Evaluating Neural Word Embeddings for Sanskrit

Jivnesh Sandhan!, Om Adideva Paranjay®, Digumarthi Komal®,
Laxmidhar Behera,!? and Pawan Goyal*
Dept. of Electrical Engineering, IIT Kanpur,?Tata Consultancy Services,
3Dept. of Electrical and Systems Engineering, University of Pennsylvania,
“Dept. of Computer Science and Engineering, IIT Kharagpur

jivnesh@iitk.ac.in, pawang@cse.iitkgp.ac.in

Abstract

Recently, the supervised learning paradigm’s surprisingly remarkable performance has
garnered considerable attention from Sanskrit Computational Linguists. As a result,
the Sanskrit community has put laudable efforts to build task-specific labeled data for
various downstream Natural Language Processing (NLP) tasks. The primary component
of these approaches comes from representations of word embeddings. Word embedding
helps to transfer knowledge learned from readily available unlabelled data for improving
task-specific performance in low-resource setting. Last decade, there has been much
excitement in the field of digitization of Sanskrit. To effectively use such readily available
resources, it is essential to perform a systematic study on word embedding approaches for
the Sanskrit language. In this work, we investigate the effectiveness of word embeddings.
We classify word embeddings in broad categories to facilitate systematic experimentation
and evaluate them on four intrinsic tasks.

1 Introduction

The supervised learning paradigm has shown remarkable performance in many downstream
Natural Language Processing (NLP) tasks. In this domain, the NLP community has witnessed
the emergence of neural-based approaches with the state of the art performance. The dramatic
popularity of such approaches has garnered considerable attention from Sanskrit Computational
Linguistics (SCL) community. The primary prerequisite for the feasibility of such approaches
is the availability of task-specific labeled data. Therefore, as a first step, there was a need
for preparing such task-specific resources. As a result, laudable efforts have been put by the
community for building task-specific labeled data for various NLP tasks (Krishna et al., 2017;
Hellwig and Nehrdich, 2018; Hellwig et al., 2020). The availability of such resources triggered
the emergence of the data-driven neural-based approaches into the SCL field. The wide success
of neural-based data-driven approaches is greatly justified by the state of the art performance
for many downstream tasks for Sanskrit, namely, segmentation (Hellwig and Nehrdich, 2018;
Reddy et al., 2018; Krishna et al., 2018), dependency parsing (Krishna et al., 2020c; Krishna et
al., 2020a; Sandhan et al., 2021; Krishna et al., 2020b), semantic type identification (Sandhan
et al., 2019; Krishna et al., 2016), word order linearisation (Krishna et al., 2019; Krishna et al.,
2020¢) and morphological parsing (Gupta et al., 2020; Krishna et al., 2018).

The supervised approaches have shown remarkable performance in several downstream NLP
tasks and many of these use word embeddings as a primary component. In 2013, Mikolov et al.
(2013) proposed a new milestone in the field of word embedding, which completely revolutionized
Natural Language Processing (NLP). From there, word embedding has been a buzzword in NLP
and has become part and parcel of downstream applications. These word embedding approaches
adopt a semi-supervised learning paradigm. They do not depend on any explicitly labeled data
or human supervision. Availability of massive unlabelled corpora and ease of integration into
downstream NLP tasks made them exciting for the researchers. Sanskrit, the cultural heritage
of India, has 30 million extant manuscripts (Goyal et al., 2012). Last decade, there has been

21

Proceedings of the Computational Sanskrit and Digital Humanities, 18" World Sanskrit Conference 2023, pages 21-37

much excitement in digitization for Sanskrit, as a result, we have DCS!, The Sanskrit Library?
and GRETIL3. To reduce the labeled data dependency, it’s crucial to take advantage of such
cheaply available resources.

This motivates us to systematically investigate word embedding approaches that are originally
proposed for resource-rich languages like English. Most of the research in NLP disproportion-
ately focuses on resource-rich languages due to readily available language resources: digitized
texts and gold standard labeled data (Joshi et al., 2020). Also, the recent word embedding ap-
proaches have been studied for resource-rich languages such as English. However, such analysis
is lacking for Sanskrit. In addition to the morphological rich nature of language, the Sanskrit
is a relatively free word order language, and most words are compound words (samasa) that
demand special attention for modeling the word embedding approach. To conduct a systematic
study on the efficacy of these approaches, we categorize word embeddings into two categories,
namely, static and contextualized. The static embeddings generate a single representation for
all the senses possible for a word, irrespective of surrounding context words. In contrast to that
contextualized embeddings generate a different representation for each sense of the meaning
depending on the surrounding context words. This work provides fertile soil for investigating
the following questions: (1) Which linguistic phenomenons are captured by word embeddings?
(2) Out of existing word embedding approaches, which embeddings are most suitable for San-
skrit? (3) What are the shortcomings of existing approaches specific to Sanskrit? Based on our
experiments, our major findings are as follows:

1. Our intrinsic evaluation results illustrate that word embedding models trained on Sanskrit
corpus are able to capture exceptionally good amount of the syntactic information. However,
they perform relatively poorly with the semantic notion of relatedness - similarity mainly
due to Out of vocabulary problem.

2. The contextualized word embedding model by Peters et al. (2018) outperforms all the word
embeddings in all the intrinsic tasks with a large margin except semantic categorization
task (Section 5). We employ contextual models without a context to measure efficacy of
these approaches compared to static approaches. Applying conteztualized models without
context is similar to just using their underlying static word representation.

3. The qualitative analysis shows that the contezrtualized representations generated by Peters et
al. (2018) and Lan et al. (2020) for polysemous words indicating the same sense of meaning
forms a cluster for each sense of meaning (Section 6.3). This is indeed a serendipitous
outcome for such data-hungry models when trained on negligibly small amount of corpus
available for Sanskrit.

4. We release our codebase, datasets and models publicly at: https://github.com/jivnesh/
EvalSan. This might help the research community to do further analysis and apply these
embeddings to downstream NLP applications of Sanskrit.

2 Neural Word Embedding

Neural word embedding methods construct vector space so that semantically related words
are projected in closer vicinity compared to unrelated words. Word embedding is a dense
representation of words in low-dimensional vector space. It mainly exploits the distributional
hypothesis: neighboring words share similar meaning (Firth, 1957; Harris, 1954).

As shown in Table 1, we consider the two broader categories of embedding approaches, namely,
static and contextualized. Further, we divide them based on an atomic unit of input fed to the
model, i.e., token level, subword level and character level. First, we consider token level em-
beddings: word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). We consider

"http://www.sanskrit-linguistics.org/dcs/index.php
’https://sanskritlibrary.org/
Shttp://gretil.sub.uni-goettingen.de/gretil.html

22

Category Input level | Models

Static Token Word2vec, GloVe
Subword FastText
Character CharLM

Contextualized | Subword ALBERT

Character ELMo

Table 1: Categorization of embedding models

word2vec as a strong baseline because it is the basic backbone of all the neural-based follow-up
works in this domain. While word2vec focuses on the local context of a target word, GloVe is
an alternative approach that considers the global context of a target word. Therefore, GloVe
can be seen as representative of count-based models; hence we choose to include it in our study.
However, these token-based approaches suffer from two serious issues: (1) Out of vocabulary
(OOV) problem: they fail to obtain representation for words which are not seen during training
(2) Polysemy problem: a single representation for multiple meanings of words. In order to han-
dle the first drawback, sub-word (Wieting et al., 2016; Bojanowski et al., 2017; Heinzerling and
Strube, 2018) and character level (Kim et al., 2016; Jozefowicz et al., 2016) compositional mod-
eling is proposed. These models learn composition functions to obtain word-level representation
of a word using character level or subword level modeling. In the next category, the advent of
contextualized embeddings is attributed to the polysemy problem. The year 2018 is an inflection
point in the field of NLP with the launching of contextualized embedding by Peters et al. (2018,
ELMo). The specific meaning of the word can be understood by the context words surrounded
by it. Hence, in contextualized embedding approach, the representation of each token word is
a function of entire sentence as a input. The emergence of another contextual embedding by
Devlin et al. (2019, BERT) can be seen as a clever recipe of a bunch of excellent ideas bubbled
in the field of NLP in recent years. We consider a derivative of BERT known as ALBERT (Lan et
al., 2020) which is light version of BERT with relatively less number of parameters.

3 System Description

Tokenizer: Token-based word embeddings such as word2vec and GloVe suffer from OOV
problem, i.e., they are not capable of producing vector representation for words that are not
seen during training. Here, word is defined as a continuous unsandhied string separated by
delimiter. This problem is even more prominent for Sanskrit due to the following reasons: (1)
morphological-rich nature (2) highly inflectional (3) most of the text is available in sandhied
format. Hence, token-based approaches are highly ineffective for Sanskrit. We take inspira-
tion from Heinzerling and Strube (2018) and leverage sentencepiece tokenizer (Kudo and
Richardson, 2018) to overcome OOV problem. The sentencepiece is unsupervised tokenizer
used for neural-based tasks such as machine translation and sequence generation task. This
is a purely data-driven tokenizer and does not require any pretokenization. Also, this is lan-
guage independent approach where words are considered as a sequence of unicode characters.
The sentencepiece overcomes the challenge as mentioned earlier by creating a new vocabu-
lary instead of relying on real word boundaries. This method uses a greedy approach to figure
out subword units that maximize the likelihood of the language model (Kudo and Richardson,
2018). There exist other unsupervised tokenizers such as Wordpiece (Wu et al., 2016) and BPE
(Sennrich et al., 2016). However, these approaches expect tokenized words as input and most
of the available text for Sanskrit is in sandhied format. Hence, sentencepiece is the most
befitting choice as a tokenizer. We demonstrate sentencepiece tokenization with an example

23

as shown below.* Here, sentencepiece considers space character as a normal character and is
replaced by “__” character. Note that mana_bhava is a word in our newly generated vocabulary,
originally part of two words.

Sandhied sentence (original)
man-mana bhava mad-bhakto mad-yaji mam namaskuru
mam evaisyasi yuktvaivam atmanam mat-parayanah

Segmented by sentencepiece tokenizer
__man - mana__bhava __mad -bhakto __mad - yaji __manm _ namas kuru
_mam __evai syasi _ yukt vaivam __atman am __mat - parayan ah

3.1 Static Embeddings

Word2Vec: The work of Mikolov et al. (2013) is a new milestone in the field of word embed-
dings and popularly known as word2vec. This work was the basic backbone of the neural-based
word embedding approach, which led to many of word embedding variants tackling various
challenges. This model exploits the distributional semantics hypothesis: “semantically similar
words are used in similar contexts” (Firth, 1957; Harris, 1954). Word2vec often considered as
one of the seminal the deep learning models; however, technically, neither the architecture is
deep, nor the model uses non-linearities. It adapts language modeling objectives to consider
the additional context. Language modeling is the task where the next word is predicted given
previous n words. However, word2vec also considers next n words as a context. The basic
intuition behind this model is to project the words into n dimensional vector space such that
semantically similar words are placed in closer vicinity than non-similar words. In other words,
the dot product of similar (cosine similarity) words will be higher compare to that with non-
similar words. In order to obtain geometric organization of words, authors propose two training
methods: (1) Continuous Bag of Words (CBOW) (2) Skip-gram. While the CBOW uses context
words to predict the target word, skip-gram predicts context words given the target word as
an input. Note that context is considered as a window of n words surrounding target word
from forward and backward direction. Unlike prior sparse representations, these learned vector
representations are dense vectors of dimension ranging from 50-1000 and these dimensions do
not have clear semantic interpretation.

GloVe: Prior to Mikolov et al. (2013), count-based models were prominent in the word em-
bedding field. These count-based models (Bengio et al., 2003; Collobert and Weston, 2008;
Collobert et al., 2011) are explicitly designed to model the global statistics of a entire corpus.
Predictive models such as word2vec solely focus on the target word’s local context. To gain the
best of two worlds, Pennington et al. (2014) proposed an alternative word embedding technique
that integrates global statistics via matrix factorization and local context via the sliding window
method. This approach focuses on the co-occurrence of each word with all other words in the
entire corpus, therefore called Global Vectors (GloVe). For the unsupervised models, the pri-
mary source of information to learn word representation is corpus statistics. However, how to
exploit corpus statistics to generate word representations is an interesting problem. Pennington
et al. (2014) show that the ratio of co-occurrence probabilities of words is more indicative of
their relation than a direct co-occurrence probability . Although, GloVe does not use neural
network, Levy et al. (2015) consider it as a predictive model due to following reason: Unlike
other count-based models, GloVe use the Stochastic Gradient Descent (SGD) optimization for
non-convex objective function. The GloVe outperforms it’s peer models (including word2vec)
in several intrinsic and extrinsic evaluation tasks. The model works well with a small-sized
corpus but is highly scalable to a larger corpus. Although the model demands much memory to
populate the co-occurrence matrix in large corpora, the authors term it as a “one-time, up-front
cost”.

4Originally, we apply tokenization on SLP1 transliterated data. Just to illustrate, we show an example in the
romanized (IAST) transliteration scheme.

24

FastText: Token-level embeddings like word2vec and GloVe suffer from Out of Vocabulary
(OOV) problem. That means these models cannot generate vector representation for words
that are not present in vocabulary. For example, even if model learns embeddings for pacika
and bharyah, it will not be able to handle the word pacikabharyah, if it is not a part of vo-
cabulary. Hence, such approaches could not serve the need of morphologically rich languages.
Also, the model is not capable of handling different possible inflections of a word (for exam-
ple, ramah, ramabhyam, ramasya) if such inflectional variants are not a part of the vocabulary.
Hence, to overcome these shortcomings, Bojanowski et al. (2017, FastText) proposed a new
word embedding technique, specifically, for learning reliable representations for OOV words. To
accomplish this, the authors propose to incorporate subword level information into the model.
While learning vector representation of target word, simultaneously, representations of all n-
grams (n varies from 3 to 6) are also learned. For example, for n=4, the possible 4-grams of a
word ajnanam are <ajn, jiana, nanam, anam>. The brackets are used for padding purposes
to indicate the beginning and end of the word. With this modification, the training procedure
similar to word2vec is applied. This subword level representation learning empowers the model
to generate a representation for OOV words by simply summing representations of n-grams cor-
responding to the target word. FastText has been shown to improve performance on syntactic
word analogy tasks, especially in the case of morphologically rich languages.

CharLM: Kim et al. (2016, CharLM) proposed a new variant of language model that learns sub-
word information through a character-level convolutional neural network (CNN). In a standard
neural language modeling setting, the model takes word-level vector representation as input and
predicts word-level information. This modeling decision makes the model blind to subword in-
formation. For example, the inflected forms of a root word should have structurally similar word
embeddings because they shared common sub-strings except for affixes. Therefore, to capture
subword level information, CharLM takes a character-level input and learns composition function
to generate word-level representation. This is achieved by extracting the features from CNN
followed by a highway network. Finally, these extracted features are fed to a long short-term
memory (LSTM) recurrent neural network language model to make word-level predictions. Kim
et al. (2016) argues that without using word embeddings as input to the language model, their
model gets the additional advantage of fewer parameters with competitive performance. Also,
they show that the model is capable of encoding both semantic and orthographic information.

3.2 Contextualized Embedding

Each word has multiple meanings and their uses highly depend on the context they are used.
However, irrespective of context, traditional approaches give a single vector representation for
a word. Therefore, traditional word embeddings are called static embeddings. For example,
there are two possible meanings of a word cakri: (1) a potter (2) the holder of the disc and its
uses highly depends on the context. In order to solve this polysemy problem, contextualized
embeddings like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) are proposed. In
literature, there exists two domains for applying language representations to downstream tasks,
namely, feature-based and fine-tuned. The feature-based approach simply augments the learned
representation into the task-specific model architecture and well-known example in this category
ELMo. A fine-tuned approach such as BERT, integrates pretrained model architecture into task-
specific model and trains all the parameters, including the pretrained component. The emergence
of these embeddings is described as a beginning of a new era in a word embedding. Their
exceptional popularity in the field launched many of contextualized embedding variants. Hence,
we include ELMo and ALBERT (A Light BERT: derivative of BERT model with significantly less
number of parameters) (Lan et al., 2020) in our study. From an architectural point of view,
ELMo belongs to LSTM based language model family and ALBERT belongs to the transformer-
based language model family.

25

ELMo: Unlike traditional static word embeddings, ELMo computes a representation of each
token word as a function of all the words in a sentence. Authors employ the language modeling
objective; hence, these representations are also called as ELMo (Embeddings from Language
Models). There are three salient features of ELMo: (1) contextual: the word representation
depends on surrounding context words (2) deep: the word representation is weighted average of
all the layers of model architecture (3) character based: character based modeling enables model
to encode morphological clues to obtain robust representations for OOV words, especially, for
languages with rich morphology. Prior state of the art neural language models (Kim et al.,
2016; Jozefowicz et al., 2016) takes context-independent token-level representation as an input
to forward language modeling objective where next word is predicted based on previous n words.
Similarly, the backward language model predicts a word given n following words, i.e., precisely
opposite to the forward model. ELMo coupled both forward and backward language model
objective function together. Through ablations and intrinsic evaluation experiments, authors
discover that higher-level layers in model architecture capture semantic properties and lower-
level layers are syntactic. They show that a linear combination of internal representation helps
obtain a rich representation, which is a better decision over just using top layer representation.
Simultaneously providing enriched representation via a weighted linear combination of all layers,
the model can choose the most relevant features for specific downstream tasks.

ALBERT: BERT is blend of several clever ideas that has been emerging in the field of NLP
such as semi-supervised learning (Dai and Le, 2015), ELMO (Peters et al., 2018), ULMFIT (Howard
and Ruder, 2018) and Transformer (Vaswani et al., 2017). The foundational concept used in
BERT is a transformer architecture popularized by Vaswani et al. (2017). Inspired from Howard
and Ruder (2018, ULMFIT), BERT adopts the fine-tuning approach to augment learned contextual
representation in downstream applications. Authors argue that the previous language represen-
tations are unidirectional language modeling objective and this choice limits the model to learn
effective representations. First, ELMo from the LSTM family demonstrated the effectiveness of
a bidirectional language modeling for learning enriched representations. Suppose we introduce
bidirectional language modeling into a transformer with a vanilla language modeling objective.
In that case, the problem will become trivial and it will not be possible to learn robust rep-
resentations. Therefore, to tackle this challenge, authors adapt a vanilla language modeling
objective to a masked language objective. Here, instead of predicting the next word from previ-
ous n words, the model masks a few words from a sentence and learns to recover masked words
from the remaining words. This is also called a denoising objective. In this way, BERT can take
advantage of the surrounding context from both sides simultaneously.

This data hungry model reports the state of the art results in many downstream tasks on the
leaderboard at the expense of huge parameters. Despite the great success of BERT, it is highly
impractical to train such a monstrous model with limited available resources for Sanskrit. For
example, BERT-base has 110 million trainable parameters, making it computationally very in-
tensive and nearly impossible to train on consumer devices. Therefore, we choose a derivative
of BERT called as ALBERT, a light BERT, which has significantly few parameters than traditional
BERT model with significantly better performance. The authors achieved this by making three
key changes to the original BERT’s architecture. First, they factorize the large vocabulary em-
bedding matrix used in BERT into two smaller ones such that dependency on the size of hidden
layers is obliviated from the size of vocabulary embeddings. Second, they apply cross-layer pa-
rameter sharing. This way, the parameters are shared for similar sub-segments, thus ensuring
that parameters are learned only once and are then reused for the subsequent blocks. This
significantly reduces the number of trainable parameters in the model. Lastly, they propose a
new inter-sentence coherence task called Sentence Order Prediction, instead of using original
BERT’s Next Sentence Prediction (NSP). NSP is a binary classification loss that was specifically
created to improve performance on downstream NLP tasks. In summary, the ALBERT model is
found to have 18x fewer parameters than BERT-1large and trains 1.7x faster while achieving the

26

state of the art results on many downstream tasks. This model is an important breakthrough
as it brings the capabilities of BERT to a more practical and usable form that can be useful for
real-world applications.

4 Intrinsic Evaluation

To evaluate the quality of the embedding model, two primary methods are proposed in literature:
(1) Intrinsic evaluation (2) Extrinsic evaluation. Intrinsic evaluation refers to the class of meth-
ods to measure the quality of vector space without evaluating them on downstream tasks. For
example, semantic similarity is the most traditional method to evaluate meaning representations
intrinsically. On the other hand, extrinsic evaluation refers to the class of methods to assess
the quality of vector representation when fed as an input to the machine learning-based model
in the downstream NLP task. The wide range of NLP tasks that deals with lexical semantics
such as chunking, part of speech tagging, semantic role labeling and named entity recognition
can be used for the extrinsic evaluation. In this work, we restrict our study to intrinsic tasks.
Intrinsic evaluation directly checks for syntactic and semantic properties of words (Mikolov et
al., 2013; Baroni et al., 2014). These tasks rely on query inventory datasets consisting of a
query word and semantically related target word. These query inventories are readily available
for resource-rich languages but not for Sanskrit. We create such inventories for four different
intrinsic tasks: relatedness, synonym detection, analogy prediction, and concept categorization.
For creating such query inventory dataset for these intrinsic evaluation tasks, we use Amarakosa®
(Nair and Kulkarni, 2010), Sanskrit WordNet® (Kulkarni, 2017) and Sanskrit Heritage Reader”
(Goyal and Huet, 2016; Huet and Goyal, 2013). In extrinsic evaluation, feature extracted by
word embeddings is fed as an input to downstream NLP task and corresponding performance
metric is used as an indicator to compare across different embedding approaches. Although this
family of evaluation methods gives signal on the relative strength of different word embedding
approaches, it needs not be considered a general proxy for overall quality.

Relatedness: It is essential to distinguish between the notion of relatedness and synonyms
(Agirre et al., 2009). Synonym words share many semantic properties and they can be sub-
stituted with each other without changing the meaning of the sentences. On the other hand,
semantically related words can co-occur in the same context or document and share any one
semantic relationship such as meronymy or antonymy. Unlike synonym words, we can not sub-
stitute related words in place of each other. The notion of semantic relatedness between word
pairs is one of the fascinating concepts in lexical semantics with a variety of NLP applications
(Pilehvar and Camacho-Collados, 2020). This task is considered as an in-vitro evaluation frame-
work for judging the quality of word embeddings. The word pairs are annotated based on the
degree of relatedness on a numerical scale by human annotators for evaluating semantic relat-
edness. For example, the distance between the paricarika and vaidya in the numerical scale
from 0 to 3 could be 2.5 because both words belong often found together. Similarly, the human
judgment score for word pair pradhyapaka - karkati could be 0.5 because these two words do not
share any semantic property. The word embedding performance is then evaluated by assessing
the correlation between the average scores assigned by annotators and the cosine similarities
between corresponding vector representations.

For the construction of such human-annotated test data for the new target language, a stan-
dard methodology is followed in the literature (Camacho-Collados et al., 2015). It is divided into
two steps: (1) English word pairs of a standard English dataset are translated into the target
language (2) language experts annotate these word pairs. For the English language, the dataset
popularized by Hassan and Mihalcea (2011, WordSim353) has 353 word pairs with a human re-
latedness score. However, this dataset is criticized due to the human judgment criterion, which

Shttps://sanskrit.uohyd.ac.in/scl/amarakosha/index.html
Shttps://www.cfilt.iitb.ac.in/wordnet/webswn/index.php
"https://sanskrit.inria.fr/DICO/reader.fr.html

27

conflates similarity and relatedness. Another alternative is RG-65 (Rubenstein and Goodenough,
1965) dataset. In addition, we find that many words such as automobile, cushion, autograph etc.
can not be naturally translated into Sanskrit. Therefore, we use Amarakosa to get word pairs
due to its systematic organization of semantically related words. Here, synonymous words are
categorized into synsets and semantically related words into varga. Therefore, we decide to select
the word pairs from Amarakosa. This choice obliviates the need for translation and annotation
of word pairs into Sanskrit. We exploit systematic categorization based on relatedness presents
in the Amarakosa. We transform the relatedness task into a classification task where the task
is to categorize word pairs into three classes based on cosine similarity scores between vector
representations generated by corresponding embeddings. For selecting word pairs, we follow the
following procedure. First, we sample 13,500 word pairs in such a way that an equal proportion
of word pairs are selected from the following classes : (1) word pairs from the same synset (2)
word pairs from same varga but not from the same synset (3) and the remaining word pairs such
that each word from a word pair belongs to different varga. Out of 13,500, we use 4,500 word
pairs as the development and remaining word pairs in the test set. We use a development set to
find out cosine similarity thresholds to classify word pairs into respective classes. Here, we use
the macro F-score as an evaluation metric to measure the performance.

Synonym Detection: Synonym detection (Baroni et al., 2014; Bakarov, 2018) is a task where
the goal is to find the synonym of a given target word from the four synonym candidates. In
this multiple-choice setting, a single answer is correct. For example, for target suryah, synonym
candidates are adityah (correct), caficala, candrah and akasa. Here, we choose an option as a
correct answer which shows the highest cosine similarity with the target word. We use accuracy
as a metric to measure performance. We leverage Amarakosa (Nair and Kulkarni, 2010) synsets
to build MCQs. It has 4,056 synsets categorized into 25 vargas. Out of 4,056, only 2,581 synsets
have more than one element. We choose a word pair from each such synset, assign one word as
the target word and another word as the correct answer. Then, for the remaining options, we use
three words from the same wvarga but not from the synset where the target word belongs. The
primary motivation of such a choice is that words belonging to the same wvarga are semantically
related and picking such related words as synonym candidates make the task more interesting
and challenging. Our test data has 3,034 MCQs. We consider accuracy as an evaluation metric
for this task.

Analogy Prediction: The analogy prediction task popularized by Mikolov et al. (2013), a
question is framed with word pairs exhibiting similar sense. For example, “If kapi is similar to
kapibhyam then in the same sense yati is similar to ...” Authors propose that a simple algebraic
operations suffice to answer these analogy questions. In above example, in order to find similar
word for yati, we need to calculate X = vector(“kapibhyam”) — vector(“kapi”) + vector(“yati”).
Then, we find the nearest neighbour to X as per cosine similarity metric and use it as answer
to question.

To probe the information encoded in word embeddings, we build a comprehensive set of syn-
tactic and semantic questions as illustrated in Table 2. We use the Sanskrit Heritage Reader
(Goyal and Huet, 2016; Huet and Goyal, 2013) for generating syntactic questions. We consider
the primary conjugation table for verbal root words and the declension table for nominal words
for syntactic analogies. For conjugations, there are 10 families and popularly also called as
ganas. Fach gana is further divided into parasmaipadi and atmanepadi. Out of these 20 fami-
lies, we choose 3 representative candidates to generate primary conjugations such that most of
the inflectional variations are covered. Similarly, nominal words are broadly divided into ajanta
and halanta. Further, they are divided based on gender and the end of root words (for example,
akaranta, ukaranta, nakaranta, jokaranta etc). In this way, we consider 25 fine-grained families
for nominals. From each family, we select 3 representative words. Words occurring in same
family display similar inflections variations. Therefore, to make questions, we strictly choose

28

Relationship Word Pair 1 Word Pair 2

declension kapi kapayah yati yvatayah

conjugation ci aciyetham as adyetham
absolutive dr dirtva as asitva
infinitive dr daritum as aditum

husband - wife visnuh laksm1 ramah sita

son - father rama dasaratha abhimanyu arjuna
daughter - father parvati himavan sita janaka
charioteer - warrior daruka krsna Salya karna
defeated - victorious kicaka bhima ravana rama

son - mother krsnah vasoda ramah kausalya

Table 2: Examples of syntactic (top) and semantic (bottom) questions in our test set

word pairs from the same family where the inflectional component belongs to the same position
in the conjugation/declension table. For semantic questions, we extract semantic relation from
Amarakosa (Nair and Kulkarni, 2010), Ramayanam and Mahabharatam.® In semantic relation-
ships, we consider six categories: husband - wife, son - father, daughter - father, charioteer -
warrior, defeated - victorious, and son - mother. There are 6,415 semantic and 10,000 syntactic
questions. We only consider single token words in our test set. We use accuracy as a metric to
measure the performance. We evaluate accuracy separately for semantic and syntactic questions.

Categorization: As the name suggests, categorization is an evaluation task where the goal
is to group nominal sets of concepts into natural categories (Baroni et al., 2014). For example,
narmada, godavari, kaveri and garnga fall under the names of river category. This task is treated
as an unsupervised clustering task where word representations are clustered into n clusters (n
is the total number of gold standard categories). Here, performance is evaluated in terms of
purity. This metric represents the degree to which elements from the single gold standard
category belong to the same cluster. If unsupervised clustering exactly replicates the gold
standard clusters, then the purity score reaches 100%. Otherwise, it decreases based on the
inability to replicate gold standard partitions.

Following Baroni and Lenci (2010), we construct a test set of 15 common categories picked
from Amarakosa. We exploit the ontological classification of Amarakosa based on Vaisesika
ontology. Amarakosa is also marked with semantic relations between words. These relations
are mainly classified into hierarchical and associative. We use hierarchical relations such as
hypernymy - hyponymy and holonymy - meronymy for this task. In each category, we select
up to 10 concepts. Our categorization data contains the following categories: vadyopakaranam,
vrttih, grahah, devata, pasuh, paksi, nadi, vrksah, upakaranam, abharanam, alaukikasthanam,
vahanam, parvatah, vrksaphalam and puspam. We also build a separate test set consisting of 45
syntactic categories where each category is made up of 25 concepts.? Each category represents
a particular morphological class.

5 Experiments

Corpus: Our corpus contains texts from the Digital Corpus of Sanskrit (DCS), scraped data
from Wikipedia and Vedabase corpus.'® The number of words in each section is 3.8 M, 1.7
M, and 0.2 M, respectively. DCS and Vedabase are segmented, but the Wikipedia data is

8We extract word pairs holding specific relation from wikipedia.
9More details can be found at: https://github.com/jivnesh/EvalSan
10We use SLP1 transliteration scheme for training all the models.

29

unsegmented. We use this data for training all the embedding models. Most of the data in our
corpus is in the form of poetry.

Hyper-parameters: For tackling OOV problem faced by token-based embedding models such
as word2vec and GloVe, we leverage sentencepiece tokenizer with 32,000 vocabulary size. We
train word2vec and GloVe on sentencepiece segmented corpus. We employ following hyper-
parameter settings for word2vec and GloVe : the embedding dimension size of 300, window size
as 11, minimum word count for vocabulary as 1 and the number of epochs equal to 80. We keep
all the remaining parameters same as used by original authors of the respective works. Next,
we use raw sentences (instead of using sentencepiece tokenized data) for training FastText
and CharLM. We use following hyper-parameter setting for FastText : the embedding dimen-
sion of 300, window size of 11, the number of epochs 80, the minimum count for deciding
vocabulary equals to 6, negative sampling loss with 5 negative samples, the learning rate as
0.025, minimum length of n-grams as 3 and maximum length of n-grams as 11. For CharLM,
we use default parameters of small model architecture as Kim et al. (2016).!! For ELMo, we use
hyper-parameter settings of small model architecture.'? For ALBERT, we use the same hyper-
parameters as albert-base-V2 model architecture except vocabulary size of 32,000 and the
number of hidden layers equal to 6.

Results: Table 3 reports results on all the intrinsic tasks. We evaluate contextual models
without context to assess how effective they are when compared with static models. Apply-
ing contertualized models without context is similar to just using their underlying static word
representation. ELMo outperforms all the models in all the intrinsic tasks with a large margin
except the semantic categorization task. Surprisingly, with limited training data, the contex-
tualized ELMo model achieved impressive overall performance compared to static models across
all intrinsic tasks. The subword level segmentation with the sentencepiece model empow-
ered the word2vec and GloVe to such an extent that they outperform FastText in analogy
prediction tasks and on par in the remaining tasks. For resource-rich languages, ALBERT have
shown the state of the art performance on many evaluation tasks. However, despite a thorough
hyper-parameter search, the performance of ALBERT could not compete with static models. This
may be due to a lack of massive training data. Similarly, except relatedness and syntactic
categorization, CharLM model shows low performance with a large margin.

Relatedness Categorization Similarity Analogy

Model f-score syn sem acc syn sem
word2vec 30.90 0.22 0.41 37.34 30.65 11.01

GloVe 31.50 0.25 0.39 37.41 30.04 14.01
FastText 31.20 0.14 0.47 37.87 16.65 6.01
CharLM 35.21 0.33 0.28 35.94 2.11 0.03

ELMo 37.17 0.86 0.41 42.15 56.80 32.70
ALBERT 33.00 0.27 0.34 32.70 25.86 0.10

Table 3: Results on intrinsic evaluation tasks. For similarity and analogy prediction tasks, we
use accuracy (acc) in terms of percentage as the evaluation metric, purity for categorization and
f-score for the relatedness task. The syntactic and semantic tasks are denoted by syn and sem
keywords, respectively.

"https://s3.amazonaws . com/models.huggingface.co/bert/albert-base-v2-config. json
2https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_
2x1024_128_2048cnn_1xhighway_options.json

30

6 Analysis

6.1 Error Analysis

We conduct a detailed analysis of prominent mistakes done by the word embedding models. For
the analogy prediction task, we find that all the models fail to correctly predict analogy questions
where the root word gets modified while adding the affix to the root word. For example, in this
analogy question (lip : lepsyamahe :: gur : gorisyamahe) while adding syamahe the root gets
modified. On the other hand, all the models perform surprisingly well for analogy questions
where affix is added without modifying root word ($ak : Saknutam :: dagh : daghnutam).
In the incorrect answers of the subword enriched FastText model, at least the root word is
predicted correctly. CharLM performs the worst among all models and the predictions made by
the model seem almost random with no relation to the root word or the suffix. CharLM learns a
character level composition function to generate word-level representation. Therefore, it often
predicts the correct root with an incorrect suffix or no suffix. While in the case of syntactic
analogy prediction task, the GloVe and word2vec perform comparably. However, the improved
performance of GloVe at semantic analogy task can be attributed to consideration of the global
statistics of word occurrences. We observe that all the embedding models majorly get those test
cases correct for similarity and relatedness tasks, which have words already present in the model
vocabulary. This indicates that these models are only capable of generating representation for
OOV words based on orthographic similarity and fail to capture semantic meanings. Specifically,
around 55% words present in the relatedness test set are OOV words.!?

6.2 Qualitative inspection for rare word

We analyze the word representations captured by different models. We consider contextualized
models also in this experiment. We use contextual models without a context to assess how
effective are they when compared with static models. Applying contextualized models without
context is very similar to just using their underlying static word representation. For systematic
investigation, we choose three representative words from following categories: (1) In Vocabulary
words (2) Out of Vocabulary words. Table 4 illustrates the top three nearest neighbors based
on cosine similarity between embeddings learned by different models. For frequently occurring
words present in vocabulary all the embeddings except CharLM and ALBERT are able to capture
lexical meaning. The quality of nearest neighbour candidates of CharLM and ALBERT is relatively
poor compared to other models. We suspect that the possible reason for this behaviour may
be due to less amount of training data. The subword level modeling in word2vec, GloVe and
FastText makes these models more inclined to find words which are orthographically similar.
For these models, the representations seems to depend on surface string. For example, the
nearest neighbours of nityam and sukham are very close in terms of edit distance. On the other
hand, ELMo not only captures semantic level features but also orthographic features. This is
very well evident from the following examples. The nearest neighbours produced by ELMo for
nityam and sukham are lexically similar but orthographically different in terms of edit distance.
However, the nearest neighbours of tabhyam exhibits suffix similarity. The last three words
are OOV where ahham, bahuhuni are words with incorrect spelling and sahasra-cakso is the
compound word. For OOV words also similar trend holds. We generate representation for
OOV for word2vec and GloVe using sentencepiece tokenizer. This tokenizer breaks OOV into
subwords available in sentencepiece model vocabulary and representation of OOV word is sum
of representations of these segmented subwords.

6.3 Qualitative inspection of contextualized embeddings

To investigate the contextualized nature of ELMo and ALBERT, we analyze the vector represen-
tation (using PCA to project the vectors into 2D space) of a two polysemous words in different

3Here, OOV referred as words which are not seen during training of embedding model.

31

word2vec

GloVe

FastText

CharLM

ELMO

ALBERT

Vocabulary words OOV words
nityam sukham tabhyam ahham bahuhuni sahasra-cakso
nityam-eva sukhamayam avabhyam allah manini pracaksva
nityamiti duhkham dvabhyam ahne sani suparnah-ca
sada sukha-duhkham taya ahrasat curnitani pracaksmahe
nityamiti sukhamayam adhikaribhyam allah bahu tat-ca-eva
nityam-eva duhkham parsnibhyam ahne behula tatha-ca
sada duhkhameva janghabhyam ahnuvi behulayah yat-ca-eva
sada su-sukham tayoh simham bahuni sahasralamntra
satatam dubkham tau tam mandmatyoh sahasra-krtvas
nitya-snayl sukha-duhkham caksudbhyam yatha-aham bahavah-tatra sahasra-vedht
stediyam somam sabhayah 1dyam vatsyati paryatanasthalesu
samsayam saudham nyayasabhayah brhantam yotsyati nasta-samjiah
yapayan homam hastabhyam gayam setsyati caksusasya-antare
martyam sakham nabhyam arham vilasini ajata-Satro
nistham kulam yabhyam ankam mattakasini sahasra-§irsa
yugyam sukham bhubhyam andham januni ahu-rupah
danam satam ardham ahrasam ityadini urdhva-ge
loke padam mandam allah hrasani sahasra-§1rsa
bhavita ksayam dhairyam ahnuthah mamdiram sarva-mahiksitam

Table 4: Nearest neighbours (based on cosine similarity) for in vocabulary and OOV words for
the models trained on Sanskrit corpus. Last three words are OOV words. We use contextual
models without a context. Applying contextualized models without context is very similar to
just using their underlying static word representation.

F
15 # 6
10 4
»
2
~N 5 :(‘
<
o o
g a 0
0] el Jo’l
5 »
-4
-10 6 #
75 -50 -25 00 25 50 75 100 -4 -2 0 2 4 6 8
PCA 1 PCAl

(a)

Figure 1: Projection of contextualized representation (the left side : ELMo and the right side
ALBERT) for different sense of polysemous word cakri denoted by following sentences: (1) cakri
myrda jalena ca kumbhanirmane visaradah (2) cakri kevala jala mrd cakra upajiwakah (3) cakry
cakrasya upari mrdah kumbham nirmati (4) svahaste bibharti sudarsanam sa cakri (5) sudarsa-
nena cakri Sisupalam jaghana (6) raksobhyah svabhaktan tratum cakri sudarsanam bibharti.

context. In this experiment, each test case consists of 6 sentences in Sanskrit such that all sen-
tences have one common polysemous word. Out of 6 sentences, 3 sentences represent one sense
of meaning and the remaining represent another sense of meaning for that common polysemous

32

15] 6
¢ 6
10 4
5
2
~ 5 ~
< <T
g 2 g o0
o1 5 s
_2 a
» 1
_5 - _4
é #
-5 0 5 10 -4 -2 0 2 4 6 8
PCA 1 PCAL

(a) (b)

Figure 2: Projection of contextualized representation (the left side : ELMo and the right side
ALBERT) for different sense of polysemous word harih denoted by following sentences: (1) vayusu-
tah harih vanaranam tosam vavardha (2) sugrivah nama harih vanaranam raja asit (3) va-
naranam vrddhah harih jambavan (4) harih baleh trailokyasampadam chalena jahara (5) harih
hiranyaksam nihatya devatanam khedam jahara (6) harih rukminim jahara pasyatam

word. Ideally, contextualized word vectors representing the same sense of meaning should form
a cluster. For the polysemous word cakri, we consider two senses of meaning, namely, potter and
the Lord Visnu. This test set consists of 6 sentences as follows: (1) cakri mrda jalena ca kumb-
hanirmane visaradah (2) cakri kevala-jala-myrd-cakra-upajiwvakah (3) cakri cakrasya upari mrdah
kumbham nirmati (4) svahaste bibharti sudarsanam sa cakri (5) sudarsanena cakri $isupalam
jaghana (6) raksobhyah svabhaktan tratum cakri sudarsanam bibharti. For the first three sen-
tences, the sense of the meaning of the word cakr? is a potter and for the remaining sentences,
the sense of meaning is the Lord Visnu. Figure 1 illustrates visualization of polysemous word
cakri. Here, we observe that the contextualized representation indicating the same sense of
meaning are clustered together. Similarly, we consider another polysemous word harih consists
of two senses of meaning, namely, monkey and the Lord Visnu. (1) vayusutah harih vanaranam
tosam vavardha (2) sugriwah nama harih vanarapam raja asit (3) vanarapam vrddhah harih
jambavan (4) harih baleh trailokyasampadam chalena jahara (5) harih hiranyaksam nihatya de-
vatanam khedam johara (6) harih rukminim johara pasyatam. In Figure 2, we find the similar
trend for this test case. The qualitative analysis suggests that the contextualized representations
generated by Peters et al. (2018) and Lan et al. (2020) for polysemous words indicating the same
sense of meaning forms a cluster for each sense of meaning (Section 6.3).

7 Conclusion and future work

In this work, we focused on evaluating word embedding approaches (initially proposed for
resource-rich language English) for the Sanskrit language. Word embedding helps to trans-
fer knowledge learned from readily available unlabelled data for improving the task-specific
performance of data-driven approaches. We investigat the effectiveness of word embedding ap-
proaches for Sanskrit. To facilitate systematic experimentation, we classify word embeddings
in the broad categories and evaluated on 4 intrinsic tasks, namely, relatedness, categorization,
similarity identification and analogy prediction tasks. This work can be considered as the fertile
soil for investigating the following questions: (1) Which linguistic phenomenons are captured
by word embeddings? (2) Out of existing word embedding approaches, which embeddings are
more suitable for Sanskrit? (3) What are the shortcomings of existing approaches specific to
Sanskrit? Surprisingly, with limited training data, the Peters et al. (2018) achieved impressive
overall performance compared to static models across all intrinsic tasks. The qualitative analysis

33

suggests that the contextualized representations generated by Peters et al. (2018) and Lan et al.
(2020) for polysemous words indicating the same sense of meaning forms a cluster for each sense
of meaning (Section 6.3). This is indeed a serendipitous outcome for such data-hungry models
when trained on negligibly small amount of corpus available for Sanskrit.

There are many limitations to this study. While in this work, we restrict our study to intrinsic
evaluation tasks for the standard word embedding approaches with their default setting. We
plan to extend this work on extrinsic evaluation tasks as well. Moreover, to get substantial
empirical evidence on linguistics phenomenons captured by these models, we plan to evaluate
them for context-sensitive tasks similar to Pilehvar and Camacho-Collados (2019). We find that
all the models perform poorly on relatedness and similarity tasks since most of the words present
in these evaluation test data are OOV words. However, these models perform relatively well for
the words present in model vocabulary. This observation suggests investigating: What is the
effect of the corpus size? We currently train our models with around 5 million tokens, which
is negligible compared to the 840 billion tokens used by the resource-rich language models. We
plan to investigate on applicability of the existing multi-lingual pretrained models for Sanskrit.

Acknowledgements

We are grateful to Amba Kulkarni for the discussion related to evaluation task decisions. We
thank A V'S D S Mahesh for helping us with the data preparation step. We thank the anonymous
reviewers for their constructive feedback towards improving this work. The TCS Fellowship
supports the work of the first author under the Project Number TCS/EE/2011191P.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pagca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distributional and WordNet-based approaches. In Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 19-27, Boulder, Colorado, June. Association for
Computational Linguistics.

Amir Bakarov. 2018. A survey of word embeddings evaluation methods.

Marco Baroni and Alessandro Lenci. 2010. Distributional memory: A general framework for corpus-based
semantics. Computational Linguistics, 36(4):673-721.

Marco Baroni, Georgiana Dinu, and German Kruszewski. 2014. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
238-247, Baltimore, Maryland, June. Association for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic
language model. The journal of machine learning research, 3:1137-1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:135-146.

José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. 2015. A framework for the
construction of monolingual and cross-lingual word similarity datasets. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pages 1-7, Beijing, China,
July. Association for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, page 160-167, New York, NY, USA. Association for Computing
Machinery.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12(null):2493-2537,
November.

34

Andrew M. Dai and Quoc V. Le. 2015. Semi-supervised sequence learning.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

John R Firth. 1957. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis.

Pawan Goyal and Gérard Huet. 2016. Design and analysis of a lean interface for sanskrit corpus anno-
tation. Journal of Language Modelling, 4:145, 10.

Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph Bunker. 2012. A distributed
platform for Sanskrit processing. In Proceedings of COLING 2012, pages 1011-1028, Mumbai, India,
December. The COLING 2012 Organizing Committee.

Ashim Gupta, Amrith Krishna, Pawan Goyal, and Oliver Hellwig. 2020. Evaluating neural morphological
taggers for Sanskrit. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 198-203, Online, July. Association for Computational
Linguistics.

Zellig S Harris. 1954. Distributional structure. Word, 10(2-3):146-162.

Samer Hassan and Rada Mihalcea. 2011. Semantic relatedness using salient semantic analysis. In
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAT'11, page 884-889.
AAAT Press.

Benjamin Heinzerling and Michael Strube. 2018. BPEmb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of the FEleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki, Japan, May. European Language Resources Asso-
ciation (ELRA).

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recurrent
and convolutional neural networks. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2754-2763, Brussels, Belgium, October-November. Association for
Computational Linguistics.

Oliver Hellwig, Salvatore Scarlata, Elia Ackermann, and Paul Widmer. 2020. The treebank of vedic
Sanskrit. In Proceedings of the 12th Language Resources and Fvaluation Conference, pages 51375146,
Marseille, France, May. European Language Resources Association.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 328-339, Melbourne, Australia, July. Association for Computational Linguistics.

Gérard Huet and Pawan Goyal. 2013. Design of a lean interface for sanskrit corpus annotation. 12.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. 2020. The state
and fate of linguistic diversity and inclusion in the NLP world. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 6282—6293, Online, July. Association
for Computational Linguistics.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. 2016. Exploring the
limits of language modeling.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-aware neural language
models. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAT’16, page
2741-2749. AAAT Press.

Amrith Krishna, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar, and Pawan Goyal. 2016.
Compound type identification in Sanskrit: What roles do the corpus and grammar play? In Proceedings
of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016),
pages 1-10, Osaka, Japan, December. The COLING 2016 Organizing Committee.

35

Amrith Krishna, Pavan Kumar Satuluri, and Pawan Goyal. 2017. A dataset for Sanskrit word segmen-
tation. In Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Literature, pages 105-114, Vancouver, Canada, August.
Association for Computational Linguistics.

Amrith Krishna, Bishal Santra, Sasi Prasanth Bandaru, Gaurav Sahu, Vishnu Dutt Sharma, Pavanku-
mar Satuluri, and Pawan Goyal. 2018. Free as in free word order: An energy based model for word
segmentation and morphological tagging in Sanskrit. In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages 2550-2561, Brussels, Belgium, October-November.
Association for Computational Linguistics.

Amrith Krishna, Vishnu Sharma, Bishal Santra, Aishik Chakraborty, Pavankumar Satuluri, and Pawan
Goyal. 2019. Poetry to prose conversion in Sanskrit as a linearisation task: A case for low-resource
languages. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 1160-1166, Florence, Italy, July. Association for Computational Linguistics.

Amrith Krishna, Ashim Gupta, Deepak Garasangi, Jivnesh Sandhan, Pavankumar Satuluri, and Pawan
Goyal. 2020a. Neural approaches for data driven dependency parsing in sanskrit.

Amrith Krishna, Ashim Gupta, Deepak Garasangi, Pavankumar Satuluri, and Pawan Goyal. 2020b.
Keep it surprisingly simple: A simple first order graph based parsing model for joint morphosyntactic
parsing in Sanskrit. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4791-4797, Online, November. Association for Computational Linguistics.

Amrith Krishna, Bishal Santra, Ashim Gupta, Pavankumar Satuluri, and Pawan Goyal. 2020c. A graph
based framework for structured prediction tasks in sanskrit. Computational Linguistics, 46(4):1-63,
December.

Taku Kudo and John Richardson. 2018. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing: System Demonstrations, pages 6671, Brussels, Belgium,
November. Association for Computational Linguistics.

Malhar Kulkarni, 2017. Sanskrit WordNet at Indian Institute of Technology (IITB) Mumbai, pages
231-241. Springer Singapore, Singapore.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned
from word embeddings. Transactions of the Association for Computational Linguistics, 3:211-225.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed represen-
tations of words and phrases and their compositionality. Advances in neural information processing
systems, 26:3111-3119.

Sivaja Nair and Amba Kulkarni. 2010. The knowledge structure in amarakosa. pages 173-189, 01.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532-1543, Doha, Qatar, October. Association for Computational Lin-
guistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana, June. Association
for Computational Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados. 2019. WiC: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 1267-1273, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

36

Mohammad Taher Pilehvar and Jose Camacho-Collados. 2020. Embeddings in natural language pro-
cessing: Theory and advances in vector representations of meaning. Synthesis Lectures on Human
Language Technologies, 13(4):1-175.

Vikas Reddy, Amrith Krishna, Vishnu Sharma, Prateek Gupta, Vineeth M R, and Pawan Goyal. 2018.
Building a word segmenter for Sanskrit overnight. In Proceedings of the Eleventh International Confer-
ence on Language Resources and Fvaluation (LREC 2018), Miyazaki, Japan, May. European Language
Resources Association (ELRA).

Herbert Rubenstein and John B. Goodenough. 1965. Contextual correlates of synonymy. Commun.
ACM, 8(10):627-633, October.

Jivnesh Sandhan, Amrith Krishna, Pawan Goyal, and Laxmidhar Behera. 2019. Revisiting the role of
feature engineering for compound type identification in Sanskrit. In Proceedings of the 6th Interna-
tional Sanskrit Computational Linguistics Symposium, pages 28-44, II'T Kharagpur, India, October.
Association for Computational Linguistics.

Jivnesh Sandhan, Amrith Krishna, Ashim Gupta, Laxmidhar Behera, and Pawan Goyal. 2021. A little
pretraining goes a long way: A case study on dependency parsing task for low-resource morphologically
rich languages.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715-1725, Berlin, Germany, August. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, . ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Charagram: Embedding words
and sentences via character n-grams. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1504—1515, Austin, Texas, November. Association for Computa-
tional Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s neural machine translation
system: Bridging the gap between human and machine translation. CoRR, abs/1609.08144.

37

