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1 Research interests

My research work centers on how to enable a human-
like interaction through generating contextual, emotional
or proactive responses, both in task-oriented and in chit-
chat spoken dialogue systems (SDSs), because natural
language generation (NLG) is an indispensable compo-
nent in SDSs and can directly affect the user interactive
experience of the entire dialogue system. In addition to
NLG, I am also interested in natural language understand-
ing (NLU), as it plays a crucial role in SDSs and is a pre-
requisite for dialogue systems to generate replies.

1.1 Commonsense enabled conversational model

Many pre-trained transformer-based (Vaswani et al.,
2017) language models (LMs) have been widely applied
in SDSs and shown promising performance. However,
the probing experiments in Zhou et al. (2021) demon-
strated that pre-trained LMs (Zhang et al., 2020; Roller
et al., 2021; Lewis et al., 2020) fail to capture com-
monsense (CS) knowledge hidden in dialogue utterances,
even though they were already pre-trained with numerous
datasets.

To improve the CS understanding and reasoning abil-
ity of a pre-trained model and to build a dialogue agent
like shown in Figure 1, we firstly inject external knowl-
edge into a pre-trained conversational model to establish
basic commonsense. Secondly, we leverage this inte-
grated commonsense capability to improve open-domain
dialogue response generation so that the dialogue agent is
capable of understanding the CS knowledge hidden in di-
alogue history on top of inferring related other knowledge
to further guide response generation (Liu et al., 2022a).

1.2 System-initiated transitions in unified SDSs

SDSs have been separately developed under two differ-
ent categories, task-oriented and chit-chat. The former
focuses on achieving functional goals and the latter aims
at creating engaging social conversations without special
goals. Creating a unified conversational model that can
engage in both chit-chat and task-oriented dialogues is
a promising research topic in recent years. We investi-
gate the “initiative” that occurs when there is a transition

I’m on a diet to lose weight.

Underlying Commonsense Knowledge
1⃝, diet [has subevent of] lose weight

2⃝, diet [related to] eat
3⃝, diet [related to] food, food [has property] healthy

Don’t forget to eat more healthy.

Figure 1: The ideal dialogue agent can understand the
CS knowledge hidden in the dialogue history ( 1⃝), mean-
while, infer the reasonable CS knowledge ( 2⃝ and 3⃝) for
further guiding an informative response generation.

from chit-chat to task-oriented in one dialogue and de-
velop proactive capabilities for unified models to be able
to initiate this transition through generating a transition
sentence (Liu et al., 2023b).

We firstly build a transition info extractor (TIE) that
keeps track of the preceding chit-chat interaction and
detects the potential user intention to switch to a task-
oriented service. Meanwhile, in the unified model, a
transition sentence generator (TSG) is extended through
efficient Adapter tuning and transition prompt learning.
When the TIE successfully finds task-related information
from the preceding chit-chat, such as a transition domain
(“train”) or transition value (“London Kings Cross”),
then the TSG is activated automatically in the unified
model to initiate this transition by generating a transition
sentence under the guidance of transition information ex-
tracted by TIE (like “If you want, I can look for a train to
London Kings Cross for you.”). This proactivity is ben-
eficial for commercial dialogue systems to actively sell
their task-related services (Chiu et al., 2022; Liu et al.,
2022b).

2 Spoken dialogue system (SDS) research
• How to tackle hallucinations in large generative

models, such as ChatGPT? Compared with its pre-
decessors, like GPT-2, the ChatGPT improved abil-
ity to generate more reasonable replies in various
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contexts. However, it is difficult to completely elim-
inate the hallucinating generations even with Chat-
GPT or GPT-4, especially when dealing with com-
plex topics. In the future, reducing hallucinations
effectively might be a persistent challenge, as it is
related to the inherent properties of neural network
architectures. In addition to model development,
we can apply some post-processing technologies to
identify and remove hallucinations from the gener-
ated output.

• How to enhance LLMs with knowledge graphs
(KGs)? Along with the introduction of LLMs,
people are more interested in integrating external
knowledge, such as knowledge graphs (KGs), into
LLMs to enhance its performance, especially for
fact-aware or question answering (QA) tasks. Yang
et al. (2023) provides a comprehensive review for
KGs enhanced pre-trained LMs and proposes some
possible research directions. From my perspective,
it is crucial to consider how KGs can be incorpo-
rated into dialogue-based generative models. Given
the impressive performance of ChatGPT, it is worth
to explore to what extent external knowledge can be
effectively exploited.

3 Suggested topics for discussion

I suggest discussing the following topics:

• Chances and challenges to SDS research commu-
nity along with the launch of ChatGPT: Since
its release at the end of 2022, ChatGPT has re-
ceived significant attention from both industry and
academia. This surge of interest has led to a grow-
ing number of researcher to devote themselves into
the study of large language models (LLMs). Mean-
while, we have also witnessed many surprising and
amazing applications for these models, such as Mi-
crosoft 365 Copilot. Despite the promising oppor-
tunities, young researchers also encounter various
challenges. Because a series of ChatGPT and GPT-
4 models are no longer publicly available, they are
not easily accessible to young researcher. Even if
we have access, do we have sufficient computing re-
sources to run these LLMs? On the other hand, there
is a need to reconsider the development of SDS, such
as for emotional chatbot, we previously explicitly
predict emotions in user utterances and leverage this
information to enable empathetic responses. How-
ever, the question arises now if it is necessary to put
in the effort to explicitly detect user emotions and
improve the accuracy of emotion detection. Because
with advanced capabilities, ChatGPT have demon-
strated the ability to perceive user emotions and gen-

erate appropriate responses accordingly (Elyoseph
et al., 2023) even without predicting user emotions.

• Understanding ability of ChatGPT: ChatGPT and
its predecessor GPT-2 are both auto-regressive gen-
eration models. However, the ChatGPT has shown
impressive capability in understanding a wide range
of topics, which underlies its remarkable perfor-
mance on generating human-like responses. Some
academic studies have started to investigate and
evaluate the logical reasoning ability of ChatGPT
and GPT-4 (Liu et al., 2023a; Zhong et al., 2023;
Zhao et al., 2023). Hence, there are some follow-up
questions, like how can we accurately evaluate the
understanding ability of these large generative mod-
els? Furthermore, do we underestimate the perfor-
mance of these large generative models in terms of
its understanding ability?

• Evaluation in LLMs: To assess the performance
of LLMs, many researchers subject ChatGPT to var-
ious Benchmarks (Zhong et al., 2023; Bang et al.,
2023). Zhao et al. (2023) explores the emotional di-
alogue capabilities in ChatGPT and finds that met-
ric results may not necessarily reflect its poor under-
standing. One potential reason is significant discrep-
ancy between its prediction standard and annotation
standard. When it comes to generation tasks, hu-
man evaluation is commonly viewed as the best re-
liable way to evaluate NLG systems, but come with
many issues, such as costly and time consuming and
human judgement bias (Celikyilmaz et al., 2020).
However, some papers (Chiang and Lee, 2023) in-
vestigate the possibility of using LLMs to be an al-
ternative to human evaluation.
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