Skrutable: Another Step
Toward Effective Sanskrit Meter Identification

Tyler Neill
Leipzig University
Institute for Indology and Central Asian Studies
Schillerstrafie 6, 04109
Leipzig, Germany
tyler.g.neill@gmail.com

Abstract

There has been good progress toward making computational identification of Sanskrit
meter accurate and easy to use. The present project continues this work with a new
online tool offering whole-file analysis and detailed scansion output. It also presents a
preliminary meter analysis data set of 150,000 verses from a range of genres as a resource
to be collaboratively developed to help power future, machine learning-based iterations
of the identification task.

1 Introduction

It is already very clear that verse is an important part of Sanskrit literature, and also that having
a computer tool to help identify the meter of a given verse is useful. Previous work has laid
out the numerous motivations for computational work in Sanskrit meter in particular (Ingalls,
1985; Smith, 1999; Murthy, 2003; Sellmer, 2013), explained the theoretical background (Deo,
2007; Rama N. and Lakshmanan, 2010; Hahn, 2014; Melnad et al., 2015; Rajagopalan, 2018;
Scharf, 2018), and presented several usable tools already (especially those of Melnad et al. 2015
and Rajagopalan 2018).

Taken together, this represents good progress toward making computational identification of
Sanskrit meter accurate and easy to use. The present project continues this work with a new
online tool offering whole-file analysis, detailed scansion output, and a number of other features.
It also presents a preliminary meter analysis data set of 150,000 verses from a range of genres as a
resource to be collaboratively developed to help power future, machine learning-based iterations
of the identification task.

1.1 Basic Task

The basic meter identification task is as follows:

Given a Sanskrit verse as textual input, output information useful for assessing how it
compares to known metrical patterns, including first and foremost a traditional label
when possible (e.g., “anustubh”, “Sardulavikridita”, “arya”, etc.) but also further scan-
sion details for inspection especially in the case of greater variation from conventional
patterns.

1.2 Standard Approach

The standard approach to this task reproduces the mechanical method of the student, especially

one not immersed in an oral tradition:

1. Understand the textual input as Sanskrit (the data cleaning and “transliteration” step).

2. Break the text into syllables using one simple set of rules, and evaluate each syllable as
either light or heavy using another set of rules (the “scansion” step).

97

Proceedings of the Computational Sanskrit and Digital Humanities, 18" World Sanskrit Conference 2023, pages 97-112

3. Compare this pattern of syllable weights against a set of known patterns, looking for a best
match (the “identification proper” step).

Depending on particular interests and goals, more detail is also possible, including other
analytic units (e.g., padas, ganas, yatis, etc.), specific treatment of partial matches, additional
output features (e.g., traditional definitions, sound files), and so on.

1.3 Specific Motivation

Because most users of Sanskrit are not (yet) also computer programmers, a tool that can perform
this task must also be user-friendly enough that, for example, a philologist can easily analyze
one or more entire texts in this way without needing to know what a “for-loop” is. If students
and scholars can be empowered to interact with large amounts of textual data in this way,
then not only does their individual research stand to gain, but also, if they aggregate their
results, everyone can benefit. Namely, not only do these results immediately serve for scholarly
reference, but also, if designed to be machine-readable, they can additionally serve as training
data for machine learning-based upgrades of the identification task. One possible such upgrade
could consist in the detection of metrical material from among non-metrical material using
sequence-to-sequence labeling.

2 Skrutable

The current project, called Skrutable (as in “let’s make Sanskrit less inscrutable”), provides
just such a forward-looking resource. It may not outperform its peers in every last technical
respect (see §4), but it does certainly contribute by empowering its users with access to whole-file
analysis and a number of other engaging features. Furthermore, its modular design will allow it
to be improved through user feedback and open-source cross-pollination in due time.

2.1 Relation to Previous Work

The present project began in 2015 with direct inspiration from the “Meter Identifying Tool”
(at http://www.sanskritlibrary.org:8080/MeterIdentification, hereafter “MIT-2015")
of Keshav Melnad, Pawan Goyal, and Peter Scharf (Melnad et al., 2015). Two years earlier,
in 2013, I had also met and spoken with Anand Mishra in Heidelberg, whose similar 2007
“Sanskrit metre recognizer” tool (formerly at http://www.sanskrit.sai.uni-heidelberg.
de/Chanda/HTML) is today unfortunately no longer found online. Further motivation to con-
tinue developing a Python-based toolkit for Sanskrit came from speaking with two creators of
the Classical Language Toolkit (Kyle Johnson and Patrick Burns) at a conference in Leipzig in
2017. Then, while late in the project, I found out about Shreevatsa Rajagopalan’s “Metre Identi-
fier” (at http://www.sanskritmetres.appspot.com, hereafter “MI-2018”), begun in 2013 and
presented in 2018. Finally, while revising this paper, I became aware that work on MIT-2015
had continued (Scharf, 2018).! In accordance with my interest in what is easily accessible to

!This 2018 paper by Scharf introduced TEITagger, a system for preparing digital editions of texts in accordance
with the Text-Encoding Initiative Guidelines. Sections §4-5 of this paper (“TEITagger software” and “Philological
use of the TEITagger software”, respectively) discuss the further development of MIT-2015, its incorporation into
TEITagger, and its application to the Mahabharata. The paper also does a good job of discussing the following
additional previous scholarship, the citations for which are worth mentioning in full:

Edgerton, Franklin. 1939. “The epic tristubh and its hypermetric varieties.” Journal of the American
Oriental Society 59.2: 159-74. doi: www.jstor. org/stable/594060.

Fitzgerald, James L. 2004. “A meter-guided analysis and discussion of the dicing match of the Sabha-
parvan of the Mahabharata.”

—. 2006. “Toward a database of the non-anustubh verses of the Mahabharata.” In: Epics, Khilas, and
Puranas: continuities and ruptures. Proceedings of the Third Dubrovnik International Conference on
the Sanskrit Epics and Puranas. Ed. by Petteri Koskikallio. Zagreb: Croatian Academy of Sciences
and Arts, pp. 137-48.

—. 2009. “A preliminary study of the 681 tristubh passages of of the Mahabharata.” In: Epic un-
dertakings: proceedings of the 12th World Sanskrit Conference. Ed. by Robert Goldman and Muneo
Tokunaga. Delhi: Motilal Banarsidass, pp. 95-117.

98

all, T will focus my comparative discussion here only on the two tools that are freely available
online: MIT-2015 and MI-2018.

For step 1 (data cleaning and transliteration, see §1.2 above), each of the Sanskrit me-
ter projects named above appears to use its own code for transliteration, drawing on nei-
ther the “Sanscript” package (https://www.github.com/sanskrit/sanscript) — (I surmise)
originally written collaboratively in Javascript and also PHP by the online “Sanskrit Coders”
/ “Sanskrit Programmers” group but adapted for easy importation in Python in 2013 by
Arun K. Prasad — nor the “Aksharamukha” (https://www.github.com/virtualvinodh/
aksharamukha) by Vinodh Rajan, going back to 2010 and also importable in Python. As a
result, there is varying support for transliteration schemes among the different meter projects,
and additional use of other tools is sometimes required. For its part, Skrutable, written in Python
3, currently supports the following: Unicode-based International Alphabet for Sanskrit Translit-
eration (IAST); ASCII-based “Sanskrit Library Phonetic Basic” (SLP1),? Harvard-Kyoto (HK),
Velthuis (VH), Indian languages Transliteration (ITRANS), “WX” (scheme developed at IIT
Kanpur); and Unicode-based Devanagari, Gujarati, and Bengali.?

For step 2 (scansion), each of the three online meter tools (MIT-2015, MI-2018, and Skrutable)
also solves the relatively simple problems in syllabification and weight calculation on their own,
to no major effect on subsequent processing, as far as I can tell. Instead, their main differences
lie in the precise handling of step 3, the “identification proper” step (see §1.2 above) and in what
other features they offer (e.g., display of scansion information).

2.2 Algorithm

Skrutable’s basic algorithm for meter identification does not differ much from other rule-based
programming solutions. At its most basic, once relevant characters have been filtered and
transformed (via internal processing in SLP1) into the corresponding sequence of light and
heavy syllable weight values, this sequence is run through what I will call a “cascade” of checks
against regular expressions for known and named patterns. The order of this cascade is fixed,
as follows:

Anustubh sloka

two perfect halves
two halves, one perfect, one imperfect
a single perfect half

Varnavrttas

perfect samavrtta

perfect ardhasamavrtta

perfect visamavrtta

perfect upajati (tristubh etc.)

imperfect samavrtta (two or three out of four padas)
imperfect upajati (two or three out of four padas)

Matravrttas a.k.a. jatis (perfect only)

If ever an overall perfect match (four out of four perfect padas) is found, the cascade breaks
and the match is reported. All verses are treated as consisting of four parts, and identification
of overall imperfect verses currently relies on the internal support of a certain number of perfect
individual components within the same verse. As a consequence of this design, not currently
supported are: 1) verse types with numbers of padas other than four (e.g. the three-pada

2More accurately, this project uses only a subset of SLP1, e.g. being less strict about punctuation.
3Character frequency-based automatic detection of schemes is also soon to be supported but is still under
repair at the time of this publication.

99

gayatrT and five-pada pankti of Vedic literature); 2) imperfect ardhasamavrtta, visamavrtta, or
jati verses; and 3) all cases of partial verses (e.g., single padas and half verses) or overfull verses
(i.e., anything over four padas) except half-anustubh. Also, relatively few samavrttas (less than
100) have been programmed for recognition.

This cascade is then assisted by pada-resplitting, which happens outside of it. That is,
Skrutable always first uses its cascade to try to identify the verse with pada breaks as given by the
user. Having this no-resplit, “WYSIWYG” behavior at the core of the identification algorithm
was seen as desirable for both practical and pedagogical purposes. As soon as this fails, however,
Skrutable can in turn also produce a series of alternative pada-break configurations (hereafter:
“resplits”) for similar cascade testing. This resplitting is initialized by accepting user input as
provided (supported string sequences are set as a config variable) and otherwise by dividing the
overall length in syllables into four. Resplit points are then moved progressively further out from
their starting points, which privileges more likely configurations earlier and helps the identifica-
tion process successfully complete sooner. Experience found use for two additional parameters
here: 1) an option to further privilege the frequently informative user-input midpoint of the
verse, i.e., the “bc” pada break (hereafter: the “keep mid” option); and 2) a distance option
determining the total maximum number of resplits to be attempted, with one setting (“resplit
max”) looking further and one option (“resplit lite”) quitting sooner. Skrutable’s approach to
pada breaks is thus similar to that of MI-2018 in its concern to reduce the number of resplits
tested,? but different in its implementation.

The third major component of Skrutable’s identification algorithm is result scoring. For as long
as no perfect match is found, resplitting and testing against the cascade continues. All results,
including partial matches defined by two or three correct padas out of four (for supported verse
types), are collected and scored according to an empirically calibrated look-up table (values
being again set as config variables). The highest scoring result is reported as the best match,
and other results (as well as statistics on total resplits i.e. identification attempts) are stored as
an internal object attribute. In the rare case of a tie as determined by the scoring system, both
results are reported with the phrase “atha va” (“or”).

In this way, although resplitting greatly increases the number of checks performed, it allows
for comprehensive handling of even difficult cases, even as input in a natural way, and it leads
to better performance in cases with padas of uneven length, either inherently (e.g., jati, ard-
hasamavrtta) or because of data errors. Also, on a modern machine, such as the server currently
running the public-facing deployment of the tool, total computation time per verse generally
remains in the millisecond range (cp. §4.3 below).

2.3 Implementation
Code

Skrutable is written as an importable Python 3 library with modules for transliteration,
scansion, and meter identification.® In combination with an associated front-end user in-
terface (hereafter: “the UI”) written primarily in Flask, and secondarily with HTML, CSS,
and Javascript, Skrutable also functions as a web app, which is currently deployed online at
https://www.skrutable.info and which can also be installed and run locally if desired.® All
code and content is on GitHub,” and documentation is provided throughout, for both developer
and student consultation.

4Cp. Rajagopalan 2018, pp. 125f.

5A simple wrapper module also provides access to a pretrained version of the Hellwig-Nehrdich Sanskrit Sandhi
and Compound Splitter (Hellwig and Nehrdich, 2018).

5The web interface was initially found at the address http://www.skrutable.pythonanywhere.com.

"Library at https://www.github.com/tylergneill/skrutable, and front-end at https://www.github.com/
tylergneill/skrutable_front_end.

100

User Interface

The Skrutable UI (Fig. 1) is designed to provide convenient access to the library’s three major
functions and to help tailor output to user needs.

asrene
1AST e Output. Scheme Scansion Detail Re-Split Padas . .

. e (b) On mobile device
et o= B B o

(a) On desktop device

Figure 1: Screenshots of blank UI

These three major functions and their interrelations are represented in the Ul by its centermost
top blue buttons, read left to right (see Fig. 2). That is, after first controlling for the input
text’s transliteration scheme, Skrutable can next “scan” the input text for its straightforward
and essential metrical properties. Then, if desired, it can also, in a third and final separate step,
attempt to “identify” the verse as being of a particular meter. Showing the user two separate
buttons for the latter two functions is meant to help clarify this important difference.

———

Figure 2: Major function buttons

As explained above (§2.2), when the “Scan” button is clicked, Skrutable’s “scansion” module
does not remove pada breaks, such that this basic stage of the output exactly reflects the
breaks in the input.® Scansion output detail (hereafter just “scansion detail”) is broken down
into four optional components, each of which can be toggled with its own checkbox below the
“Scan” button: 1) raw syllable weights, 2) mora count, 3) syllable count and grouping into gana
abbreviations, and 4) syllable-to-weight alignment (using a simple monospace font with fixed
per-character width plus spaces for filler). In general, any Romanization scheme would work
well for this scansion output, but since Indic scripts do not yet also display well in this context,
I opt to output only TAST for now.

Then, if “none” is chosen as the meter identification “Re-Split Padas” option using that
drop-down box and if the “Identify Meter” button is clicked, Skrutable’s “meter_ identification”
module first internally invokes the separate “scansion” module to fetch the appropriate scansion
information, and then it runs the identification cascade a single time with the pada breaks as
given and outputs the result. If the verse was, for example, not input as four separate lines,
then this no-split identification will certainly fail, regardless of the textual content (see Fig. 3).
In fact, I see this possibility for very literal behavior as desirable from a pedagogical standpoint.
That is, a user may, if he or she wishes, use the scansion output to iteratively work toward a
proper pada break solution him- or herself, visually scrutinizing patterns, manually changing

8Surrounding or multiple pada-break sequences are currently treated as extraneous and simplified.

101

the input pada breaks, adding or subtracting “scansion detail” features, and again clicking the
“Scan” and/or “Identify Meter” buttons, until a positive result is found.

skrutable : about tutorial

dharmaksetre kuruksetre samaveta yuyutsavah /
mamakah pangdavas caiva kim akurvata safijaya //

gggglgggllgglglg {m: 27} [16: mrtyjg]
glgglgglllgllgll {m: 23} [16: rrBjjl]
dha rma kse tre ku ru kse tre sa ma ve ta yu yu tsa vah
g9 g g g 1 g g g 1 1 g g 1 g 1 g
ma ma kah pa nda va Scai va ki ma ku rva ta sa fija ya
g 1 g g 1 g g 1 1 1 g 1 1 g 1 1
Input Scheme Transliterate Identify Meter Split Words
[1AsT v

—_— Output Scheme Scansion Detail Re-Split Padas

‘ IAST V‘ resplit lite keep mid v whole file €
whole file ¢ a whole file ¢
align

DSAL-Apte links
Figure 3: Meter id., resplit “none”, on two lines, with failure id. label “na kimcid adhyavasitam”

A few more things to note here: 1) Both input and output are in plain-text, making them easy
to play with and/or copy-paste as needed. 2) Swap buttons are also provided for text buffers
and input schemes. 3) The “scansion detail” options apply equally for both the “Scan” and
“Identify Meter” buttons. 4) Text-buffer contents and all selected options will persist between
visits to the site.”

Frequently, however, a user will not be interested in splitting the verse manually in this way,
and so the meter identification module also includes functionality for resplitting, described above
(§2.2). Internally, scansion and the identification cascade are simply repeated for each resplit, in
a simple loop. In the UI, however, when “Identify Meter” is clicked with a resplit option active,
all that appears as output is the highest-ranking pada break configuration, its scansion details,
and a label describing the result (Fig. 4).

For users also interested in multi-verse, i.e., whole-file metrical analysis, it is then as easy as
looking past the “Identify Meter” button and instead clicking the “whole file” upload button
located below it. One then can follow the instructions to upload a file,!” and once processing
and downloading are finished, output can be retrieved from one’s normal browser download
location. This output consists of a plain-text file (Fig. 5), containing for each verse its full text,
its scansion detail according to chosen settings, and its meter identification label. Additionally,
if desired, the system can also be made to output a summary of detected verse types in tab-
separated value (TSV) format (Fig. 6).1! In this table, perfect meter types and their associated
frequencies appear to the left, while imperfect outcomes and their frequencies appear to the right.

9This out-of-the-box, client-side “session” feature of the Flask web-development framework works essentially
like a cookie.

10The file currently must be in plain-text, properly encoded in UTF-8 and in the chosen transliteration scheme,
with one verse per line, and with an ASCII-only filename.

"This recently developed feature is demonstrated in the “Jupyter Notebook” folder of the GitHub repo and
should be incorporated into the Ul before long.

102

dharmaksetre kuruksetre samaveta yuyutsavah /
mamakah pandavas caiva kim akurvata safijaya //

g999lggg {m: 15} [8: mrgg]
llgglglg {m: 12} [8: srlg]
glgglggl {m: 13} [8: rrgl]
llgllgll {m: 10} [8: ssll]

dha rma kse tre ku ru kse

g g g g 1 g g

sa ma ve ta yu yu tsa

1 1 g g 1 g 1

ma ma kah Pa nda va Scai

g 1 g g 1 g g

ki ma ku rva ta sa fija

1 1 g 1 1 g 1

anustubh (1,2: pathya, 3,4: pathya)

Input Scheme
last |

Txt 1

Output Scheme

[1asT

whole file €

» 0:00/0:17 ===

Transliterate

Scan Identify Meter

Scansion Detail

Re-Split Padas
[resplit lite keep mid _ v/| whole file ¢
Iglg! {mora} [gana]
o
align CIEDIDE DSAL-Apte links

Meter Melody Type Recited by

0 [Madhura Godbole V]

Figure 4: Meter id., “resplit lite keep mid”, with correct four-pada solution (pathya anustubh)

Whole-file processing takes just a few seconds in most cases (see §4.3 below), so trial-and-error
adjustment of input content and settings is not costly.

B KSS_meter_identified.txt

2

3 | lglllglglilglgglg {m:
4 | lglllglglllglgglg {m:
5 | lglllglglilglgglg {m:
6 | lglllglglllglggly {m:
7

8

prthvi [17: jsjsylgl

24}
24}
24}
24}

[17:
[17:
[17:
[17:

jsjsylgl
jsjsylg]
jsjsylgl
jsisylal

idam gurugirindrajapranayamandaréndolanat purad kila kathamrtam haramukhambudherudgatam / prasahya sarayanti ye
vigatavighnalabdhardvayo dhuram dadhati vaivudhim bhuvi bhavaprasadena te // 1.0.1

10 | $riyam didatu vah Sambhoh $yamah kantho manobhuva / ankasthaparvatidrstipasairiva vivestitah // 1.1.1

12 | lglllggg {m: 12} [8: jsggl
13 | ggaglglg {m: 14} [8: mrig]
14 | gglglggl {m: 13} [8: trgl]
15 | gglllglg {m: 12} [8: tslgl
16

17 | anustubh (1,2: pathya, 3,4: pathya)
18

19 | pranamya vacam nihsesapadarthodyotadipikam / brhatkathayah sarasya samgraham racayamyaham // 1.1.3

21 | lglggggl {m: 13} [8:
22 | lggglglg {m: 13} [8:
23 | lglggggl {m: 13} [8:
24 | glgliglg {m: 12} 8:

jmgl]
yrigl
jmgl]
rslgl

26 | anustubh (1,2: ma-vipula, 3,4: ma-vipula)

Figure 5: Text-file output (in BBEdit), KSS examples (prthvi, anustubh pathya, ma-vipula)

Finally, in addition to the meter identification functionality already described, the UI also

offers a few more power features, both regarding meter and otherwise:

e Whole-file transliteration

o Transliteration scheme encoding standardization (e.g., to ensure precomposed TAST “”)

o A melody player for successful single-verse meter id. (multiple voice/melody options, details
available at https://www.skrutable.info/reciters)

2 Additional features still

“varpamala”/“aksaramala”-order) list alphabetization;

undergoing development in

12

late 2021 include: Indic-style (i.e.
virama options for Indic output (both more and

less); and options for punctuation preservation in word splitting.

103

r
eoe KSS_summ

-BO-B-OHaR XDB- & L 9- QA BH-B-4Wwiu iy ¥ &
Liberatonsans® 10 @ B 7 U Lu-B- = = = = T £ 1 @-% 0 00
F42 f« & =
A [8 | c | o]
1 |anustubh (1,2: pathya, 3,4: pathya) 14522
2 |anustubh (1,2: pathya, 3,4: ma-vipula) 1083
_ 3 |anustubh (1,2: pathya, 3,4: na-vipula) 1063
4 Janustubh (1,2: na-vipula, 3,4: pathya) 1008
5 lanustubh (1,2: ma-vipula, 3,4: pathya) 1001
6 |anustubh (1,2: pathya, 3,4: bha-vipula) 720
7 |anustubh (1,2: bha-vipuld, 3,4: pathya) 505
8 |[giti (12,18, 12,18) 170
9 |arya (12,18, 12,15) 168
10 |vasantatilaka [14: tBjjgg] 122
_ 11 |anustubh (1,2: na-vipuld, 3,4: na-vipula) 104
12 |anustubh (1,2: pathya, 3,4: ra-vipula) 95
13 |anustubh (1,2: ma-vipuld, 3,4: ma-vipula) 90
14 Janustubh (1,2: na-vipula, 3,4: ma-vipula) 87
15 Janustubh (1,2: ma-vipula, 3,4: na-vipula) 78
16 |anustubh (1,2: ra-vipula, 3,4: pathya) 77
17 Janustubh (1,2: na-vipula, 3,4: bha-vipula) 55
_18 |upajati : upendravajra [11: jtjgg], indravajra [11: ttjgg] 51
19 |anustubh (1,2: bha-vipula, 3,4: na-vipula) 43
20 |anustubh (1,2: ma-vipula, 3,4: bha-vipula) 41
21 |Sardalavikridita [19: msjsttg] 40
22 |aupacchandasika = [11: ssjgg] 1,3 +[12: sBry] 2,4 39
23 |prthvi [17: jsjsylg] 38
_ 24 Janustubh (1,2: bha-vipula, 3,4: ma-vipula) 32
25 anustubh (1,2: pathya, 3,4: asamicina) 27
26 |indravajra [11: ttjgg] 27
27 lvam$astha [12: jtjir] 26
28 |anustubh (1,2: bha-vipula, 3,4: bha-vipula) 24
29 | anustubh (1,2: asamicina, 3,4: pathya) 23
30 |malini [15: nnmyy] 19
31 |puspitagra = [12: nnry] 1,3 + [12: njjrg] 2,4 18
32 |anustubh (1,2: ra-vipula, 3,4: na-vipula) 11
33 rathoddhata [11: rnrig] 10
34 |Sikharini [17: ymnsBIg] 9
35 |$alini [11: mttgg] 9
36 |anustubh (1,2: ma-vipuld, 3,4: ra-vipula) 8
37 |upagti (12, 15, 12, 15) 7
38 |anustubh (1,2: ra-vipul, 3,4: ma-vipula) 7
39 |mandéakranta [17: mBnttgg] 6
40 |anustubh (ardham eva: pathya) 6

Figure 6: TSV-file output (in LibreOffice), KSS, top 40 meters, with frequencies

« Point-and-click access to the powerful plain-text Sanskrit Sandhi and Compound Splitter!?

e Conversion of split words into hyperlinks for V.S. Apte’s Practical Sanskrit-English Dictio-
nary (1957-59 ed.) as provided by Digital Dictionaries of South Asia (allied with Digital
South Asia Library or DSAL)

3 Data

Here T will describe the textual data, in total about 150,000 Sanskrit (and Prakrit) verses,
pertaining to the assessment of Skrutable’s meter identification system.

3.1 Input

Data was sourced largely from GRETIL. Other sources used include 1) the author’s own repos-
itory of NLP-ready philosophical texts,'* and 2) the repository of Vishvas Vasuki.!?

13Using the pretrained model at https://www.github.com/0liverHellwig/sanskrit/tree/master/papers/
2018emnlp (Hellwig and Nehrdich, 2018). The Skrutable wrapper also supports unlimited input length and
punctuation preservation.

At https://www.github.com/tylergneill/pramana-nlp, used here specifically for Slokavartika,
Pramanavartika, Pramanavartikalamkara, and Tattvasamgraha. In addition to GRETIL, this repository
uses data from 1) SARIT, 2) the unofficially circulating work of Jongcheol Lee and Helmut Krasser, and 3)
original digitization.

'5At https://www.github.com/sanskrit/raw_etexts, used here specifically only for Malatimadhava. This
repository draws on http://www.sanskrit.nic.in/ebooks.php, a number of other scraped text repositories, and
also some unknown sources.

104

The following nineteen texts from various genres (Epic, Story, Kavya, Philosophy) and gen-
erally of large size were chosen for analysis: Mahabharata (MBh), Kathasaritsagara (KSS),
Ramayana (Ram), Paficatantra (PT vv), Mahasubhasitasamgraha (MSS), Si$upalavadha
(SpV), Raghuvamsa (RVams), Kiratarjuniya (Kir), Sattasai/Saptasati (SS, in Prakrit),
Kumarasambhava (KuS), Meghaduita (MgD), Satakatraya (ST), Malatimadhava (MM_ vv),
Tattvasamgraha (TS), Slokavartika (SV), Pramanavartikalamkara (PVA_kk), Pramanavartika
(PV_kk), Bodhicaryavatara (BCA), and Mulamadhyamakakarika (MMK). Metrical details for
the individual texts, including their respective lengths in verses, are given below in Figs. 7-10.

Original files are provided in the Skrutable front_end GitHub repo, along with cleaned ver-
sions actually used for input. Cleaning interventions included 1) extracting verse from “mixed”-
style (i.e., misraka) texts (PV1_kk from PV-Svavrtti, TS from TS-Panjika, PVA_kk, and
MM_ vv); 2) re-applying sandhi in certain of these cases (PV_kk); and 3) adjusting numbering,
for example, breaking verses that obviously consist of three or more verse halves (padadvayas)
into multiple verses, or simply removing non-canonical material (e.g., from the digitized critical
MBhL). Digitization quality (not to mention edition quality) is known to be mixed, but as has
been observed (Rajagopalan 2018: 128-130), partly erroneous data is actually a virtue in the
present context, as the ability to gracefully handle and illuminate data problems on a large scale
is one of most useful potential applications of such tools.

3.2 Output

For the present study, the meter identification settings “resplit max” and “keep mid” were used.
The exact output text-files produced by Skrutable, both with all available scansion details and
in a more abbreviated form (verse number and meter label only), are available on the GitHub
repo. Also provided are TSV summary files generated during the analysis, both for individual
texts and overall. It is also easy enough to repeat the analysis for oneself by uploading the same
input data to the Skrutable website, for example to see how quickly the script runs on a given
text or to try out other settings. Since exact output will also vary depending on ongoing project
upgrades, the exact code used for generating this particular data is archived as a package release
on Zenodo.'®

4 Evaluation

For a meter-identification tool like Skrutable, it would be desirable to evaluate four things: 1)
identification accuracy, 2) usefulness of output information, 3) speed, and 4) ease of use.

4.1 Accuracy

T’ll begin my discussion of system accuracy by providing some background on how the two similar
projects up for comparison here have been assessed. MIT-2015 was tested on “a database of
1031 verses in the Paficakhyanaka, including 291 verses in 23 different types of meters besides
Anustubh” (Melnad et al. 2015: 325). The tool was iteratively calibrated during testing, and
overall performance was evaluated as follows: “MIT correctly recognized 1018 out of the 1031
verses (98.7%) and 287 out of the 291 non-Anustubh verses (98.6%). There were no cases in
which a meter was recognized incorrectly” (ibid.: 342). The MIT-2015 software is not easily
available online, but I was able to obtain from Peter Scharf updated software for the 2018
TEITagger project (JAR file, v28) into which MIT-2015 was incorporated. I also received the
relevant Pafnicakhyanaka database file (XML), and with some help, T was able to get TEITagger
working on this file to identify the meters. Since these results sometimes differ from those of
MIT-2015 online, I cannot yet speak to the above accuracy claims. Time permitting, I will
continue to work on this verification process.

In turn, Rajagopalan 2018, while noting that “the lack of a reliable (and nontrivial) ‘gold
standard’ hinders attaching a numeric value to the accuracy” describes how for its tool “a large

16 Available for download at https://zenodo.org/badge/latestdoi/103173263 (Skrutable) and https://
zenodo .org/badge/latestdoi/328881004 (Skrutable front_end).

105

number of texts such as from GRETIL were examined”, again enabling tool calibration and
resulting in a “recall of 100% in the examples tested” and a precision that is “lower and harder
to measure because of errors in the input” (2018: 128-129). Although the underlying GRETIL
texts are themselves relatively accessible, the exact “example” input used is not easily available
for inspection, nor is exact output. However, a useful table of summary statistics, not featured
in Rajagopalan 2018 but mostly coinciding with the texts mentioned therein, is found on the
project website.!” The data from this table is incorporated into Figs. 7 and 8 below. As for
the software itself, I found the Python code relatively easy to download and apply to numerous
verses.

In the absence of a gold-standard, Skrutable is not yet evaluated with a percentage accuracy.
Instead, in order to enable more direct comparison with other projects and thereby begin to
approach such a standard, Skrutable was tested on texts similar to those used to test the other
two projects discussed here, and all results are being made publicly available: one text for
comparison with MIT-2015, the Pancakhyanaka a.k.a. Paficatantra (only the GRETIL version
so far), and six texts for comparison with MI-2018, namely, MSS, SpV, RVams, Kir, KuS, and
ST (again all GRETIL). In addition to these (seven texts in about 17,000 verses), Skrutable was
also tested on considerably more and diverse material (eleven additional texts in about 133,000
verses) in the hopes of attracting the interest of more scholars who can help produce the needed
gold-standard annotations. The overall summary statistics are presented here in two pairs of
tables, the first pair (Figs. 7 and 8) for material overlapping with previous projects, and the
second pair (Figs. 9 and 10) for original analysis of novel data.®

Visual inspection of the first pair of tables (Figs. 7 and 8) reveals a great deal of numerical
agreement between MI-2018 and Skrutable, but many individual discrepancies as well. The
latter are strongly suspected to be due mostly to differences in how imperfect verses are handled
(see §4.2 below). For Skrutable, in line with the detailed data it was designed to produce, three
additional types of information are given: 1) a few important meter subtypes (for anustubh and
upajati); 2) two numbers instead of one in those cases (anustubh, upajati, and samavrtta) where
Skrutable is made to explicitly distinguish imperfect verses (e.g., for indravajra in Kiratarjuniya,
18 perfect and 2 imperfect); and 3) explicit labels for specific kinds of categorical failures (“ajia-
tasamavrtta”, “ajnatardhasamavrtta”; “no id”, and in fact most cases of “non-tristubh upajati”).
In short, Skrutable, like the other tools, seems generally capable of correct identification in the
case of good data.

4.2 Usefulness of Output Information

On the other hand, especially in the case of worse data, Skrutable’s basic scansion output (cp.
Fig. 4) is designed especially for iterative exploration after identification fails. Whereas the user
interfaces of both MIT-2015 and MI-2018 use HTML text formatting (color and bold weighting,
respectively) to highlight syllable weight patterns, Skrutable’s strictly plain-text output — with

"http://www.sanskritmetres.appspot.com/statistics, sourced from GitHub repo “templates” folder.

8Note that Scharf 2018 also presents similar analysis for over 73,000 verses of the Mahabharata and compares
results with Fitzgerald 2009 (see footnote 1 above). I quote here a summary of Scharf’s MBh results (p. 242) in
full:

TEITagger version 2 tagged 73,436 verses and 1,057 prose sentences in 386 paragraphs. The verses
include 68,860 Anustubhs, 2,970 Tristubhs, 431 Jagati, 322 Indravajra, 0 Upendravajra, 496 of the
standard Upajati variety alternating the two preceding, 88 Sala, 78 Vani (other Upajatis), 31 Apar-
avaktra (an ardhasamavrtta meter), 22 Praharsini, 16 Rucira, 9 Malini, 4 Vasantatilaka, 4 Puspitagra,
1 Sardalavikiidita, 1 Halamukhi, 1 Aryagiti (a type of Arya), 1 mixture of half Kamakrida and half
Kamuki, and a hundred unidentified. The unidentified metrical patterns include for instance, 1 mixture
of half Kamukt and half unidentified, 1 mixture of a deviant pada with subsequent Anustubh, jagatt,
and Tristubh padas, as well as 98 other uninvestigated unidentified patterns.

Comparison of this paragraph (or Table 1 in Scharf 2018, p. 244 — or Table 3, pp. 245-6 presenting the results

of “TEITagger version 17”) with Figs. 9-10 here reveals only a rough correspondence between the two attempts.
Clearly a more careful comparison is a desideratum for future study.

106

| (Skr vs. Ml and MIT)| Kir [kKus MSS [Rvams | SpV [st]| PT_w |
1,040 613 9,979 1,637 1,645 324 1,105
anustubh Sloka (MI) (Skr) (etc.) (MIT) (Skr)
pathya (MI: all) 125 | 103,2 |[157 [120, 1 || 4457 | 3309, 185 |[565 | 433,55 || 231 [104,36 || 35 | 29,1 || 740 | 639, 154
vipula 20 36 629, 14 71,5 76,13 5 57,5
upaijati
comm.trist. (MI: all) 132 129 187 [180 490 436 463 425 62 37 14 7 21
other tristubh 6 4 63 58 34 2 6
non-tristubh 18, 51 0,1 18,2 2 3,2
samavrtta
pramanika 16
indravajra 20 18, 2 30 | 30,3 149 104, 8 104 | 66,24 21 6, 22 1 1 6, 5
upendravajra 24 22,1 9 9,1 41 27,5 28 9,16 25 5,18 0,1 2
rathoddhata 38 37,1 90 88 99 86, 3 151 | 120,18 || 87 80, 3 3| 21 1
$alint 3 3 45 27,1 1 1 81 63, 5 3 3 1,1
svagata 77 71 102 79,1 1 91 44,14
totaka 19 18 1 1 2 1
drutavilambita 33 32,1 106 101, 5 64 | 48,16 || 69 | 37,28 || 5 | 3,1 2
pramitaksara il 49, 2 35 33, 1 82 52,23 1
vamsastha 214 | 203,11 || 84 | 83,1 197 167, 16 74 | 63,10 || 145 | 40,34 || 3 | 2,1 7,5
praharsint 50 46, 4 42 36, 2 8 6,2 76 35, 35
mafijubhasint 15 15 1 1 69 59, 10
rucira 9 7,2 1 0,1 68 62, 6
vasantatilaka 24 23, 1 4 4 728 595, 57 46 40,6 88 41,38 || 34 | 22, 11 28,2
malint 1k 13 6 5,1 209 193, 16 13 6,7 2 52,18 il 7,4 2
prthvt 72 67, 4 1 1 5 1,4
mandakranta 163 136, 8 7 4,3 3 2 8 6 4
SikharinT 3 3 327 309, 18 1 50 [31,15 2,1
harint 105 99, 6 1 0,1 1 8 | 53 3
Sardulavikridita 1221 979, 91 5 4 104 | 73, 27 29,7
sragdhara 237 181, 24 1 1 21 | 12,8 1,1
Figure 7: Summary statistics, Overlap (anustubh, upajati, samavrita),
other tools in grey
| (Skr vs. M and MIT)| Kir [kus MSS [Rvams | spv || st |[PTw
1,040 613 9,979 1,637 1,645 324 1,105
ardhasamavrtta (MI) (Skr) (etc.)
aparavakira 1 1 4
puspitagra 69 67 2 2 106 99 4 3 78 45 1 1
viyoginT 62 60 44 44 91 79 97 72 79 71 2 1 1
aupacchandasika 36 33 68 64 2 2 83 68
visamavrtta
[udgata [52] 38 | I 2 [1 I ot 1 51 | 1 | I |
jati
arya 696 668 1 12 6 67
(MI: arya “loose”) 1 10 1 4 1
gtti 1 140 144 9 4 1
upagtti 53 61 1 4
udgtti 35 33
aryagtti 4 14 1 1 36
not identified
ajfiatasamavrtta 0,19 0,1 6, 40 0, 21 0, 128 0,4 0,9
ajiatardhasamavrtta 1 10 4 51 2 1
no id 1 43 34 5 i 9 19 28

Figure 8: Summary statistics, Overlap (ardhasamavrtta, visamavrtta, jati, errors),
other tools in grey

107

|(Skrutable only) | MBh Ram | KSS [SS|[MM_w| MMK | BCA | sV [Pvkk | PVAkk [TS |
77,810 19,354 21,545 999 226 448 913 3,351 1,452 2,674 3,646

anustubh sloka (Skr) (etc.)

pathya 54811, 591 | 14576, 235 | 14528, 50 14 298, 21 | 638, 13 | 2985, 152 | 889, 139 | 1919, 254 | 3345, 92

vipula 17463,109 | 3636,35 | 6151, 12 1 127,2 | 181,3 149, 5 335,24 | 379,35 201, 2

upajati

comm.trist. 1075 344 51 2 33 9 11

other tristubh 2162 15 1 3 3 3

non-tristubh 17,6 2;7 2,4 0,1 1 0,1 0,3 1,2 0,2

samavrtta

pramanika 38, 1

indravajra 174, 87 36, 8 27 8 6 3 2

upendravajra 94, 81 80, 15 4 1 2 4,1

rathoddhata 5 10 3 2

$alint 38, 62 9 2 0,1 2

svagata 1 2

totaka

drutavilambita 1 4 0,1 2

pramitaksara 0,3

vamé$astha 360, 108 268, 40 26, 3 2 1 3,1

praharsint 8,1 4 2 7

mafjubhasint 7

rucira 28,13 5,1

vasantatilaka 3 122 49 3 2

malint 9 19 21 2 3,1 1

prthvi 38 4 !

mandakranta 6 14

Sikharint 9 22

harinT 12

Sardulavikridita 1 40 32 1

sragdhara 1 6 3

Figure 9: Summary statistics, Original (anustubh, upajati, samavrtta)

|(Skrutable only) | MBh Ram | KSS [SS|MMw| MMK | BCA | SV | PVkk | PvAkk [TS |
77,810 19,354 21,545 999 226 448 913 3,351 1,452 2,674 3,646

ardhasamavrtta

aparavaktra 27 9 1 2 1

puspitagra 33 26 18 5 2

viyoginT 3 1 3

aupacchandasika 39 1 9

visamavrtta

[udgata I I I I I

jati

arya 1 1 168 956 11 1 3 4

gtti 170 18

upagtti 46 7 9 5 11 12

udgrti 1 2 1 1

aryagtti 1

not identified

ajiatasam. 5, 166 0,3 0, 16 0,5 0,2 0,1 0,18 0, 23 0,8 0,2

ajiatardhasam. 51 2 1 2 1 10

no id 60 1 3 7 16 23 12 2

Figure 10: Summary statistics, Original (ardhasamavrtta, visamavrtta, jati, errors)

its tightly printing block of “1” and “g” characters, line-by-line syllable and mora counts, and

syllable-weight alignment — relies primarily on the visible geometry of the line-separated raw
syllable weights, and secondarily on the other scansion information calculated therefrom (morae,

108

syllable counts, and ganas), also presented as line-separated. Since each way has advantages,
there is no reason not to eventually offer both as options, at least in a UI.

In the case of anustubh and upajati, Skrutable’s identification behavior and output labels
are uniquely specific. For anustubh, Skrutable recognizes and names the various vipulas with
sensitivity to their usual conditioning (Murthy 2003, Hahn 2014), and it outputs the caveat
“not right” (asamicia) whenever any conditioning rule is violated, whether it be one of a vipula
or either of the two more fundamental anustubh rules, “Pingala 1”7 (aksaras 2 and 3 in odd
pada cannot both be short) and “Pingala 2”7 (aksaras 2 through 4 in an even pada cannot be
a ra-gana) (Murthy 2003: 103). By contrast, while MI-2015 does recognize the basic vipula,
it uses obscure numerical labels (e.g., “anustubh3” for a na-vipula), and it does not explicitly
note the role of conditioning. That is, when either of Pingala’s rules is violated, MIT-2015 fails
silently. Meanwhile, MI-2018 seems to be sensitive to none of these details, issuing the label
“anustubh (Sloka) 7 regardless. Similarly, Skrutable’s particular handling of upajatis allows it
to distinguish them into subtypes of standard tristubh (indravajra and upendravajra), other
tristubh (e.g., including vatormi, vani, or also unnamed 11-syllable patterns, e.g. as found in
abundance in the Bhagavadgita), and non-tristubh (the widest meaning of the term “upajati”,
as used also for combinations of e.g. 12-syllable i.e. jagati padas). Currently, Skrutable takes no
further details like arya syncopation structure (Ollett, 2012) or yatis into consideration.

For the case of imperfect or failed identification, Skrutable’s output is again designed to be
practical and to avoid both false positives and false negatives. Where some structural pattern is
still discernible on the basis of internal support within the verse itself (see §2.2), the suspected
type is suggested in the identification label along with a caveat of “unrecognized” (“ajnata”)
or “only # padas correct” (“# eva padah yuktah”) or “not right” (“asamicina”), depending on
the case. On the other hand, apart from whatever help the basic scansion output may provide
for real-time iterative problem-solving, the null identification label (“na kimcid adhyavasitam”)
itself currently provides no specifically helpful information in the following cases: 1) imperfect
anustubhs with zero perfect halves (whether out of one or two), 2) samavrttas with three or
more imperfect padas, 3) imperfect ardhavrttas, 4) imperfect visamavrttas, and 5) imperfect
jatis.

Here it is useful to consider the alternative strategy of MI-2018, most clearly visible in the case
of samavrttas, to find the nearest identification match using string-alignments of the calculated
syllable weight pattern against known patterns (Rajagopalan 2018, pp. 127-128). This allows
for extremely clear output in certain cases (see e.g. the red-colored “[-]” in Fig. 11 below, and
also the example in Rajagopalan 2018, p. 115).

The input verse imperfectly matches MaAYa (HTAT) (note deviations in red):

paropakaraya phalanti vrksah
paropakaraya vahanti nadyah
paropakaraya [-]dunti gavah

Figure 11: Screenshot from MI-2018 of samavrtta alignment output (“dunti” for “duhanti”)

However, this strategy does not appear to work equally well in all cases, and its usefulness is
occasionally mitigated by the tendency of MI-2018 (anticipated at Rajagopalan 2018: 132-33)
to produce misleading false positives. An example of this is seen in Fig. 11 with the label of
“maya” for an upendravajra that is missing a syllable in pada c.'® Most likely, some combination
of these two strategies (reliance on internal structure plus string-alignment), perhaps combined

19 According to Pingala’s Chandahéastra (Kedaranatha, 1938), the name “maya” refers to an upajati with the

specific sequence upendravajra, upendravajra, upendravajra, indravajra. It is for this reason that the first syllable
“pa” of pada d in Fig. 11 is also mootly colored red as deviating from this “maya” pattern.

109

with Skrutable’s supplementary scoring strategy — and the latter perhaps also augmented by
frequency-based score penalties for very rare meters — may be the best way forward for improv-
ing the deterministic approach. Since MI-2018 does also in fact have an unpublished “fulltext”
(i.e., whole-file) upload feature in its UI?" and since the tool is open source, more systematic
comparison of these different output strategies is only a matter of time.

4.3 Speed

I adopt the Tokunaga-Smith digitization of Valmiki’s Ramayana (19,354 verses) and Ollet’s
digitization of Weber’s Sattasai/Saptasati (999 verses) as speed-run test cases. Comparable
speeds can probably also be expected for other tools once they are adapted as necessary,?! but
the main point here is simply to illustrate that text size need no longer pose a significant barrier
to such analysis whatsoever.

Ramayana

Run on the PythonAnywhere server with the “Re-Split Padas” option “resplit lite keep mid”,
the task of analyzing meter for the entire Ramayana completes in about 14.5 seconds, i.e., an
average of about 1,330 verses per second. With “resplit max keep mid”, the time is 23.5 seconds,
or about 820 verses/sec, but performance remains nearly identical, with different outcomes only
for a dozen cases of tristubh and/or jagati verse types with data problems. On the other
hand, if run on a local machine,?? “resplit lite keep mid” finishes in about 9.0 seconds, or 2,150
verses/sec, and “resplit max keep mid” again in about 14.5 seconds. If additional explicit pada
break information?? is used, namely by automatically choosing the relatively confident no-resplit
option for such cases and “resplit lite keep mid” for other cases, the time is again reduced to 7.5
seconds, or about 2,580 verses/sec. Again, identification results remain basically constant.

Sattasal/Saptadatt

This text, consisting entirely of arya verses (or because Prakrit, actually gaha i.e. gatha), demon-
strates the usefulness of Skrutable’s “resplit max” option. Because success in identifying arya
is so much better with this option, I do not discuss the “resplit lite” option here. With “resplit
max”, the successful analysis completes in about 14.5 seconds when run on the PythonAnywhere
server (68.9 verses/sec) and in about 10.5 seconds (95.1 verses/sec) when run locally. The slower
speed (still less than 1/100th of a second for an individual verse) is due to jati verses requiring
many more resplits before a best match is found.

4.4 Ease of Use

Ease of use is necessarily quite subjective, but some comments are still warranted. With
Skrutable, great care has been taken with the UI to reduce effort and possible confusion on
the user’s part. User focus is maintained on a single display window, which is formatted sim-
ply and cleanly with basic Bootstrap CSS and which thus also displays relatively comfortably
on mobile devices (see Fig. 1b). Settings allow for users to choose from among numerous
transliteration schemes, as well as a range of scansion-detail and other options, all of which are
conveniently preserved between sessions. Above all, whole-file processing is available with just
a few clicks. In short, user convenience is highly valued, and further feedback is most welcome.

20Gee http://www.sanskritmetres.appspot.com/fulltext.

21MI-2018 would most accurately be compared by directly utilizing its code. Submission of moderately large
texts to its unpublished “fulltext” website endpoint so far suggests speeds slower by one order of magnitude,
whereas processing seems to hang in the case of very large texts of 10,000 verses or more (likely a file-size
constraint of the server). Inspection of output is also complicated by this mode’s emphasis on complex HTML
formatting, which makes output rendering prohibitively slow.

22Here, on a MacBook Pro 2020 with 2 GHz Quad-Core Intel Core i5. The Jupyter Notebook used for
local runs is also available for inspection at https://www.github.com/tylergneill/skrutable/tree/master/
jupyter_notebooks.

23E.g., such as was formerly available on GRETIL at least as late as December 2018 in the form of semicolons
between ab and cd padas.

110

5 Conclusion

With digitized texts and capable computing resources becoming ever more available, it is high
time that students and scholars of Sanskrit be able to use a tool to analyze the metrical properties
of a given text without themselves needing to know how to code. Skrutable empowers users to
do just that, for any number of verses at a time, accurately, with detailed output, at speed, and
(in good cases) with only minimal data prep. As a bonus, those who do code and who want to
include such scansion or meter-identification functionality in their own computational projects
can also take advantage of Skrutable’s being written modularly and in a popular language with
robust community support. What’s more, Skrutable provides a number of additional practical
features, which e.g. may help users better understand certain kinds of imperfect metrical Sanskrit
text.

Going forward, Skrutable has room to grow. As an open-source project, others can take
it and develop versions as they wish. As for the master branch of its development, as more
thorough comparison with similar tools more clearly reveals relative strengths and weaknesses,
advantageous features, whether pertaining to core algorithm or to final display, can be either
incorporated centrally or included as additional options. For example, MI-2018 makes numerous
practical advances yet to be emulated in Skrutable, including the illustrative highlighting of
erroneous syllables, and it seems clear to me that even the online version of MIT-2015 (not to
mention the further developments thereof in TEITagger) is much more accurate and detailed
with regard to certain kinds of good data. That said, even as-is, Skrutable can already make a
useful contribution. Alongside its pedagogical value, it can help specialists to not only augment
their own research but also contribute annotated material toward a collaborative meter dataset,
begun here with 150,000 verses. Such aggregated data can serve both as an interesting reference
tool in its own right and as a model-training resource for very exciting technological applications
to come.

Acknowledgements

The author’s thanks are due to Peter Scharf and The Sanskrit Library, for a formative period
of part-time employment cataloging Sanskrit manuscripts at Houghton Library in 2015 and
for sharing software and data; to Shreevatsa Rajagopalan, who in a personal communication
permitted reference to his unpublished table of summary statistics and to the “fulltext” endpoint
of his MI-2018 website; and to Oliver Hellwig and Sebastian Nehrdich, for allowing me to feature
their Splitter.

References

Ashwini S. Deo. 2007. The Metrical Organization of Classical Sanskrit Verse. Journal of Linguistics,
43(1):63-114.

Michael Hahn. 2014. A brief introduction into the Indian metrical system (for the use of students).
Handout. Accessed at academia.edu/6353023 on Mar. 31, 2021.

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit Word Segmentation Using Character-level Recur-
rent and Convolutional Neural Networks. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 27542763, Brussels, Belgium. Association for Computational
Linguistics.

Daniel H. H. Ingalls. 1985. The “Mahabharata”: Stylistic Study, Computer Analysis, and Concordance.
Journal of South Asian Literature, 20(1):17-46.

Pt. Kedaranatha. 1938. Sri—Piﬁgalandga-vimcitam Chandah-$astram: Srf-Hdldyudha-bha}fta-m'm-
citaya Mrtasamjivanyakhyaya vrttya sametam. Samiksacakravarti-raja-pandita-$ri-Madhusudanavidya-
vacaspati-racita- Chandonirukti-sanathi-krtam ca = The Chhandas-$astra of Pingalanaga. Nirnaya Sa-
gar Press, Bombay, 3rd edition.

111

Keshav Melnad, Peter Scharf, and Pawan Goyal. 2015. Meter Identification of Sanskrit Verse. In Sanskrit
Syntax: Selected Papers Presented at the Seminar on Sanskrit Syntax and Discourse Structures, 13-15
June 2013, Université Paris Diderot, with an Updated and Revised Bibliography by Hans Henrich Hock,
pages 325-346. Sanskrit Library, Providence.

G. S. Srinivasa Murthy. 2003. Characterizing Classical Anustup: A Study in Sanskrit Prosody. Annals
of the Bhandarkar Oriental Research Institute, 84:101-115.

Andrew Ollett. 2012. Moraic Feet in Prakrit Metrics: A Constraint-Based Approach. Transactions of
the Philological Society, 110(2):241-282.

S. Rajagopalan. 2018. A user-friendly tool for metrical analysis of Sanskrit verse. In Computational
Sanskrit & Digital Humanities, Selected papers presented at the 17th World Sanskrit Conference, July
9-13, 2018, pages 113-142, University of British Columbia, Vancouver, Canada. Department of Asian
Studies, University of British Columbia.

Rama N. and Meenakshi Lakshmanan. 2010. A Computational Algorithm for Metrical Classification of
Verse. International Journal of Computer Science, 7(2):46-53, March.

Peter Scharf. 2018. TEITagger: Raising the standard for digital texts to facilitate interchange with
linguistic software. In Computational Sanskrit & Digital Humanities, Selected papers presented at
the 17th World Sanskrit Conference, July 9-13, 2018, pages 229-257, University of British Columbia,
Vancouver, Canada. Department of Asian Studies, University of British Columbia.

Sven Sellmer. 2013. Computer-aided detection of unusual passages in the Mahabharata. In CEENIS
Current Research Series, volume 1, pages 44-54. Dom Wydawniczy Elipsa, Warsaw.

John D. Smith. 1999. Winged Words Revisited: Diction and Meaning in Indian Epic. Bulletin of the
School of Oriental and African Studies, University of London, 62(2):267-305.

112

