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Abstract

Recent NLP algorithms for Named Entity Recognition require a large amount of anno-
tated resources. Low resourced languages such as Sanskrit lack adequate annotated data
and manual annotation is costly as well as time-consuming. A sequence labeling tool that
supports manual annotation with automatic suggestions to reduce time and increase an-
notators’ productivity is appealing, especially for low-resourced languages. Most of the
tools developed with such capabilities are for resource-rich western European languages
and are not tuned to the need of morphologically rich language like Sanskrit. In our work,
we deploy an annotation tool for crowd-sourcing a Sanskrit NER dataset annotation.
The selected corpus is Srfmad—Bhégavatam. The annotation environment is augmented
to help the annotators with automatic suggestions. The suggestions are pre-annotated
using our proposed heuristic. The heuristic works based on string-matching algorithms.
The key idea is to compare transliterated Sanskrit text with an English translation and
identify words of similar forms as likely named entities (NE). A gazetteer is applied to
further classify the NEs into semantic classes. On a small manually annotated dataset,
the heuristic identified the NEs reasonably with an F-Score of 0.80.

1 Introduction

Named entity recognition (NER) is the task of finding spans of text that constitute proper
names in unstructured documents, and classify them into predefined semantic categories such as
person, location, etc. (Jurafsky and Martin, 2009). It has emerged from the field of Information
Retrieval(IR) and has several downstream applications such as open domain question answer-
ing (Chen et al., 2017), co-reference resolution (Yang and Mitchell, 2016), improving semantic
search (Caputo et al., 2009). One such motivating application is the use of NER to improve the
searching and browsing capability of digital libraries (Borin et al., 2007; Caputo et al., 2009).
A recent study on The Gallica digital library, a national heritage and encyclopedia library of
France shows that 80% of the top 500 queries sent to the portal contained at least one named
entity (NE) (Chiron et al., 2017). However, use of keyword-based search mechanisms often limit
the effectiveness of search systems for such digital libraries. Words in natural languages tend
to express polysemy and synonymy resulting in low precision and recall respectively of such
keyword based search systems. An alternative approach is to search documents not only at the
lexical level but also at the semantic level. “Named entities (NEs) mentioned in a document
constitute an important part of its semantics” (Caputo et al., 2009). Indexing documents with
named entities allow users to search the collection in novel ways (Bontcheva et al., 2002). San-
skrit has over 30 million manuscripts produced over a course of four millennia (Goyal et al.,
2012). In the last few decades, a prodigious effort is put in to digitize these manuscripts and
make them accessible through digital libraries (Krishna et al., 2017). These libraries can be
enriched with NE metadata information to improve their functionalities. But to the best of our
knowledge, there is no publicly available NE annotated data to facilitate research on Sanskrit
NER.
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Recent advances in machine learning (ML) have achieved state-of-the-art performance on
many sequence labeling tasks, including NER (Liu et al., 2018; Baevski et al., 2019). These ML
algorithms rely on the availability of vast volumes of annotated data. However, creation of anno-
tated text data is an expensive and a time-consuming process (Goyal et al., 2012; Yimam et al.,
2014; Lin et al., 2019). Further, it puts a heavy demand on human annotators to maintain the
quality annotations (Stenetorp et al., 2012). This makes direct application of such difficult for
low-resource languages. Machine-assisted human validated semi-automatic annotation is already
shown to be effective in reducing the annotation labor for preparing morphologically tagged cor-
pus in Sanskrit (Goyal and Huet, 2016; Goyal et al., 2012). Generic tools are developed for text
annotation including the NE annotation task. Most of these tools provide a good interface but
does not provide machine-assisted support to human annotators (Bontcheva et al., 2013; Chen
and Styler, 2013). More recently, tools are developed to combining automatic pre-annotation
and manual annotation to improve the efficiency and quality of annotation (Teng et al., 2019;
Yimam et al., 2014). In the pre-annotation approach, the annotation tool automatically suggests
sequence labels to human annotators. The automatic suggestion of sequence labels can be static
or dynamic. In static suggestion, data is pre-annotated using some rules before the annotation
process begins (Lingren et al., 2013). Also, some tools give dynamic suggestions using ML al-
gorithms that gradually learns from previously annotated data as annotation progresses (Teng
et al., 2019; Lin et al., 2019). But these tools are developed for resource-rich western European
languages and is not tuned to the need of morphologically rich language like Sanskrit. Auto-
matic pre-annotation of NEs in Sanskrit is more challenging due to many challenges presented
by the features of the language that varies significantly from typical Western European language
features (Goyal et al., 2012). A large number of possible inflections of NEs, difficulty in iden-
tifying word boundaries due to phonemic changes and ambiguities between names and other
parts-of-speech categories makes the task difficult.

In our work, we propose a heuristic based on string-matching algorithms to automatically pre-
annotate Named Entities (NEs) in a Sanskrit corpus. The key idea is to compare transliterated
text and English translation and identify words of similar forms as likely named entity. We use
a name dictionary or gazetteer to further classify the NEs into three semantic classes: person,
location and miscellaneous. The selected corpus is Srimad-Bhagavatam in which words are
already segmented and word by word English translation is available digitally. We present
a web-based NE annotation platform for annotating Srimad-Bhagavatam, based on an open-
source text annotation framework. The annotation environment helps annotators by providing
automatic NE suggestions based on the pre-annotated data. Currently, the scope is limited to
static suggestions. Our platform is publicly available for crowd sourcing the task. Annotators
can collaborate, modify the pre-annotations as well as add new annotations. An annotation-
approver role also can be assigned to approve the annotations. We make the following specific
contributions:

1. Our proposed string-matching based pre-annotation heuristic achieves 0.80 F1 in the task
of identifying NEs on a set 60 manually annotated verses from Srimad-Bhagavatam.

2. In our current experiment with variations of the heuristic we observe that the performances
of string-matching algorithms do not significantly vary if inflected words are used instead of
stems obtained by lemmatization. Among the string-matching algorithms that we selected,
Jaro-Winkler similarity gives the best performance.

3. We deployed a web-based NE annotation platform for crowd-sourcing NE annotation in
Srimad-Bhagavatam.? The annotation environment is augmented to show annotation sug-
gestions to annotators based on the pre-annotations by the heuristic.

https://sanskritner.herokuapp.com/
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2 Named Entity Recognition Task

Named Entity Recognition is one of the fundamental tasks in NLP and Information Extraction.
NER aims to find spans of text that constitute proper names in unstructured documents, and
classify them into pre-defined semantic categories (Jurafsky and Martin, 2009). As natural
language is polysemous, ambiguity exists among the name references. Resolving ambiguity
involves recognizing the true referent entity of a name reference and then resolving the proper
type. NER has achieved state of the art for western European languages using machine learning
algorithms. NER task is more complex in Sanskrit compare to western European languages.
Several challenges are posed by the rich morphological features of the language.

o Phonemic changes (Sandhi) obscure the word boundaries in a sentence by combining mul-
tiple words, resulting in long and complex word forms. A named entity may also get
combined with other words. For example, ‘sribrahmovaca’ translates to ‘Sri Brahma said’.
Here Brahma is a named entity that is easily identifiable in English as it is present as a sep-
arate word. Also, the capitalization of the NE is a major feature used by NER systems for
Furopean languages. Even multiple NEs may be present in a single word. For example, the
word ‘sakarnaduhsasanasaubalana ’ contains three NEs: ‘karna, duhsasana, saubalanam’.
So to prepare a dataset one needs to segment the sandhied words in a corpus. However,
word segmentation in Sanskrit is not a trivial task as the number of possible segments for a
given sentence can be very large. Segmentation tools are available in popular computational
Sanskrit platforms like Sanskrit Heritage Reader(SHR), but human intervention is required
to decide the final solution (Goyal et al., 2012).

e NEs can also be a compound word, for example, ‘kumbhakarna’. Compounds are exten-
sively used in Sanskrit literature but processing compound is a more complex task than
Sandhi (Kumar et al., 2010). A word segmentation tool may consider the word ‘kumb-
hakarna’ as two words making it difficult to identify it as a name.

e Another problem is there are up to 72 possible inflections of NEs due to gender, number
and cases. Morphological analysis needs to be done to identify the stems (Krishna, 2019).

e In Indian languages names of persons, places, etc are more diverse and a lot of them can be
found in the dictionary as common nouns. Also, ambiguities between names and adjectives,
verbs and other parts-of-speech categories are prevalent. For example, ‘vidura’ is the name
of a person which also means very far.

As our selected corpus is already in segmented form, we did not need to handle the problem of
segmentation and compound word.

2.1 NER Tag-set

The task of NE expression identification in text was first defined in MUC-6 Named En-
tity task (Sundheim, 1995) where a total of seven NE tags were classified into three classes:
ENAMEX (person, location and organization), TIMEX (date, time) and NUMEX (money, per-
centage). Only four categories of NEs are identified in the shared task 6 of CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003): person, location, organization and miscellaneous. Text
Encoding and Interchange guidelines (Burnard and Bauman, 2008) that maintain the XML
standard for encoding and documenting have proposed hierarchical NEs. As our annotated data
is meant for general-use linguistic resources, we have opted for CoNLL 2003 convention with
three NE categories: person, location, and miscellaneous. Bhagavatam is a spiritual text and
lacks organizational entities, so we did not explicitly use the organization category.
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3 Data
3.1 Corpus

Our approach of pre-annotation is based on a comparison of TAST (Williams et al., 1899)
transliteration of Sanskrit text and the corresponding English translation. Many Sanskrit works
of literature are translated into English over time. We have selected Bhagavatam to demonstrate
our approach and create an NER dataset. It can be extended to other Sanskrit texts with English
translation as well. There are two reasons for selecting Bhagavatam. The first reason is that word
by word translation is done and made available online. The word by word translation makes it
easier to apply our approach. We will discuss this further in Section 4. The second reason is that
in the transliterated text words are already present in segmented form which makes it easier to
identify the NEs. Also compared to other translated texts, it has a reasonable amount of text.
Bhagavatam contains a total of 18K verses with 0.23 million words. CoNLL 2003 English NER
dataset (Tjong Kim Sang and De Meulder, 2003), which is one of the standard NER English
data set, has 0.3 million words.

We have scrapped the total data of Bhagavatam from online resources. In the online version
sometimes, multiple verses are merged into a single verse. Total there are 12 cantos, 335 chapters,
13,004 occurrences of single or multiple verses, where each such instance is taken as one example
to annotate at a time. The vocabulary contains a total of 41K unique words and inflections.

3.2 Gazetteer

Name dictionaries or gazetteer are very helpful NER resources. Modern names are collected
from different sources like a telephone directory and named dictionaries. Identification of names
using Gazetteer is difficult due to inflection, ambiguity etc., but it can be used to boost the
performance of NER systems (Saha and Majumder, 2018). Bhagavatam is a well discussed
literary work. So, it is relatively easier to collect the list of names of characters or places. We
have prepared a name dictionary by automatically scrapping names of characters from online
resources. We have mainly collected person names, but the list can be extended further by
adding names of other entity types. The gazetteer has 611 unique names.

4 System Description

In this work, we have attempted to develop a system that will provide a platform to crowdsource
NER annotation. It will also assist the annotator to improve performance and speed by indi-
cating which words are most likely a named entity and, in some cases, suggesting the possible
class. As discussed earlier, suggestions can be static, i.e., prepared before the annotation process
begins or these can be dynamically learned and improved as annotators annotate more and more
data. The scope of our current work is restricted to static pre-annotation. In this section, we
will present the details of the pre-annotation approach and also a description of the annotation
framework.

4.1 Pre-annotation Approach

We want to compare Sanskrit transliteration and English translation to identify the named
entities. The basic idea is that named entities do not change form in any language. So, the
similar strings in transliteration and translation are most likely named entities.

For example, in Figure 1 we can see the English translation of the word ‘krsne’ has the word
‘Lord Sri Krsna’. Here the word ‘“krsne’ and ‘Krsna’ have similar forms.

The second thing that we need to handle is the inflected forms of Sanskrit words. A word
can appear in many different forms due to the morphological richness of the language. For
example, one of the inflected forms of the word ‘arjuna’ is ‘arjunaya’ meaning ‘to Arjuna’.
444;;;;;?77;édabase.io/en/library/sb/

https://vaniquotes.org/wiki/Category:Personalities\_from\_Srimad\_Bhagavatam
https://vedabase.io/en/library/sb/2/8/3/
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kathayasva mahabhaga
yathaham akhilatmani
krsne nivesya nihsangam
manas tyaksye kalevaram
kathayasva — please continue speaking; mahabhaga — O greatly fortunate one; yatha — as much as; aham — I; akhila-
atmani — unto the Supreme Soul; krsne — unto Lord $ri Krsna; nivesya — having placed; nihsangam — being freed from

material qualities; manah — mind; tyaksye — may relinquish; kalevaram — body.

Figure 1: Example of a verse (Srimad-Bhagavatam 2.8.3) and word by word English translation.”

Here either we can apply approximate string matching directly using the inflected word or can
apply morphological analysis to get the stem and then match. We have experimented with both
the approaches. In second case, before applying string comparison the stems of the Sanskrit
word is obtained using Sanskrit Heritage Reader (Goyal et al., 2012; Goyal and Huet, 2016).
For string matching, we have opted for edit-distance based string similarity algorithms. String
distance metrics are simple, fast and can be applied without prior knowledge of data. Cohen
et al. (2003) have used string distance metrics for name-matching tasks. They have explored
edit distance-based and token-based methods for matching named entities and found that Jaro
and Jaro-Winkler metrics are better for short strings. In our data, we observed that most of
the names are single word entities. So, we have tried only the edit distance-based methods such
as Levenshtein distance, Monger-Elkan distance, Jaro similarity, and Jaro-Winkler similarity.
Overall, the best-performing method is Jaro-Winkler similarity.

4.1.1 Jaro-Winkler Similarity

In record-linkage literature, good results have been obtained using Jaro-Winkler (Cohen et al.,
2003). The similarity between two strings is measured in the range [0, 1] based on the number
and order of the common characters. Jaro-Winkler similarity uses Jaro similarity. Given two
strings s1 and sg, Jaro similarity between these is defined as

1 m m m—t .

0 : otherwise

Jaro(sy, s2) = { (1)

where |s1], |s2| are the lengths of the two strings, m is the number of matching characters, and ¢
is the number of transpositions. Two characters from s1, s respectively, are considered matching
if the maximum distance between the characters is, w = wfl. So a character from s;
is matching to a character in sg if it is similar to any character from s, within the range of w
charters before and after. The Jaro-Winkler similarity increases the Jaro similarity value if both

the strings have common prefixes.

Jaro(s1,82) +1-p- (1 — Jaro(sy,s2)) :Jaro(sy,s2) > b

JaroWinkler(sy, s2) = 2
(s1,52) {JCLTO(Sl,SQ) : otherwise 2)

[ is the length of the common prefix of both strings up to a maximum lpyyng4, b: is the boost
threshold with default value 0.7, p is the prefix scale with default value 0.1, and lpoung - p < 1
must holds true (Keil, 2019). For example, if we compare the two words ‘krspe’ and ‘krsna’
the Jaro value is 0.86, and both have common prefix of length 4. So the Jaro-Winkler value is
boosted to 0.92.

4.1.2 Word Selection for Comparison

The annotation heuristic is improved further taking advantage of the fact that in English, named
entities always start with a capital letter. For example, the word ‘abhimanyuna’ is translated
in the context as ‘by the hero Abhimanyu’. So only those Sanskrit words are selected which
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have at least one word in translation starting with a capital letter. To reduce the number of
comparisons, we compare ‘abhimanyuna’ only with ‘Abhimanyu’ as it starts with a capital, and
avoid comparing to remaining words. An English dictionary is also used to avoid comparison
to general English words. For example, ‘om’ is translated as ‘O my Lord’. Clearly, ‘om’ is not
NE but, ‘O’ and ‘om’ have very high similarity. Here, although ‘O’ and ‘Lord’ start with a
capital, both are present in the English dictionary. So, we do not calculate similarity and ‘om’
is marked as non-NE.

Finally, as transliterated verses and many words in the English translation also in the scrapped
data are in IAST transliteration scheme, before applying string matching strings are converted
to ASCII and case folded. The procedure of pre-annotation is presented in Algorithm 1.

4.1.3 Gazetteer Based Classification

Gazetteer based NE identification is not so simple for Indian languages as names can be ambigu-
ous. Many common words are used as names in Indian languages. Ambiguity between nouns
and NEs is observed in many languages. But in Indian languages ambiguity occurs between
names and adjectives, verbs and other parts-of-speech categories also (Saha and Majumder,
2018). The problem is more prevalent in Sanskrit. For example, ‘karpa’ is name of a character
and also translates as ear.

So, we do not use the gazetteer for the identification of NEs. Instead we use it to the classi-
fication of already identified NEs by the previous step. The advantage of the dataset is that it
provides word by word meaning in the context which makes word sense disambiguation easier.
For example, the word ‘sakarnpaduhsasanasaubalana ’ is present in the dataset in split form as
four words: ‘sah — He (the Lord); karna — Karna; duhsasana — Duhdasana; saubalanam —
Saubala’. Another word ‘hrtkarnarasayanah’ is present as three words: ‘hrt — to the heart;
karna — to the ear; rasa-ayanah — pleasing;’. So, we can easily classify ‘karna’ in the first
example as the name of a person.

Algorithm 1: Preannotation algorithm

Result: List of annotated verses

begin

0 < Jaro Winkler Similarity Threshold
for verse in list_of wverses do

for sanskrit_word in verse do
english__translation < GetTranslation(sanskrit_word)

for word in english__translation do
if StartsWithCapital(word) = TRUE then
if EnglishDictionary(word) = FALSE then
d < JaroWinklerSimilarity(sanskrit_word, word)
if d > 0 then
NE [sanskrit_word] <+~ TRUE
if sanskrit_word in Gazetteer then
L Label [sanskrit_word] + GetLabel (sanskrit_word)

4.2 Annotation Framework

We have deployed a web-based crowd-sourcing annotation tool.” The UI design is based on
an open-source Django framework named Doccano (Nakayama et al., 2018). The open-source
framework provides annotation features for sequence labeling tasks. It can collect annotations
from multiple (non-expert) contributors with lower cost and higher speed. It has Unicode
support to display Sanskrit text in different encoding.

Figure 2 illustrates the annotation environment and how the tool presents the pre-annotated
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suggestions for the verse. The NER— tag suggests to annotators that the next word is most
likely a named entity. In the figure, a total of seven suggestions are given. In that, the two words
‘yudhisthirah’ and ‘madhu’ are further suggested as name of PERSON. If annotators want to
remove the suggested tag or to correct the tag, they can simply click on the cross symbol. A
new tag can be assigned by selecting the word and then clicking the right type appearing on the
top. They can also press the shown shortcut key for quick tagging. For example, ‘anarta’ is the
name of a place but it is not pre-annotated. So, an annotator can select that word and press ‘I’
on the keyboard or click on the LOCATION tag to assign the new tag. Additionally, there is a
metadata button. Annotators can use it to read the verse in Devanagari or can use the URL to
read about it in detail.

The tool is hosted on the public domain and anyone can register and contribute, once admin
approves the registration. Admin can assign three types of roles for crowd-sourcing, annotator,
annotation approver and project admin.

rerson [ (rocanon Y (SRR = 3 Document Metadata

=S RRTCTE G ENuvaca kaccit anarta puryam nah sva janah [ )
sukham asate [N[=ISEESEIN 11 ETe [ [T bhoja NER— x SEEEIGE]
arha satvata andhaka rsnayah ] “https

(a) A sample verse and tagging suggestions (b) Metadata

Figure 2: Annotation Environment

5 Experiment

To investigate the performance of the heuristics in the task of identification of NEs, we have
experimented on a set of 60 manually annotated verses containing 997 words. 5 verses are
selected randomly from each of the 12 cantos.To investigate the performance of the heuristics in
the task of identification of NEs, we have experimented on a set of 60 manually annotated verses
containing 997 words. 5 verses are selected randomly from each of the 12 cantos. We took the
help of two annotators from Sanskrit background. The first annotator was given the raw verses
and he adds 81 NE annotations. The second annotator was given the raw verses along with
the annotations done by the previous annotator. The second annotator verified and accepted
all those 81 NEs and added some additional NEs. However, as those additional NEs were not
verified by a third person, we did not include it in our experiment. Both the annotators have
used our deployed annotation platform for the task. So, it is a binary classification task where
the classless are highly imbalanced, 81 NE and 916 non-NE words. We have reported Precision,
Recall, and F-score only for NE class identification in Table 1. The F-score calculated is the
harmonic mean between precision and recall.

True Positives

P= (3)

(True Positives + False Positives)

True Positives

= 4

R (True Positives + False Negatives) )
2%« Px R

Fl=——rH )

(P+R) (5)

As discussed earlier, the basic idea is to match the transliteration of a Sanskrit word with the
words in English translation. The results in Table 1 shows the performance of two string match-
ing algorithms, Levenstein distance, and Jaro-Winkler similarity. We also check the impact of

One annotator has Master and another has Doctorate degree
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selecting only those words in English translation which starts with a capital and applying a
dictionary to exclude general English words before performing string matching. Also, an exper-
iment is done to check whether doing lemmatization of Sanskrit words before string matching
improves the performance over using the actual word. The stems are obtained using SRH (Goyal
et al., 2012).

If string similarity/distance between the Sanskrit transliteration and a word in the translation
is above/below a certain threshold then the word in the translation is marked as NE. Changing
the threshold value changes the performance of the heuristic. For Levenstein distance we tried
thresholds in the range 0 to 8 and for Jaro-Winkler similarity in the range 0.5 to 1. Table 1
reports the maximum F1 value achieved using grid search over the range of thresholds.

Using word Using stem
Heuristic P R F1 P R F1
Levenstein 0.76 | 0.47 | 0.58 | 0.79 | 0.58 | 0.67
Capital + Levenstein 0.69 | 0.63 | 0.66 | 0.80 | 0.60 | 0.69
Capital + Dictionary + Levenstein | 0.78 | 0.69 | 0.74 | 0.92 | 0.59 | 0.72
Jaro-Winkler 0.81 | 0.69 | 0.75 | 0.83 | 0.70 | 0.76
Capital + Jaro-Winkler 0.85 | 0.72 | 0.78 | 0.85 | 0.72 | 0.78
Capital + Dictionary + Jaro-Winkler | 0.93 | 0.70 | 0.80 | 0.93 | 0.70 | 0.80

Table 1: Performance of different heuristics

Here we can observe, Jaro-Winkler is performing better than simple Levenstein distance. Also,
checking whether the word starts with a capital and applying a dictionary to exclude general
English words improves performance. It is observed that lemmatization improves performance if
we use a tighter threshold value. For instance, if we apply direct string matching(Jaro-Winkler
similarity threshold = 1), using stems 39 true positives(TPs) are identified while using the word
15 TPs are identified. But lemmatization is a costly operation and with tighter threshold though
precision is high, recall drops reducing the overall F-score. Figure 3 plots the F-score of the
best performing heuristic for different string matching threshold limits. The optimal threshold
value for Jaro-Winkler similarity in both cases when matching is performed using the word and
using the stems is 0.8. At this threshold, Jaro-Winkler similarity gives a similar performance
without lemmatization also. So, the final pre-annotation of the data is done without performing
lemmatization.

Using word Using stem
0.80 1 0.80 A
0.78 4
0.78 1
0.76
g 0.74 4 g 0.76 1
O O
v 0.72 A w
— —
* 0.70 1 - 0.74 7
0.68 4
0.72 1
0.66 -
064 L T T T T T 0'70 L T T T T T
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Jaro Winkler Similarity Threshold Jaro Winkler Similarity Threshold

Figure 3: Plot of F1 at different string metric thresholds
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6 Error Analysis

The heuristics work based on the assumption that NEs have a similar form in different languages.
It is not always true. In Bhagavatam, many times a single character has different names but in
English translation uses only single name for all variation. For example, ‘bhagavan rudrah’ is
translated as ‘Lord Siva’. So here the forms are not similar. Sometimes the translation instead
of the name gives a description. For example, ‘ndra’ is translated as ‘the King of heaven’. In
another case, if the Sanskrit word is part of English vocabulary then also it is not marked. For
example, ‘buddhaya’ — ‘to Lord Buddha’ , here Budhha is present in the dictionary as an English
word, so the comparison is not done. The tool can be improved to handle these cases through
dynamic suggestions. We have discussed it in Section 7.

7 Related Work

Our work aims to improve annotators’ efficiency in preparing a Sanskrit NER dataset using pre-
annotation. Pre-annotation has been wildly applied for the task of NER in different domains
such as biomedical (Lingren et al., 2013), astrophysical (Hachey et al., 2005), etc. Lingren et
al. (2013) studied the impact of pre-annotation on the speed of manual annotation of clinical
trial announcements. They evaluated dictionary/gazetteer based approaches for pre-annotating
entities related to symptoms and diseases. The study concluded that time savings were statis-
tically significant and present in all of the experiments when the annotator used pre-annotated
text. Savary et al. (2010) in their work of creating a largescale NE annotated dataset in Polish
used a rule-based method to automatic pre-annotation of named entities, then the annotations
are manually corrected and completed by linguistic experts. They customized a graphical tree
editor TrEd to provide an annotation environment for manual correction of annotations. Similar
works have been done for Indian regional languages also. Saha and Majumder (2018) developed
a Hindi NER system without using any manually annotated training corpus. They prepared the
initial training data using gazetteer and context patterns matching. They first extracted names
from an English corpus using a pre-trained English NER system. Then the English gazetteer
lists were used to transliterate into Hindi using a two-phase transliteration approach.

Annotation frameworks and tools are also developed which include some kind of pre-
annotation module and use active learning to reduce the efforts of annotators. Yimam et
al. (2014) applied their text annotation tool WebAnno that includes a machine learning com-
ponent for automatic annotation suggestions of span annotations. They achieved an increase
in annotation speed of about 21% with automatic suggestions in a German NE annotation
project. Stenetorp et al. (2012) achieved 15% decrease in total annotation time using their
rapid annotation tool BRAT on a multi-category entity mention annotation task by augmenting
the annotation process with input from statistical and machine learning methods. Yang et al.
(2018) from their experiment with open-source text span annotation tool YEDDA noted that
annotation time can be compressed by 16.47% through intelligent recommendation. Experi-
ments with more recent tools like EPAD showed that it shortened almost 60.0% of the total
annotation time, and improved 12.7% of F-measure for annotation quality on a medical record
named entity recognition task (Teng et al., 2019). Another tool, AlpacaTag which is imple-
mented based on Doccano provides suggestions using active learning as well as a dictionary of
frequent noun phrases and already annotated spans (Lin et al., 2019).

In computational Sanskrit, efforts are directed towards reducing annotation work by building
software to allow semi-automated annotation. The SRH platform help linguists create a mor-
phologically tagged corpus in a semi-automatic manner to reduce annotation labor (Goyal et
al., 2012; Goyal and Huet, 2016). The interface allows a Sanskrit scholar to do segmentation
(sandhi analysis), tagging, and parsing of a corpus by selecting from automatically presented
words, stems, and morphological tags.

From these studies we hypothesize that one can take advantage of these approaches to easily
build annotated resources for resource-poor languages like Sanskrit.
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8 Conclusion and Future Direction

The approach to build Sanskrit NER dataset discussed in this paper is based on static pre-
annotation. As there is no previous work in this direction, our work provides an overview
and challenges of NER for Sanskrit. We explore the possibility of using external resources
such as parallel corpora for the development of annotated datasets. An annotated dataset can
help progress further research in this direction. Currently, in the annotation environment the
annotators are given fixed suggestions based on the pre-annotation. The tool can be modified
to improve the suggestions by taking into consideration the already annotated and verified
annotation by annotators. To do so, we intend to integrate active learning strategy (Teng et
al., 2019) in our system. Static suggestions also can be improved. The pre-annotation heuristic
currently works based on language-independent string-matching algorithms by identifying strings
of similar form in transliteration and translation of words. On a small manually annotated
dataset it is able to perform reasonably with an F-measure of 0.80, precision 0.95 and recall
0.70. Language dependent analysis and rule-based approaches can be applied to handle difficult
linguistic cases and to improve recall. Also, other approaches to compare the names, such
as n-gram based approach (Jahangir et al., 2012), can be tested. Another way to improve
the suggestions is by building a better gazetteer. One way the gazetteer can be improved is by
identifying NEs from the translated text with the help of available NER systems of English (Saha
and Majumder, 2018).
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