at the top right
...

*Please note these settings are applicable to all
products, if you’d like to change these settings
on a product level, you can do so in the ‘Catalog
Synchronization’ tab.

API Token
This is where you will enter the API token
provided by Faire. Once entered, you will also
receive a message to confirm that the connection
is confirmed between Faire and Prestashop.

Catalog Import for Wholesale
This is ...

metadata

"source": "https://docs.databricks.com/.../admin-set-up-user
-to-query-table.html",
"seq_num": 574,
"description": "",
"text": "..."

"source": "https://www.faire.com/support/artic-
les/8726114634779",
"seq_num": 426,
"subtitle": "Prestashop Integration with Faire",
"title": "Prestashop Integration with Faire"

Table A1: Example documents collected from Databrick’s documentation pages and Faire’s support pages. Omitted
details are indicated as “...”.

Databricks Faire

Train 1,185 575
Validation 74 74
Test 76 76

Table A2: Number of ⟨q, a, p⟩ pairs used in training, val-
idation, and testing. During testing, we use all available
documents to measure an RQA system’s retrieval and
generation performance.

followed by our answer generation script to obtain
a collection of ⟨q, a, p⟩ pairs. We used ChatGPT
(OpenAI, 2022b) and GPT-4-turbo (OpenAI, 2023)
to generate questions and answers, respectively.

Model Training To show the flexibility of LO-
CALRQA training, we present at least one run of
using trainer in our main experiments Table 2. All
trainings are performed on a single A100 80G GPU.
Please refer to our GitHub for more details on train-
ing hyperparameters and other command-line ar-
guments used. We note that we did not rigorously
hyperparameter-tune each model and trainer com-
bination due to the large number of experiments
to perform. We believe results in Table 2 may be
further improved if a hyperparameter search is ran
for each method.

F More Details on Faire Demo

Collected Documents We contacted Faire’s
Sales team and crawled documents from faire.
com/support according to their suggestions. We
only kept raw texts by removing all hyperlinks for
images and other websites. We present an example
in Table A1.

QA Generation Since document data from Faire
include simpler guides and QAs compared to
Databricks, we find using the default generation
script in LOCALRQA sufficient to obtain high-
quality questions and answers. Therefore, we sim-
ply ran scripts/data/doc_to_q.py to generate
questions, and scripts/data/docq_to_a.py to
generate answers. Similar to Databricks, we used
ChatGPT (OpenAI, 2022b) and GPT-4-turbo (Ope-
nAI, 2023) to generate questions and answers, re-
spectively.

Model Training Similar to the training process
implemented in Databricks, we conduct experi-
ments across various trainers and model choices.
See Table 2 for an example. We note that we did not
rigorously hyperparameter-tune each model and
trainer combination due to the large number of
experiments to perform. We believe results in Ta-
ble 2 may be further improved if a hyperparameter
search is ran for each method.

147

faire.com/support
faire.com/support

G Example Model Answers

We provide example generated answers and re-
trieved documents in Table A3 and Table A4 for
Databricks and Faire, respectively. In Table A3, the
weaker retrievers fail to find the relevant document
given the user’s query. As a result, the generative
models also fail to provide the correct answer. This
shows the benefit of training and using more accu-
rate retrievers. In Table A4, despite all methods
retrieved the correct document, the weaker gen-
erative models failed to incorporate all relevant
information in its response. This underscores the
importance to fine-tune capable generative models
to improve the RQA system’s performance.

H Dataset Statistics

We follow the procedure outlined in Appendix E
and Appendix F to obtain ⟨q, a, p⟩ pairs from doc-
umentation data. For Databricks, we first use our
sampling algorithm to obtain 600 passages for train-
ing, and 75 for validation and for testing. For Faire,
we sampled 300 passages for training as Faire has
fewer documents, and 75 for validation and for test-
ing. We then use ChatGPT (OpenAI, 2022b) as the
LLM to generate two questions for each sampled
passage, and GPT-4-turbo (OpenAI, 2023) to gener-
ate an answer for each ⟨q, p⟩ pair (see Appendix C
for more details). This results in a training, evalua-
tion, and testing dataset with statistics reported in
Table A2.

148

Databricks RQA Example

User: How many catalogs can a metastore have in Databricks?

text-ada-002+
GPT-3.5-turbo

In Databricks, a metastore can have multiple catalogs. There is
no specific limit on the number of catalogs that can be associated with a

metastore. Catalogs are used to organize [...] Users can see all catalogs on which
they have been assigned the ‘USE CATALOG‘ data permission.

text-ada-002+
GPT-4-turbo

A metastore in Databricks can contain multiple catalogs. [...] There
isn’t a specified limit to the number of catalogs a metastore can have mentioned

in the documentation, which suggests that users can create multiple catalogs as
needed to manage their data in an organized manner [...].

E5(CTL)+
Mistral-7B(SFT)

As of August 25, 2022 , a metastore can have up to 1000 catalogs .

BGE(CTL)+
Starling-7B(SFT)

As of August 25, 2022 , a metastore in Databricks can have up to 1000 catalogs .

reference document: # <UC> GA release note
August 25, 2022
<UC> is now generally available on <Databricks>.
This article describes <UC> as of the date of its GA release. It focuses primarily
on the features and updates [...]
As of August 25, 2022

- Your <Databricks> account can have only one metastore per region
- A metastore can have up to 1000 catalogs.
- A catalog can have up to 10,000 schemas.
- A schema can have up to 10,000 tables.
For current <UC> quotas, see [...].

Table A3: Example answers generated by different RQA systems. Questions come from the test dataset for
Databricks, which is described in Appendix H. Due to space limitations, we display the most relevant document
amongst all documents retrieved. In this example, text-ada-002 failed to retrieve the most relevant documents,
causing GPT-3.5-turbo and GPT-4-turbo to produce incorrect answers.

149

Faire RQA Example

User: How should I crop my feature image for it to be approved?

text-ada-002+
GPT-3.5-turbo

To ensure that your feature image is approved, you should crop it to a square shape.
The image must fill a 1:1 ratio , meaning that the width and height should be equal.
By cropping your image to a square, you can meet this requirement and increase the
chances of approval.

text-ada-002+
GPT-4-turbo

To ensure your feature image gets approved, you should follow these cropping and
content guidelines:
1. **Square Crop Ratio**: Crop your image to a perfect square. The
aspect ratio should be 1:1 , which means [...].

2. **No Overlaid Text or Logos** : Avoid adding any text or logos [...].
3. **Simplicity is Key**: Steer clear of using collages or images that are too busy.
A simple, singular focus on the product [...].

4. **Visual Context**: Provide context by showing the product in use or in a
setting where it is naturally found [...].
5. **Avoid Direct Eye Contact**: When including models, aim to
avoid direct eye contact with the camera. [...]

E5(CTL)+
Mistral-7B(SFT)

To have your feature image approved, you should ensure that it is cropped to
fit a square aspect ratio, which must fill a 1:1 ratio . Additionally, it should
not include any words or logos . The recommended approach is to choose a high-

resolution lifestyle image that showcases your best-selling product(s) in use, such
as a cheese knife with cheese and grapes on a cutting board. Also, you should
provide some visual context in [...]

BGE(CTL)+
Starling-7B(SFT)

To have your feature image approved, you should crop it to a square shape that
fills a 1:1 ratio .

reference document: ## Feature image guidelines
Crop your image to a square. It must fill a 1:1 ratio .
Don’t include overlaid text or logos .

Avoid collages and keep it simple. Collages cause clutter in a space already
crowded with many other brands. Choose a single image with a clear product
focus. Simple, uncluttered often stand out more, as they provide rest to the shopper’s
eye that may be weary from browsing many pages of content.
Provide visual context (avoid plain white backgrounds). While it’s true that great

packaging design attracts people all by itself, showing your product in use helps get
people excited about your brand and helps tell a more visual story about what you
have to offer.
Avoid showing models with direct eye contact. [...]

Table A4: Example answers generated by different RQA systems. Questions come from the test dataset for Faire,
which is described in Appendix H. Due to space limitations, we display the most relevant document amongst all
documents retrieved. In this example, all methods retrieved the correct document, but GPT-3.5-turbo and Starling-7B
failed to include details other than “fill a 1:1 ratio"" (c.f. Table 3).

150

> python local_rqa/serve/gradio_static_server.py \
��file_path xxx/test-predictions.jsonl \
��include_idx 1-50

web UI31 test prediction file

2 launch server
retrieved
documents

a

chat historyb

evaluationc

evaluation results4

analysis

"question": "What ...", "gen_answer": "....", "retrieved_docs": [....], ...

"question": "How ..?", "gen_answer": "....", "retrieved_docs": [....], ...

"session": {"history":}, "annotation": "{...}", "metadata": {...}

"session": {"history":}, "annotation": "{...}", "metadata": {...}

"session": {"history":}, "annotation": "{...}", "metadata": {...}

Figure A1: Researchers can launch a human evaluation page using LOCALRQA in a single command line. Given a
prediction file (see Section 3.5), LOCALRQA launches a web server that allows other users to evaluate the quality
of pre-generated responses. Evaluation results are automatically saved for researchers to conduct further analysis.

Listing 2 Adding a custom component to the SimpleRQA pipeline. In general, researchers can easily
extend an existing pipeline by editing the .component field, or create new pipelines by inherting from the
RQAPipeline class.

1 from local_rqa import ...
2 ### pre-built RQA pipeline
3 rqa = SimpleRQA.from_scratch(
4 database_path="db_path/",
5 embedding_model_name_or_path="...",
6 qa_model_name_or_path="...",
7)
8

9 ### custom module: safety filter
10 class DontKnowSafetyFilter(Component):
11 run_input_keys = [
12 "batch_questions",
13 "batch_source_documents",
14 "batch_dialogue_session",
15 "batch_answers",
16]
17

18 def run(self, *args, **kwargs):
19 return RQAOutput(
20 batch_answers="I don't know.",
21 batch_source_documents=kwargs["batch_source_documents"],
22 batch_dialogue_session=kwargs["batch_dialogue_session"],
23)
24

25 rqa.components.append(DontKnowSafetyFilter())
26

27 ### run QA!
28 rqa.qa(...) # output: "I don't know."

151

