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Abstract

Data-driven approaches for dependency parsing have been of great interest in Natural
Language Processing for the past couple of decades. However, Sanskrit still lacks a
robust purely data-driven dependency parser, probably with an exception to Krishna
(2019). This can primarily be attributed to the lack of availability of task-specific labelled
data and the morphologically rich nature of the language. In this work, we evaluate four
different data-driven machine learning models, originally proposed for different languages,
and compare their performances on Sanskrit data. We experiment with 2 graph based
and 2 transition based parsers. We compare the performance of each of the models in a
low-resource setting, with 1,500 sentences for training. Further, since our focus is on the
learning power of each of the models, we do not incorporate any Sanskrit specific features
explicitly into the models, and rather use the default settings in each of the paper for
obtaining the feature functions. In this work, we analyse the performance of the parsers
using both an in-domain and an out-of-domain test dataset. We also investigate the
impact of word ordering in which the sentences are provided as input to these systems,
by parsing verses and their corresponding prose order (anvaya) sentences.

1 Introduction

Dependency parsing, specifically data-driven dependency parsing, has garnered considerable
attention from the computational linguistics and the Natural Language Processing (NLP) com-
munities in the past few decades. The ability of the parsing approach to capture syntactic
and shallow semantic information over multiple languages and often in cross-lingual settings
has led to widespread adoption of the syntactic parsing approach (Tiedemann, 2015; Li et al.,
2019; McDonald et al., 2013). Transition based parsing and Graph based parsing are two of the
dominant approaches in data-driven dependency parsing (McDonald and Nivre, 2007). Parsers
proposed under either of these approaches vary widely in terms of the input representations,
learning paradigms and inferences employed. The parsers range from linear machine learning
models to neural network based nonlinear models for learning, whereas the input representations
vary from discrete hand-crafted features to continuous word representations such as pre-trained
word embeddings, contextualised word representations etc. (Kulmizev et al., 2019; Peters et al.,
2018). In this work, we evaluate and present a comparative error analysis of the performance of
several of these recently proposed data-driven approaches for parsing sentences in Sanskrit.
Our work closely follows the analysis framework proposed in several of the previous works
on dependency parsing. McDonald and Nivre (2007), which was later extended in McDonald
and Nivre (2011), performed an empirical analysis which contrasts the performance of graph-
based and transition based parsers. They identified characteristics of these parsers and profiled
the structural divergences in the predictions and the errors made by each of them. This was
further extended by Kulmizev et al. (2019), where they performed a similar analysis on neural
dependency parsers. Further, they investigated the impact of using contextualised word repre-
sentations (Peters et al., 2018). Here, they observed that with neural architectures and contex-
tualised word embeddings, both graph based and transition based approaches, tend to converge
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Parsing Learning Input

Parser Approach | Framework Representation
YAP (More et al., 2019) Transition | Neural Hand-crafted features
Dozat and Manning (2017) Graph Neural Word representations
Self-training Graph Neural Contextualised

(Rotman and Reichart, 2019)
Learning to Search
(Chang et al., 2016)

word representations

Transition | Neural Hand-crafted features

Table 1: Overview of the data-driven models evaluated in this work.

on their performance characteristics more as compared to the corresponding linear models. The
analysis framework essentially measures the empirical performance of various models based on
the sentence length, relative distance between words connected by a dependency arc, distance
of nodes to the root and on non-projective arcs. In this work, we replicate these analyses exclu-
sively for Sanskrit. Further, we add an additional dimension crucial for Sanskrit, i.e., analysis
of differences in parsing poetry and prose data.

Table 1 gives an overview of the various systems we use along with the parsing approach,
model and input representation used in these models. Here, all the four models use neural
learners. However, both the transition based models we evaluate use hand-crafted features
while the graph based parsers automatically learn the word representations as features. Neural
parsers, both graph-based and transition based, that use the learned word representations as
features currently report the state of the art results for many languages including English (Mrini
et al., 2019; Qi et al., 2018).) However this need not hold true for morphologically rich and
relatively free word order languages. For instance, YAP (More et al., 2019) currently reports
state of the art parsing results for the morphologically rich language, Hebrew and hence we
include the model in our evaluation. YAP makes use of word n-grams and morphological in-
formation of the words from the input sentence as features. Similarly, we chose to include the
Learning to Search model due to its training procedure that is designed to mitigate the effects
of exposure bias and label bias. Since the prediction of individual arcs are dependent on the
previous arc predictions for a sentence in dependency parsing, Learning to Search (Chang et
al., 2016) exposes the system to incorrect parsing decisions during training. This enables the
system to recover from early incorrect predictions made during inference and thereby resulting
in lower exposure bias and label bias (Wiseman and Rush, 2016). The graph based parsers
we employ learn neural word representations as features. This results in requirement for large
amount of training data, or availability of large monolingual corpora to obtain pre-trained em-
beddings (Che et al., 2018). Rotman and Reichart (2019) addresses this issue by proposing a
self-training approach that augments the biaffine parser from Dozat and Manning (2017). Here,
first a base parser is trained with as low as 500 trained samples and then, dependency trees
are predicted for unlabelled data. The predictions are used to train on auxiliary tasks which
results in contextualised representations of the input sequence based on those auxiliary tasks.
As Rotman and Reichart (2019) is promising as a parser for low-resource languages, we include
the model in our experiments. Further, since Dozat and Manning (2017) is the base parser to
Rotman and Reichart (2019), we include the model as well for a fair comparison between the
models. Based on our experiments, our major observations are:

1. The self-training based dependency parser by Rotman and Reichart (2019) performs the
best when tested on our in-domain test dataset (Kulkarni, 2013) and also on the out of
domain Sisupala-vadha dataset, with word arrangements in prose as well as poetry.

"https://nlpprogress.com/english/dependency_parsing.html
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2. All the models provide competitive results even on out-of-domain Siupala-vadha test data,
when the sentence follows prose ordering. However, the performance of all the models falls
drastically, often halves, when the same sentences from Siéupéla—vadha in its verse ordering
are provided as input during inference.

3. We find that use of automated feature functions learned using LSTM based word-
representation can be benefited in a low-resource morphologically rich language like San-
skrit. Both such graph based parsing models we use (Dozat and Manning, 2017; Rotman
and Reichart, 2019) are the best 2 models in our experiments. Transition based parsers in
general tend to perform poorly when it comes to predictions on longer sentences. However,
the learning to search transition parser remains relatively stable often competitive to the
graph based parsers we use.

2 Data-Driven Dependency Parsing

Early attempts at data-driven models for parsing dependency structures could be traced back
to the later half of the 1990s. Collins (1996) and Eisner (1996), proposed multiple probabilistic-
models for dependency parsing of English sentences. Similarly, Kudo and Matsumoto (2000)
proposed an SVM based classifier for classifying dependencies in Japanese, and this was later
extended to English (Yamada and Matsumoto, 2003). In the tenth CoNLL-X shard task on
multi-lingual dependency parsing (Buchholz and Marsi, 2006), it was observed that graph-based
and transition based parsing approaches have emerged to be the two dominant approaches for
parsing dependency structures. Though the shared task identified these approaches as “all-pairs”
and “stepwise”, McDonald and Nivre (2007) later termed these approaches as graph based and
transition based. Even though most of the proposed parsers fall under either of these categories,
these parsers vary widely in terms of the input representations, learning algorithms and learning
architectures. In this section, we provide a brief overview of the graph based and transition
based parsers along with the developments that occurred in the past couple of decades. For a
detailed understanding of these approaches, we recommend the readers to refer to McDonald
and Nivre (2011) and Kulmizev et al. (2019).

2.1 Graph-Based Parsing

Given an input sentence, the sentence is converted into a dense graph (or a complete graph),
where each word in the sentence is a node and every possible dependency relation between
two words forms a labelled arc. In this ‘all-pairs’ approach (Buchholz and Marsi, 2006) every
possible word pair is scored based on the likelihood of the pair to form a dependency relation.
Then, using a search mechanism the parser identifies the best parse for the given sentence. We
can generalise graph-based dependency parsing as an approach to score a dependency tree by
the linear combination of scores of its local sub-graphs. The task here is to find an induced
subgraph of the input graph, which structurally is a tree that spans all the nodes of the graph,
i.e. a spanning tree. The inference then translates to finding the spanning tree with maximum
(or minimum) score. The score for a tree is obtained by decomposing the structure into sub-
graphs, and is scored using a global optimisation approach with a non-local greedy search. The
decomposed sub-graphs can be as simple as an edge that connects a pair of nodes, and such
models are called arc-factored models. The learning involves creating a gap between the score
of the ground truth tree with that of other candidate tress. As per Kiibler et al. (2009), any
graph-based parsing system must define four things:

1. A set of sub-structures ¥, to which the input graph G will be decomposed.
2. A defintion of the parameters A\ for each substructure in V.

3. A method for learning A.



4. A parsing algorithm.

In an arc-factored model, ¥ will be the edge set in the input graph G and A will be a
function that maps edges into real values. Here an edge can be represented as a vector of fixed
features and the function will be learnt to map this vector into a scalar real-value. The score of
candidate structures (spanning trees in this case) will be calculated by summing the score of their
edges. The parsing algorithm is then reduced to searching for a suitable structure, generally
a spanning tree. The search procedure can be modified to enforce additional constraints on
the specific structure to be searched. Additional constraints, such as the structure should only
have one edge labelled with the subject relation, and relaxations, such as allowing cycles on the
predicted structures, were incorporated in the inference in several works (Kiibler et al., 2009).
McDonald et al. (2005b) formalised the search procedure as a search for spanning tree with
maximum score. Here the score of the tree is nothing but the sum of the scores of its edges.
They employed the Chu-Liu-Edmond’s algorithm (Edmonds, 1967).

Arc-factored models , such as McDonald et al. (2005b), perform exact search and hence they
do not suffer from search errors. However, the features that can be incorporated are restricted
to the local sub-graphs. McDonald et al. (2005a) used a feature function that contains 18
feature templates relevant to each of the edges. The features for an edge essentially are the word
and POS information of the nodes connected by the edge, and the word and POS information
of adjacent words to these nodes as per the linear order of the sentence. Although we learn
a function to score the individual edges, the training still is global as the parameters of the
model are set relative to the classification of the entire dependency tree, and not locally over
single edges (McDonald and Nivre, 2011). The graph parsers are typically trained using margin
based structured learning approaches which attempt to widen the gap between the score (need
not always be a probabilistic score) of the correct dependency tree to that of other candidate
dependency trees.

Graph-based parsers were extended to higher-order models and also in terms of the arity
of a node. The arity of a node measures the likelihood of the node to have a fixed number
of dependents. These extensions were primarily to improve the parsing performance for non-
projective dependency structures. The arity information was trivially incorporated by modifying
the scoring function of arc-factored models by adding the likelihood of arity as an additional
parameter (Kiibler et al., 2009). In the case of higher order-models, McDonald and Pereira
(2006), score adjacent arcs with a common head. Similarly Carreras (2007) considered head-
modifier chains of length two. Third order models by Koo and Collins (2010) consider set of
various three arc subgraphs, such as adjacent siblings or grand-siblings. However, the inference
and learning becomes NP-Hard (McDonald and Satta, 2007) when the score is factored over
higher order structures than edges, especially for non-projective dependency parses. Martins et
al. (2009) and Martins et al. (2010) proposed parsing approaches with exact inference, though
with NP-hard complexity, to incorporate higher order features. To make the inference more
efficient, an approximate inference using cube pruning was introduced in Zhang and McDonald
(2014). However recent neural approaches reverted to using first order models and still achieve
state of the art results (Kulmizev et al., 2019).

2.2 Transition based parsing

In transition based parsing approaches, instead of considering all the possible word pairs, the
parsing decisions are taken incrementally. The approach is inspired from shift-reduce parsing
approaches originally proposed for analysing programming languages (Aho and Ullman, 1972).
Essentially this reduces the parsing task to that of iteratively predicting the next immediate
parsing action as a greedy search. The system is trained on partial parser configurations, where
the immediate next action needs to be predicted. Transition based parser parses a sentence
sequentially from left to right.?

2The parsing can be done sequentially from right to left as well.
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The parsing system is an abstract machine, consisting of a set of states and transitions between
them. We start from an initial state and then follow a valid sequence of transitions, terminating
at one of the terminal states. By the time a terminal state is reached, it would lead to the
dependency tree for the given sentence. The parser essentially consists of a stack, a buffer and a
set of dependency labels. At a given instance, the stack maintains the partial parses, the buffer
maintains the words to be parsed and additionally the labels assigned so far is kept track of.
The combination of the configuration of these three entities result in a parser configuration, i.e.
a state. The parser is initialised with empty stack with a dummy root node in it, a buffer with
all the words in the sentence and an empty set of actions. Words one after other are pushed into
the stack and popped from it. A final configuration is a configuration when the buffer is empty
and the stack is left only with the dummy root node. The given system is a non-deterministic
system, i.e. there can be multiple possible transitions from a given state. However, the system
can be amenable to a deterministic parsing approach, assuming the presence of an oracle that
can guide the transition decisions at each state. The oracle can be approximated by training
classifiers using labelled data (Kiibler et al., 2009) and guide the parsing process.

Summarily, given a classifier, the parsing procedure is about finding a trajectory, i.e. an opti-
mal sequence of transitions, that leads from the initial configuration to a terminal configuration.
The behaviour of the parser is defined in terms of various transitions (McDonald and Nivre,
2011). Apart from initialisation and termination transitions, the basic version of the parser
included four more transitions. The other transitions are Shift, reduce, left-arc, right-arc. The
shift operation simply pushes the next input word into the stack, while reduce pops the word
from the top of the stack. The left-arc assigns an arc from the next input word to word on
the top of the stack and right-arc performs vice versa (McDonald and Nivre, 2007). Transition
parsers enable to incorporate non-local features into the configurations of the parser. However,
since the approach performs a local search, it is exposed to label bias resulting in compounding
of errors. Though initially, transition based parsers employed greedy search approaches, models
with global learning were later proposed. Further McDonald and Nivre (2011) proposed an
enriched feature function with 72 different feature templates. The features vary from uni-gram
to tri-gram word and POS information of words in the stack and the buffer, distance between
the word at the top of the stack and front of the buffer queue, valency, third order features and
set of dependency labels with the words at the top of the stack and the front of the buffer queue.
More et al. (2019) adapted the feature function to meet the needs of free-word order languages,
by replacing positional information with labelled grammatical functions.

In Goldberg and Nivre (2013), the static oracle was replaced with dynamic oracles. Dynamic
oracles could guide the system to optimal trajectory, even from a configuration which is not
present in the ground-truth. Introduction of dynamic oracles could reduce the error propagation,
especially when an early mistake in prediction is made. While the transition based approaches
initially were trained to handle projective dependency structures, these were later extended to
handle non-projective dependency structures. Further, modifications to transition approaches
were proposed, primarily for English. Apart from Arc-standard, which we already defined, arc-
eager and arc-(Z)eager are two other systems of transition based parsing. The arc-eager system
allows a right-dependent to eagerly attach to the head. Here, the dependent word will be pushed
onto the stack so as to enable attaching to its dependents. Arc-(Z)eager is an augmentation to
arc-eager approach, where it employs an additional stack to hold the head nodes and enabling
certain constraints for the head words during transitions (More et al., 2019).

2.3 Neural Dependency Parsing

Though neural network based approaches for dependency parsing have been explored towards
the end of the last decade (Titov and Henderson, 2007; Attardi et al., 2009), these parsers have
come to prominence since the last five years (Kulmizev et al., 2019). Use of neural approaches
for dependency parsing has brought in great advancements in the learning methods, architec-
tures and improvements in performance. However, most of these parsers still belong to graph
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based or transition based approaches. Neural parsers have enabled to bring down the complexi-
ties in the parsing approaches and revert back to simpler inference approaches without any loss
in performance. We can observe that neural transition parsers with local learning and greedy
inference, and similarly neural graph based parsers making use of first order models now report
competitive, often better, results as compared to complex parsing approaches previously em-
ployed. Yet another major advantage with neural architectures is that they have alleviated the
need for hand-crafted feature engineering, and instead started to rely on dense features in the
form of embeddings. Chen and Manning (2014) and Weiss et al. (2015) have shown how neural
network based dense features can be employed instead of hand-crafted features for transition
based and graph-based parsers respectively. Kiperwasser and Goldberg (2016) has employed
BiLSTM based word features, coupled with POS tags, that could capture the contextual repre-
sentation of the words within the sentence. However these models are constrained by the need
for high amount of training data. Moreover, for morphologically rich languages like Hebrew or
Turkish, state of the art models are the ones that still use hand-crafted features (More et al.,
2019; Seeker and Cetinoglu, 2015).

3 System Description of the Parsing Models

The Paninian theory of karaka, proposed for dependency analysis of sentences in Sanskrit, is well
studied in the computational linguistics community. Bharati et al. (1991) proposed a computa-
tional framework for multiple Indian languages based on this framework. Further a dependency
tagset and a dependency parser using the tagset was developed over the years for multiple Indian
languages (Tandon and Sharma, 2017; Begum et al., 2008). Rule based systems for dependency
parsing in Sanskrit was proposed by Kulkarni et al. (2010) and was later improved in Kulkarni
(2013) using dynamic programming approaches. However both the systems require the input
sequence to be in prose (anvaya) order, as the systems build constraints based on the (relative)
positional information of the words in the sentence. A dependency parser for verses in Sanskrit
was later proposed in Kulkarni et al. (2019). A statistical data-driven dependency parser was
proposed by Krishna (2019), which uses an energy based model for the dependency parsing.
All of these models use the tagset based on the relations described in Ramkrishnamacharyulu
(2009). In this work, we do not consider any of the aforementioned works for comparison, as we
focus on completely data-driven approaches with no explicit linguistic information incorporated
into the models. Hence, we compare four different systems as shown in Table 1. While all of
them use a neural network for training the models, 2 of them still use hand-crafted features and
the other two rely on LSTM based encoders for capturing the feature information about the
words and the sequence information of the words in context.

3.1 Yet Another Parser (YAP)

The parser proposed by More et al. (2019), is a transition based parser. It currently reports the
state of the art results for Hebrew, a morphologically rich language. The model uses hand-crafted
features, adapted from Zhang and Nivre (2011) for free word order languages. The model uses
a variant of the generalised perceptron (Zhang and Clark, 2011) with early-update (Collins and
Roark, 2004) for training. The focus of feature engineering is on selectional preferences, sub-
categorisation frames and their distributional characterisation. The transition based system has
provisions for Arc-standard, Arc-eager and Arc-(Z)eager transition paradigms. We use the Arc-
eager apparoach in our models. While the paper originally proposes a joint morpho-syntactic
parser that can jointly perform morphological parsing and syntactic parsing for Hebrew, we
make use of the system as a standalone dependency parser.

3.2 Learning to Search (L2S)

Learning to search is a framework that enables the formulation of a structured prediction problem
as a search problem (Ross et al., 2011; Collins and Roark, 2004; Daumé et al., 2009). Here,
an explicit search space is generally defined as a finite state machine over a set of states. The
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search problem essentially consists of a set of states, including an initial state, terminal states
and actions that enable transition from one state to another. The learning problem here is to
learn a function, referred to as a policy, that maps a trajectory (sequence of actions) from the
initial state to a goal state with the lowest cost or dually the highest score. Here each state
configuration is represented using a bag of features, which is used for learning. L2S integrates
the learning and prediction in a unified framework. This framework is similar to a reinforcement
learning setting, and indeed in many ways it is. However, L2S uses a reference policy obtained
from labelled examples before the training starts (Chang et al., 2015). During training, the
supervision in the form of labelled data is used to define the loss function and to construct a
reference policy (Chang et al., 2016). Based on these signals, the classifier (or the current policy)
gets iteratively trained.

Once a search space is obtained for a given problem, the training can be started. It needs to
be noted that the loss during training is not calculated based on individual actions, but based on
the trajectory of actions taken for a given data point. In our case, the data point is a sentence,
For a sentence, the training happens in 3 phases called as roll-in, roll-out and one-step deviation.
The roll-in and roll-out policies can be the reference policy, current policy or a mixture of both.
Since, the prediction at a given step is dependent on the history of predictions made so far for
the input sentence, each of those mistakes has a different cost to pay. This is called a credit
assignment problem. To handle such cases and thereby alleviate the exposure bias of such
systems, we do a one step deviation at several all time steps during different iterations. The
action taken during the deviation would be an alternate action from the set of possible actions.
All the actions prior to the deviation follow from the roll-in policy and the actions after the
deviation follows the roll-out policy. The loss is calculated based on the trajectory obtained as
a consequence of these 3 steps.

We employ a transition based parsing approach for the L2S framework. Here, the state space
consists of all possible configurations of the parser. As with other standard transition based
parsers (Kuhlmann et al., 2011), we use the word-level and POS-level (morphological tags)
information of upto three words in the stack and the buffer to construct the feature representation
for each state. We follow the arc-hybrid system proposed by Goldberg and Nivre (2013) and
the corresponding L.2S implementation from Chang et al. (2016). The optimal reference policy
is computed using the dynamic oracle approach by Goldberg and Nivre (2013). The loss is
computed by computing the differences in the number of parents in the predicted tree and that
of the gold-standard tree. Here, when an action is predicted, the dependency relation is also
predicted whenever the action is a reduce operation.

3.3 BIiAFFINE Parser (BiAFF)

The BiAFFINE parser (Dozat and Manning, 2017) is a neural graph-based dependency parsing
approach similar to Kiperwasser and Goldberg (2016). The neural approaches, in general, have
been beneficial for dependency parsing as it considerably reduces the complexities involved in
generating feature representations. The feature representations are learned as embeddings from
the surface forms of the words and also from their POS. For learning contextual embeddings
that can capture the sentence context, LSTM (or BiLSTM) layers are used. Here, the authors
introduce bi-affine attention instead of bilinear or MLP based attention, which were used in
previous works in dependency parsing. The representations learned from LSTMs are subjected
to MLP based dimensionality reduction and a biaffine dependency label classifier is used. Here,
a biaffine classifier differs from an affine classifier in the following way. For an input vector
Z, while an affine classifier could be expressed as WZ + b, then a biaffine classifier could be
expressed as W/ (WZ +b) + 0.

The model inputs a sequence of tokens and their POS tags, which is then passed through
multiple layers of a BILSTM network. In order to obtain specialised representations, the hidden
vector from the final layer of the LSTM network is passed to four separate ReLU activation
layers. This produces four separate representations, each for a separate purpose. One for word
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as a dependant looking for its head and another for its label. Similarly, we have one each for a
word as head looking for its dependents and the labels of those dependents (Dozat and Manning,
2017). Two biaffine classifiers are used, where these representations are passed. The classifiers
are used to predict the head and the label, respectively for a given word pair.

3.4 Deep Contextualized Self-training (DCST)

Deep Contextualized Self-training (Rotman and Reichart, 2019) extends the graph-based parser
of Dozat and Manning (2017) with a self-training approach (Clark et al., 2018; Rybak and
Wréblewska, 2018) for low resource dependency parsing. The work primarily addresses the
scarcity of task-specific labelled data for low resource languages (or scarcity of in-domain data)
and suggests a self-training based solution. Here, a base-learner is trained on a limited set of
labelled data and then applied on a larger set of unlabelled data. Then the predictions from un-
labelled data and the gold-standard labelled data are combined to retrain the final model, which
is often performed iteratively. Specifically, in this work, it first trains the BIAFFINE parser as
a base learner, with as low as 500 labelled training sentences and then uses the same to generate
predictions from unlabelled data. The predicted dependency trees from the unlabelled data are
then used to train neural networks for several auxiliary tasks. The auxiliary tasks performed
are sequence level tagging tasks, where the input is the predicted dependency tree adapted to a
suitable sequence tagging scheme. LSTM based taggers are used for training these tasks. Once
the training is completed, the BiLSTM encoder layers are used for generating representations
for the input word. The encoder layers from the auxillary tasks are combined with the represen-
tations from the encoder layers of the BIAFFINE parser using a gating mechanism (Sato et al.,
2017). Here, during training, the representation layers of the parser are randomly initialised,
while the representation layers from the auxiliary task are initialised to what it learned for the
auxiliary task. The auxiliary tasks that are employed are, predicting the number of children
for each word, predicting the distance of the word from the root in the tree and predicting the
head word of a given word using the relative POS tagging scheme (Rotman and Reichart, 2019).
Here, the relative POS tagging scheme enables to mark ahead word by its relative position from
the current dependent node and the corresponding POS tag of the head word.

The basic intuition behind the approach in this work is similar to pretraining and multi-task
approaches used in deep learning networks previously. However, in pretraining settings, though
unlabelled data are used, they are used to train the LSTM encoders on language model based
objective. In this work, they are trained on sequence level tagging tasks based objectives. This
is similar to multi-task learning approaches where several related tasks are trained together or
are reused, but those approaches typically use labelled data, unlike in this case.

4 Experiments

4.1 Dataset

The dataset for the dependency parsing is obtained from the department of Sanskrit studies,
UoHyd?. We use about 1,500 prose sentences from the Sanskrit Tree Bank Corpus, henceforth to
be referred to as STBC (Kulkarni et al., 2010; Kulkarni, 2013). Further, we use 1,000 sentences
from STBC as the test data. Additionally, we take 300 sentences from the SiSupala-vadha
corpus? for testing. Here, we make use of the prose order (anvaya) and the corresponding verse
order of the sentences to provide as input to the different models. For all the models, we provide
the segmented surface-form of the words in the sentence and their corresponding morphological
tags as input. However, the entries in STBC corpus did not contain morphological tags for the
words. For these sentences, we used the Sanskrit Heritage reader (Goyal and Huet, 2016; Huet
and Goyal, 2013), a shallow parser, for obtaining the exhaustive enumeration of all the possible
morphological analyses of the input. We only selected those sentences where none of the words

3http://sanskrit.uohyd.ac.in/scl/
‘nttp://sanskrit.uohyd.ac.in/scl/e-readers/shishu/
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System STBC Sisupala-vadha | Sisupala-vadha
Prose Prose Poetry
UAS | LAS UAS LAS | UAS | LAS
1] L2S 77.29 | 68.53 | 75.42 68.48 | 38.80 | 31.76
2 | YAP 72.14 | 63.15 | 65.27 55.88 | 26.79 | 21.10
3 | BiAFF | 78.97 | 70.83 | 76.77 70.24 | 38.45 | 34.32
4 | DCST | 80.97 | 72.86 | 81.08 | 74.37 | 40.02 | 35.70

Table 2: Performance evaluation of the four dependency parsers.

expressed syncretism or homonymy. While, the current morphological tag information is yet to
be verified by a domain expert, we decided to include the morphological tag information in input.
This decision was motivated by the empirical observation that the inclusion of morphological
tags as input results in about 3 to 4 % of performance improvement for all the models, as
compared to using only the surface-forms of the words as input. Moreover, the evaluation of the
models is based only on the dependency arcs and the labels, and hence this decision does not
interfere in our experimental settings.

UAS LAS
1.0 1.0
system
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0.8 0.8 DCST
. - —e— L2S
0.7 A 0.7 A —— yap
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7] 9]
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031 o BiAFF 031
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Length
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Length

(a) Sentence length UAS - STBC (b) Sentence length LAS - STBC

Figure 1: UAS/LAS of sentences grouped based on their sentence length on STBC corpus

4.2 Results

We report the performance of each system using the micro averaged Unlabelled Attachment Score
(UAS) and the Labelled Attachment Score (LAS) as metrics (Nivre and Fang, 2017). UAS is the
fraction of correct tokens with correct predicted heads and LAS is the fraction of tokens with the
correct label (McDonald and Nivre, 2011). For micro averaged UAS and LAS, the denominator
for normalising these fraction scores is the number of tokens in the corpus. Table 2 shows the
results for all the four systems tested on the prose sentences from STBC, and prose and poetry
data from Sisupala-vadha. It can be observed that DCST outperforms all the other models in
all the three test data settings. The DCST model uses BiAFF as a base learner. However,
it improves the performance of the model, by using better input representations obtained by
self-training. We find that the performance differences between both the models are statistically
significant.® Since, all the models are trained on the STBC train corpus, the STBC test data
should ideally be most similar in terms of the data distribution with that of the training data.
The data from Sisupala-vadha corpus can be seen as an out of domain dataset. Sentences from
Siéupaﬂa—vaudha7 when arranged in their prose order, report comparable results with that of the

5We performed t-test for statistical significance with p < 0.01.
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STBC prose test data for all the models, with YAP being a possible exception. However, the
performance for all the models drops drastically when these systems are provided with poetry
order data as input. In fact, for all the systems, the performance drops to half the UAS as
compared to the corresponding prose order input. This is a strong indication that the order in
which the data is input affects the performance of these systems.

Comparison to Linguistically involved En-

ergy Based Model: We compare the perfor- System | UAS | LAS
mance of all the four models with the performance L2S 81.9 72.46
of the linguistically involved energy based model YAP 753 66
(EBM) proposed by Krishna (2019). We report BIAFF | 82.35 | 75.65
two results based on the EBM model. Both the DCST ]4.36 | 76.8
models use linguistic information in its input rep- EBM <265 | 79.28
resentation and in its feature engineering. How- EBM* 85.32 | 83.93
ever EBM* uses linguistic information to prune
the search space and filter the candidates during  Table 3: Macro averaged UAS and LAS
the inference. Both the models use a graph-based  for 1300 sentences from the STBC and
input and are agnostic to the order in which a  SiSupala-vadha prose test datasets.
sequence is provided. Further, they report the

Macro averaged UAS and LAS, i.e. average of sentence level UAS and LAS of sentences from
both the STBC and Sisupala-vadha test data. Table 3 provides the macro averaged UAS and
LAS for all the six systems. Here, we use the prose ordered data from Sisupala-vadha and
STBC for the four models discussed in this paper. From the table, it can be observed that the
EBM* model outperforms all the other models and reports a huge improvement in terms of
LAS. However, DCST still outperforms the EBM, the model that does not incorporate explicit
linguistic information during inference, in terms of UAS. This not only shows the relevance of
incorporating linguistic information into the model, but also stresses on the significance of using
contextualised word representations (like in the case of DCST).

Y| U x| W N+

UAS LAS
1.0 1.0
system system
091 —e— BIAFF 091 —e— BIAFF
0.8 pCsT 0.8 DCsT
| —— 125 ] —e— L2S
0.7 o yap 0.7 —e— yap
0.6 1 0.6 \
w0 w0
< 051 <057 %
o) 3
0.41 o~ 0.41 A
031 0.3 o
021 02
014 0.1
W W
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Length Length
(a) Sentence length UAS - poetry (b) Sentence length LAS - poetry

Figure 2: UAS/LAS of sentences in poetry order, grouped based on their sentence length on Sisupala-vadha
corpus

Sentence Length Figure 1(a-b) and Figure 2(a-b) show the UAS and LAS for the sentences
grouped based on the number of words in them, for each dataset. We show the lengthwise
performance of only the poetry ordered sentences for the Sisupala-vadha dataset, as the prose
ordered data’s performance is similar to that of STBC prose test data. The figures show the
performance for only those sentence lengths for which there exist at least 5 sentences in the
corpus. All the systems perform the best on shorter sentences and generally the performance
drops as the length of the sentence increases. However, the L2S system reports the lowest Mean
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Absolute Deviation® (MAD) among the 4 models (0.07), followed by DCST (0.077) for the STBC
corpus. YAP performs the worst and has the highest MAD (0.093). In the case of poetry data,
the performance of the DCST dips drastically for sentences longer than 5 words as compared to
its performance on sentences with 5 or less words. It shows the highest MAD (0.122) as well.
The L2S system reports the lowest MAD among all the models (0.081). All the other systems
have a MAD < 0.085. Sentences with 3 to 7 words form 68.7 % of sentences in the STBC corpus.
In the case of Sisupala-vadha, 50 % of the sentences consist 11 to 15 words, and 85 % of the
sentences consist of 7 to 17 words.

Unlabelled Labelled
1.0 1.0
0.91 0.94
0.81 0.84
0.71 0.7 4
5061 5061
wn w0
S 051" system S 051 system
a 041 —s— BIAFF a 041 —s— BIAFF
0.3 DCST 0.3 DCST
0.21 —— L2S 0.29 —— L2S
0.14 —— yap 0.14 —— yap
0.0 T T T T T T T 0.0 T T T T T T T
1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17
Distance Distance
(a) Precision - unlabelled (b) Precision - labelled
Unlabelled Labelled
1.0
0.9
0.81
0.7< p//\n’\
— 0.6
3051 S 0.5
g ' system g ' system
0.491 —e— BIAFF 0.4 —e— BIAFF
0.3 DCST 0.3 DCST
0.21 —— 25 0.2 —— L25
0.11 —— yap 0.11 —— yap
0.0 T T T T T T T 0.0 T T T - " . .
1 3 5 7 9 11 13 15 17 1 3 5 7 9 11 13 15 17
Distance Distance

(c) Recall - unlabelled (d) Recall - labelled

Figure 3: Precision/Recall based on unlabelled/labelled edges for STBC prose w.r.t. dependency length

Dependency Length: Dependency length between two related words is the distance between
those words based on their linear arrangement in the sentence (McDonald and Nivre, 2007).
Figure 3(a-d), shows the precision/recall for dependency length on the STBC corpus based
on unlabelled/labelled edges. Transition based parsers with greedy inference, in general, tend
to perform worse on longer dependencies in terms of precision (McDonald and Nivre, 2007;
McDonald and Nivre, 2011), though this becomes less evident in neural transition based parsing
approaches (Kulmizev et al., 2019). Both the transition based systems in our experiments,
YAP and L2S, use hand-crafted features. Aligning with observations made by McDonald and
Nivre (2007), YAP’s performance degrades considerably when predicting longer dependencies.
However, L2S performs at par with the graph based parsing approaches we experimented with.
We hypothesise, this is due to the training procedure followed in L2S, where the system is not
just exposed to the ground truth trajectories but also to the one step deviations to the wrong

5The mean absolute deviation of a dataset is the average distance between each data point and the mean.(Khan-
Academy, accessed 15 Apr 2020)
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Figure 4: Precision/Recall based on labelled edges for Sisupala-vadha prose and poetry w.r.t. dependency

length

states during training. This helps mitigating the exposure bias and label bias of these systems

(Wiseman and Rush, 2016).

Figure 4(a-d) shows the precision/recall for depen-
dency length on the prose and poetry data on the
Sisupala-vadha based on labelled edges. In prose or-
der sentences, the linear arrangement of words tends
to follow the principle of Sannidhi (Kulkarni et al.,
2015), i.e. dependency locality (Gibson et al., 2019).
In terms of precision for prose data, similar to STBC
prose data, YAP under-performs consistently as com-
pared to all other systems. In the case of precision for
poetry data, we can find that DCST and L2S systems,
generally provide better performance as compared to
other systems on longer dependency length word pairs.
From Figure 5 we can observed that STBC corpus
contains about 44.9 % of the word pairs with a de-
pendency length of one. Similarly, word pairs with a
dependency length greater than five is only about 13.5
% of the total word pair connections in the ground-
truth. In contrast about 30.7 % of the word pairs
have a distance more than 5 in the poetry data. More

Figure 5: Dependency length percent-
age between word-pairs in STBC cor-
pus ground truth

importantly, these systems have less than 0.6 % word pairs with a length of 1. Given that our
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parsers are trained on prose data, these structural divergences with poetry ordered data might
be a strong reason for poor performance of the parsing models on the poetry data.

Unlabelled Labelled
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Figure 6: Precision based on the degree of non-projectivity of dependency arcs for STBC prose

Non Projective Dependencies: We further look into the performance of the systems on the
non-projective dependencies. Here, we make use of degree of non-projectivity (McDonald and
Nivre, 2007). The degree of non-projectivity of a dependency arc from a word w to word w is the
number of words occurring between w and u which are not descendants of w and modify a word
not occurring between w and wu (Nivre, 2006). Figure 6(a-b) shows the precision for different
models on the STBC corpus both in terms of labelled and unlabelled predictions. Similarly,
Figure 7(a-b) shows the performance of the systems on the prose and poetry ordered data from
Sisupala-vadha. Here we only show the performance for the labelled case, and the performance
for the unlabelled case is similar to that of the labelled case. It can be observed that none of
the models perform well for non-projective dependency arcs (those arcs with a non-zero degree
of non-projectivity). Further, for the Sisupala-vadha poetry data, non-projective arcs constitute
19.24 % of the edges, as compared to just 7.12 % in the corresponding prose data. This is one
of the factors for low-performance of the data in poetry ordering.

Lo Labelled Lo Labelled
091 system 09 system
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Degree of non-projectivity Degree of non-projectivity
(a) Precision - prose (b) Precision - poetry
Figure 7: Precision based on the degree of non-projectivity of dependency arcs for Sisupala-vadha prose and

poetry

Distance to Root: We measure the performance of different systems based on the distance
of a node from the root of the tree. Figure 8(a-d) shows the precision and recall for distance
from the root on the STBC corpus based on unlabelled/labelled edges. The general trend for
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Figure 8: Precision/Recall based on unlabelled/labelled edges for STBC prose w.r.t. distance to the root

all the systems is that, the precision drops with nodes that have longer distances from the
root. Similarly, Figure 9(a-d) shows Precision/Recall based on labelled edges for Sisupala-
vadha prose and poetry. Transition based parsers generally tends to perform better than graph
based approaches on arcs farther away from the root (McDonald and Nivre, 2011). However
use of contextualised word representations tend to improve the results for graph based parsers
(Kulmizev et al., 2019). Here, it needs to be observed that the graph based BiAFF parser,
deteriorates in its performance with predictions that are far from the root. At the same time,
DCST which uses BiAFF as its base parser reports better precision than L2S in most of the
cases. We hypothesise that this is due to the improvement in the feature representations learned
using the self-training approach in DCST. Further, it is interesting to note that both the graph
parsers have the highest MAD on all the three dataset settings as compared to the transition
based parsers. In fact, the transition based parser L2S outperforms BiAFF in most of the
predictions with distance from root larger than 3, even though BiAFF reports a better overall
performance than L2S.

5 Conclusion

In this work, we evaluated four standard neural dependency parsing models for parsing of San-
skrit sentences. We find that neural parsers that make use of neural word representations and
contextualised word representations can be effectively used for parsing morphologically rich lan-
guages like Sanskrit. However, word ordering in these sentences affects the performance of these
systems drastically. As of now, it would be difficult to conclude, whether this is a consequence
of the linguistic characteristics of the language or because of the data distribution of the training
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Figure 9: Precision/Recall based on labelled edges for Sisupala-vadha prose and poetry w.r.t. distance to the
root

data. To elaborate further, one possibility is that the current drop in result can be due to the
distributional differences in the prose training data, with which the models were trained, and
the poetry data. On the other hand, it further needs to be investigated whether the performance
drop has to do with something which is more linguistically inherent, and not just confining to
the distributional differences. For this, we would require to train the models using dependency
tagged data in verse order. It would be worthwhile to pursue if there are schemes to shuffle the
word ordering in verses that would benefit in parsing these sentences. The approaches can be to
completely disregard the word order and convert the input as a graph as in the case of Krishna
(2019), or to use syntactic linearisers such as Krishna et al. (2019) that convert a verse to its
corresponding prose order or to perform word reordering/linearisation as an auxiliary task in
the training for dependency parsing (Wang et al., 2018).

While in this work, we focused on evaluating the effect of standard parsers in their default
settings, the next logical step would be to modify these models by incorporating design changes
by keeping Sanskrit specific characteristics in mind. We plan to extend the work in two important
directions. Currently, we provide the morphological tags of the words as input to the model.
This often can be a bottleneck, as morphological disambiguation can be a challenge in itself
for morphologically rich languages. We plan to augment the neural parsers, especially DCST,
under a multi task setting where we would stack layers from a multi task morphological tagger
so as to obtain enriched representations for the words. In this model, the user need not provide
the morphological tags as input as the system would expect only the surface-forms of the words.
Similarly, we find that the L2S model can be extended by incorporating linguistic knowledge as
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constraints into the inference, so as to effectively prune the search space. To elaborate, currently
during one step deviation, transitions are made to incorrect states based on label predictions,
including those states which can effectively be avoided by a rule based pre-processing step. The
pre-processing step can bring down the search space transitions by allowing only those that are
valid based on the given case information of the word pairs for which a decision needs to be
taken.
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