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Abstract

The Transformer architecture has two main
non-embedding components: Attention and
the Feed Forward Network (FFN). Attention
captures interdependencies between words re-
gardless of their position, while the FFN non-
linearly transforms each input token indepen-
dently. In this work we explore the role of the
FFN, and find that despite taking up a signif-
icant fraction of the model’s parameters, it is
highly redundant. Concretely, we are able to
substantially reduce the number of parameters
with only a modest drop in accuracy by remov-
ing the FFN on the decoder layers and sharing a
single FFN across the encoder. Finally we scale
this architecture back to its original size by in-
creasing the hidden dimension of the shared
FFN, achieving substantial gains in both accu-
racy and latency with respect to the original
Transformer Big.

1 Introduction

The Transformer architecture (Vaswani et al., 2017)
has become the de facto paradigm in many Nat-
ural Language Processing (NLP) tasks, includ-
ing Machine Translation (MT). Several studies
have shown that Transformers exhibit impressive
scaling-law properties (Gordon et al., 2021; Bansal
et al., 2022; Ghorbani et al., 2022), wherein in-
creasing the number of model parameters leads
to further accuracy gains. In parallel with this ar-
chitecture’s impressive scaling of the numbers of
parameters (Chowdhery et al., 2022), there is a
growing trend towards reducing model footprints
for real-world deployment, to satisfy practical con-
straints like latency requirements as well as mem-
ory and disk space limitations. In turn, researchers
are actively exploring parameter sharing (Ge et al.,
2022; Takase and Kiyono, 2023; Lou et al., 2022),
reducing the dimensionality of Transformer compo-
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nents, and pruning components like attention heads
(Voita et al., 2019; Michel et al., 2019).

Although the role of attention in learning pair-
wise dependencies between tokens is relatively well
understood (Voita et al., 2019; Clark et al., 2019;
Vig and Belinkov, 2019), the role of the Feed For-
ward Network (FFN) remains under-explored. Re-
cently, Geva et al. (2021) established a connection
between the FFN and attention by positing that
the FFN corresponds to learnable key-value pairs
where the weights of the first layer of the FFN cor-
responds to the keys and those of the second to the
values. They find that the keys are able to cap-
ture salient textual patterns at each layer, and they
notice that the classes of patterns tend to overlap
between neighboring layers, indicating redundancy
in the representation.

This observation motivates our work, where we
revisit the conventional practice of allocating an
individual FFN per layer. We investigate the effect
of sharing and dropping the FFN across different
layers on MT models. We conduct thorough exper-
iments with different configurations of the Trans-
former, across different language pairs, including
a low resource language pair and multilingual. In
addition, we investigate the effect of the FFN in a
decoder-only Transformer-based model. We find
that a considerable level of redundancy exists be-
tween the encoder and decoder FFNs. As a result,
we are able to eliminate the decoder FFN and share
a single FFN across the encoder without signifi-
cantly compromising the model’s accuracy. This
step leads not only to significant parameter savings
but also opens up opportunities for further improve-
ments. We also suggest using wider FFNs in the
encoder while dropping the decoder’s FFN, which
results in a model with a similar size, but improved
accuracy and reduced latency.

Finally we conduct a fine-grained analysis of
the representational similarity between the origi-
nal model, using one independent FFN per layer,
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and various models with shared FFNs. Our results
reveal that both model accuracy and the internal
representation of Transformer blocks remain stable
when sharing the FFN.

2 Background and Methodology

2.1 Transformer

The Transformer architecture has two main compo-
nents: attention and the FFN, which are connected
via a residual connection (He et al., 2016) and layer
normalization (Ba et al., 2016). In an encoder-
decoder model, there are two types of attention:
self-attention and cross-attention. Self-attention is
used in both the encoder and the decoder, allowing
the model to focus on relevant information within
the same sequence. Cross-attention is exclusive to
the decoder and allows it to attend to the encoder’s
output. Attention takes as input a set of queries,
keys and values, projected using four Rdmodel×dmodel

matrices (one for the queries, keys, values, and
final output) where dmodel is the model’s hidden
dimension. It then applies the SOFTMAX function
to allow it to focus on the most relevant values.

The FFN is applied after attention on both the en-
coder and the decoder and consists of the following
2-layer linear transformation:

FFN(x) = max(0,xW1 + b1)W2 + b2, (1)

where a RELU non-linearity is applied to the trans-
formation of the input sequence (x). At each
layer, the FFN is parameterized with two matrices,
W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel where dff
is the FFN dimension and is usually set to 4×dmodel
(Vaswani et al., 2017).

Recent work has drawn a significant link be-
tween attention and the FFN (Geva et al., 2021),
wherein W1 and W2 assume roles akin to the keys
and values to an unnormalized attention where the
input (x) acts as the query. Unlike regular attention,
the FFN employs a RELU, which allows multiple
keys to significantly contribute to the final output
(Geva et al., 2021). Additionally, these keys cor-
respond to an inventory of salient patterns that are
learned from the training data. Geva et al. (2021)
suggest that at the lower layers the FFN learns
shallow syntactic patterns and progressively learns
deep semantic patterns on the deeper layers. More-
over, the authors find that there’s a substantial over-
lap between patterns captured by adjacent layers,
indicating that there are redundancies in the FFNs

and suggesting a better allocation of these parame-
ters might be beneficial for performance.

2.2 Sharing and Widening the FFN
The vanilla Transformer allocates one FFN for each
layer of the encoder and decoder, i.e. FFNenc

i or
FFNdec

i , respectively. Excluding embedding pa-
rameters, these FFNs occupy around two thirds
of the parameter budget, while attention occupies
the remaining third1. Earlier work found that con-
straining the parameterization of the decoder FFNs
causes no degradation in accuracy (Ge et al., 2022).
In this work, we share the parameters of the FFN
across layers and/or across the encoder and decoder
to minimize redundancy between FFNs.

Let Nenc, Ndec be the numbers of encoder and
decoder layers, respectively. We consider multiple
configurations for parameter sharing as follows:

• One FFNenc
all for the whole encoder:

FFNenc
i (·) tied

= FFNenc
all (·),∀i : 1 ≤ i ≤ Nenc

• One FFNdec
all for the whole decoder:

FFNdec
j (·) tied

= FFNdec
all (·), ∀j : 1 ≤ j ≤ Ndec

• One FFNencdec
all for both the encoder and the

decoder:

FFNenc
i (·) tied

= FFNdec
j (·) tied

= FFNencdec
all (·),

∀i, j : 1 ≤ i ≤ Nenc, 1 ≤ j ≤ Ndec

Additionally, we explore modifying the dimen-
sion of the shared FFN, which we denote as dff′ .
Setting dff′ > dff widens the shared FFN while
dff′ < dff narrows it. We also consider the extreme
cases of setting dff′ to 0 or to (Nenc +Ndec)× dff
(and beyond). Setting dff′ = 0 is equivalent to
dropping the FFN2 while setting dff′ = (Nenc +
Ndec)× dff is akin to sharing the concatenation of
all individual FFNs.

Sharing the FFNs directly affects the number of
parameters and, to a certain extent, latency. For
instance, sharing FFNenc

all for the whole encoder re-
duces the number of parameters by (Nenc − 1)×
2×dmodel×d′ff

3; whereas removing the FFN on the
1Ignoring layer normalization, there are 4×dmodel ×dmodel

parameters for attention vs 2×dmodel×dff = 8×dmodel×dmodel
parameters for the FFN, assuming dff = 4× dmodel.

2In our experiments without the FFN (i.e., dff′ = 0) we
remove the residual connection and layer normalization asso-
ciated with it, as they become redundant.

3Plus the layer normalization parameters, which we are
ignoring for simplicity.
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decoder, i.e., setting dff′ = 0 for FFNdec
all , reduces

the parameters by (Ndec)× 2× dmodel × d′ff and re-
duces the amount of computation to be done. This
is particularly important during inference since the
forward pass of the decoder is autoregressive, and
changing the decoder’s FFN dimension has a higher
latency impact than on the encoder.

Since different configurations have different im-
pacts, we analyse the trade-off between model size,
latency, and accuracy: (i) How many parameters
can be shared/pruned with negligible (if any) accu-
racy degradation? (ii) Are the encoder and decoder
FFNs affected similarly? (iii) Keeping the same
model size, can the FFN parameters be allocated
more efficiently?

We propose a novel configuration, which we call
the One Wide FFN model, consisting of a single
shared wide FFN on the encoder and no FFN on
the decoder. To keep the number of parameters
the same as in the baseline, we increase the shared
FFN dimension accordingly: FFNenc

all with dff′ =
(Nenc +Ndec)× dff.

For completeness, we include similar experi-
ments on the attention mechanism in Appendix B.
These experiments show that, contrary to the FFN,
individual layer-specific attention weights are more
important and not as redundant, as sharing the at-
tention leads to significant accuracy drops.

2.3 Representational Similarity
Besides investigating the impact on accuracy, we
study the similarity between different models in
terms of their internal representations and the se-
mantic space they produce.

We use Linear Centered Kernel Alignment (CKA,
Kornblith et al., 2019) to measure the similarity be-
tween the internal representations of different mod-
els. CKA uses inner products to estimate how simi-
lar the kernel matrices of two different representa-
tions are, and is based on the Hilbert-Schmidt Inde-
pendence Criterion (HSIC, Gretton et al., 2005), a
statistical measure of independence of two random
variables. Linear CKA uses the dot product as a
kernel and can be written as:

CKA(A,B) =
||ABT||2F

||ATA||F||BTB||F
,

where || · ||F is the Frobenius norm while A and
B are mean-centered (i.e., we subtract the mean)
feature matrices of the layers under comparison,
computed on the same dataset. Both matrices are
n × d, where n is the number of sentences in the

dataset and d is the output dimension of the compo-
nent, and are obtained by averaging the activation
of all tokens in each sentence4. The linear kernel
is straightforward to compute and Kornblith et al.,
2019 report strong empirical performance of linear
CKA compared to other kernels and methods.

To measure the similarity between the semantic
spaces of different models, we use Local Neighbor-
hood Similarity (LNS, Boggust et al., 2022). Lo-
cal neighborhood similarities have been previously
been used in analyzing semantic shifts in word em-
beddings (Hamilton et al., 2016). The premise of
LNS is that two semantic spaces are similar if a
sentence has similar neighbors in the two spaces.
The LNS of a sentence s between models 1 and 2
is defined as:

LNS(s) = Sim(k-NN1(s), k-NN2(s)),

where k-NN(s) is the set of k nearest neighbors of
sentence s for a model and Sim is the intersection-
over-union (Jaccard similarity) of the two sets of
neighbors. For each pair of components (attention
and FFN) in models 1 and 2 we compute the LNS

of all sentences in the evaluation dataset and take
the mean LNS as our layer similarity measure. The
smaller the value of k the more local the neigh-
borhoods we are comparing, and the more specific
the retrieval task. We pick k to be small enough
to visually inspect sentence neighborhoods if nec-
essary. In our analysis, we use cosine distance as
the distance metric between activations and set k
to 5% of the dataset size (∼ 100 sentences).

3 Experimental Setup

Data In our experiments, we show results on
WMT22 English (EN) → German (DE) (296M
pairs), which we obtained using the provided
mt-data scripts5, WMT16 EN → Romanian (RO)
(610K pairs), and for the multilingual setup of Pires
et al. (2023), consisting of 10 languages: German,
English, Spanish, French, Italian, Japanese, Ko-
rean, Portuguese, Swahili, and Chinese. In our
analysis, we mostly focus on WMT22 EN →DE.

Following Schmidt et al. (2022), we use
WMT’16 provided scripts to normalize the RO side.
EN →RO keeps diacritics for producing accurate
translations. For more details refer to Schmidt et al.

4We use the source sentence and force decode the first
reference to compute the encoder and decoder representations,
respectively.

5https://www.statmt.org/wmt22/mtdata/

https://www.statmt.org/wmt22/mtdata/
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(2022). For the multilingual experiments, we repli-
cated the setup of Pires et al. (2023), which in-
cludes all details, including data preprocessing and
dataset sizes.

Metrics We compute BLEU6 using sacreBLEU7

version 2.3.1, with evaluation signatures nrefs:1
| case:mixed | eff:no | tok:13a | smooth:exp
for BLEU, and nrefs:1 | case:mixed | eff:no |
tok:flores101 | smooth:exp for SPBLEU. For
our main results, we also report COMET using the
wmt20-comet-da model and CHRF using the sig-
nature nrefs:1 | case:mixed | eff:yes | nc:6
| nw:0 | space:no.

Latency We report inference time in tokens/sec-
ond (the higher, the better), averaged over 5 runs.
For the multilingual models, we use the DE →EN

test set. Our measurements were collected using
a single NVIDIA V100 GPU on a single-threaded
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz with
batch size of 1 and beam size of 5, in order to real-
istically mimic the inference of a deployed model.
For experiments with larger batch sizes, see Ap-
pendix D.

Tokenization For WMT22 EN →DE, we use
SENTENCEPIECE (Kudo and Richardson, 2018),
with a vocabulary size of 32K and a character cov-
erage of 1.0, while for the multilingual experiments
we use a vocabulary size of 250k and a character
coverage of 0.9995. For WMT16 EN →RO we
use byte-pair encoding (BPE, Sennrich et al., 2016)
with 40, 000 merge operations.

Model Architectures We focus our analysis on
the Transformer Big where Nenc = Ndec = 6,
dmodel = 1024, dff = 4096, and it has 16 attention
heads. We also report results on Transformer Base
(Nenc = Ndec = 6, dmodel = 512, dff = 2048,
and 8 attention heads), and a deep encoder shallow
decoder (Kasai et al., 2021) Transformer Big with
12 encoder layers, and 2 decoder layers. For our
decoder-only experiments, the model is identical to
the Transformer Big, except that all 12 layers are on
the decoder. Our decoder-only model is similar to
a Transformer-based language model, particularly
Prefix-LM (Raffel et al., 2020), where we apply a
non-autoregressive mask on the source side and an
autoregressive mask on the target. The source and

6For the multilingual experiments, we select the Flores101
tokenizer in sacreBLEU, so technically we report SPBLEU.

7https://github.com/mjpost/sacrebleu

target embeddings and the output projection matrix
are shared in all models (Press and Wolf, 2017).

Hyperparameters All experiments are imple-
mented using FAIRSEQ (Ott et al., 2019). Our
optimizer is ADAM (Kingma and Ba, 2015) with
a learning rate of 0.0007. We train for 80k, 80k,
150k steps on WMT22, WMT16, and multilingual,
respectively, at which point the models had con-
verged. We use 4000 warm-up steps, and an inverse
square root learning rate scheduler (Vaswani et al.,
2017). We use a dropout rate of 0.1 for WMT22,
0.3 for WMT16, and 0 for the multilingual experi-
ments due to the abundance of data, following Pires
et al. (2023). All models are trained using fp16
(Ott et al., 2018).

Nomenclature In our experiments, we run a num-
ber of different configurations per model architec-
ture that differ in the way the FFN is used, shared,
or dropped, as well the size of the shared FFN (dff′).
To facilitate our discussion, we introduce in Table 1
the nomenclature that will serve as reference for
the rest of the text. Unless otherwise stated, the
dimension of the shared FNN∗

all, i.e. dff′ is equal to
the dff of the original model.

For decoder-only models, only SharedDec and
NoDec configurations are defined. For concise-
ness, we drop the mention of FFN from the
text when possible, i.e. SharedEnc instead of
SharedEncFFN.

FFN Description Encoder Decoder

SharedEnc FNNenc
all FNNdec

i

SharedDec FNNenc
i FNNdec

all

SharedEncSharedDec FNNenc
all FNNdec

all

SharedEncDec FNNencdec
all

NoDec FNNenc
i No-op

SharedEncNoDec FNNenc
all No-op

Table 1: Nomenclature used in our experiments. No-op
indicates an identity function, which is equivalent to
dropping the FFN.

Representational Similarity We use the
WMT22 EN →DE evaluation set for both CKA and
LNS analysis. We analyze encoder and decoder
representations independently and present these
metrics in a matrix heatmap plot showing pairwise
similarity between layers. The diagonal of this
matrix is the similarity of corresponding layers,
i.e., layer i on both architectures. In order to

https://github.com/mjpost/sacrebleu
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facilitate an “apples-to-apples” comparison across
models, we extract decoder representations by
force decoding the (first) reference. We establish
2 crucial similarity scores: a benchmark on
similarity for each of these metrics, where we train
two additional models using the same architecture
but with different random seeds; a similarity
lower bound, where we compare the baseline
Transformer Big with a randomly initialized (i.e.,
untrained) model with the same architecture. We
present these bounds in Appendix C.

4 Experimental Results

4.1 Sharing FFNs

The results of various FFN sharing configurations
are summarized in Table 2, including their impact
on accuracy and model size (in millions of param-
eters and percentage). Sharing either the encoder
(SharedEnc) or the decoder FFN (SharedDec) re-
sults in just a 0.2 to 0.3 BLEU point decrease, while
reducing the parameter count by nearly 20%. Shar-
ing the FFN on each side (ShareEncShareDec)
leads to a more substantial degradation of 0.9
BLEU points, albeit reducing the parameter count
by 37%, while sharing a single FFN on the encoder
and decoder (ShareEncDec) results in a slightly
higher degradation of 1.1 BLEU points. Nonethe-
less, these findings support the hypothesis that the
FFN contains some degree of redundancy, as we
expected a greater accuracy degradation given the
substantial (20− 40%) reduction in model size.

Architecture BLEU | θ | (%)

Transformer Big 35.6 228M (100)
+ SharedEnc 35.4 186M (82)
+ SharedDec 35.3 186M (82)
+ SharedEncSharedDec 34.7 144M (63)
+ SharedEncDec 34.5 136M (59)

Table 2: sacreBLEU results on WMT 22 EN →DE for
different FFN sharing configurations. | θ | is the number
of parameters.

While we focus on sharing one FFN for all layers
within a module, we compare with sharing multi-
ple FFNs following Takase and Kiyono (2023) in
Appendix A. We find that sharing one FFN is as
accurate as sharing multiple FFNs within a module,
while being more parameter-efficient.

4.2 Dropping FFNs

Table 3 summarizes the performance of models
with no FFNs. Besides BLEU and number of pa-
rameters, we report the inference speed for each
architecture. Dropping the FFN on the encoder
(NoEnc) leads to a 0.9 BLEU point drop while re-
ducing the parameter count by 22% and with mini-
mal effect on inference speed. Dropping the FFN
on the decoder (NoDec), on the other hand, causes
a degradation of only 0.4 BLEU points while in-
creasing the inference speed by 20%8. The highest
latency reduction is obtained by removing the FFNs
on both the encoder and the decoder (NoEncNoDec),
but it comes with a significantly larger degradation
of over 2 BLEU points.

Architecture BLEU Speed | θ | (%)

Transformer Big 35.6 111±1.2 228M (100)
+ NoEnc 34.7 112±1.0 178M (78)
+ NoDec 35.2 133±0.9 178M (78)
+ NoEncNoDec 33.5 138±1.9 127M (56)

+ SharedEncNoDec 35.3 136±1.1 136M (60)
+ NoEncSharedDec 33.9 127±1.0 136M (60)

Table 3: sacreBLEU results on WMT 22 EN →DE for
different FFN dropping configurations.

Combining sharing and dropping These re-
sults, together with those from Table 2, suggest that
the encoder and decoder FFNs have different con-
tributions: the decoder’s are more redundant, cor-
roborating previous work on FFNs parametrization
(Ge et al., 2022). With this in mind, we experiment
with one shared FFN on the encoder and dropping
it on the decoder, reported as SharedEncNoDec in
Table 3. As shown, with just approximately 60%
of Transformer Big parameters we observe a 22%
improvement in inference speed, at the cost of 0.3
BLEU point.

4.3 One Wide FFN Model

Previous sections describe models that share and/or
drop FFNs, effectively reducing model size at some
modest accuracy cost. In this section, we investi-
gate whether we can regain the accuracy lost while
preserving the parameter efficiency and the latency
reduction. We focus on ShareEncNoDec model as

8The reason for this difference between NoEnc and NoDec
is that the encoder output is computed in parallel, while the
decoder operates in a step-by-step fashion.
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BLEU CHRF COMET Speed | θ | (%)

Transformer Big EN →DE 35.6 62.6 57.2 110.8±1.2 228M (100)
+ SharedEncNoDec FFN dff′ = 4, 096 35.3 62.1 56.1 135.7±1.1 135M (60)
+ SharedEncNoDec FFN dff′ = 24, 576 35.7 62.7 57.9 138.2±0.9 177M (80)

+ SharedEncNoDec FFN dff′ = 49, 152 36.5† 63.2† 59.6 137.5±1.6 228M (100)

+ SharedEncNoDec FFN dff′ = 98, 304 36.4† 63.2† 59.0 134.5±1.6 328M (145)

Table 4: Accuracy of One Wide FFN for Transformer Big EN →DE on WMT22. † implies the system is statistical
significantly different at p < 0.05.

it provides a strong baseline with significant param-
eter savings and inference speedups.

We propose increasing the dimension of the
shared FFN to match the number of parameters
of the original (fully-parameterized) model, so as
to avoid increasing the overhead of model stor-
age. In particular, ShareEncNoDec saves around
(Nenc + Ndec − 1) × 2 × dmodel × dff parame-
ters as there’s one single shared FFN in the en-
coder. On the other hand, the Transformer Big
has (Nenc +Ndec) FFNs. Thus, we match the size
of the original model by setting the dimension of
the shared FFN, dff′ , to (Nenc +Ndec)× dff.

Table 4 summarizes our results. It includes our
proposed model, the One Wide FFN model (dff′ =
49, 152), as well as the baseline Transformer Big,
and the corresponding ShareEncNoDec (dff′ =
4, 096). It also includes a wide model with dff′ =
24, 576, which uses the same number of parame-
ters as NoDec, with dff′ = Nenc × dff. This model
achieves an accuracy on par (or slightly above) the
baseline Transformer Big with 20% fewer param-
eters and a significant inference speed-up.

Our proposed model with dff′ = 49, 152 goes
beyond that, achieving a gain of 1.2 BLEU points
over the vanilla ShareEncNoDec and 0.9 BLEU

points over the Transformer Big. These gains
remain consistent across CHRF and COMET. Fur-
thermore, it has a similar inference speed as the
ShareEncNoDec model. For completeness, we in-
clude a wider model with dff′ = 98, 304. Despite
the extra capacity, this model does not provide any
additional accuracy gains, which we suspect is due
to the lack of data to train such a large model.

4.4 Analyzing Internal Representations
We now report a post-hoc analysis of the internal
representations of the models introduced in pre-
ceding sections. Our objectives are twofold: 1) to
ascertain whether the proposed models’ internal
representations exhibit a significant degree of sim-

ilarity to those of the original base model; 2) to
delve into the impact of the proposed methods on
redundancy. We adopt the definition of redundancy
of Dalvi et al. (2020), who visually inspect the sim-
ilarity between adjacent modules within a model
(high similarity entails high redundancy).

Architecture
Encoder Decoder

CKA LNS CKA LNS

Benchmark 100.0 100.0 100.0 100.0

SharedEnc 98.0 96.2 100.8 100.6
SharedDec 100.2 101.4 98.3 94.6
SharedEncSharedDec 98.9 97.2 99.5 95.4
SharedEncDec 97.6 94.4 98.4 93.5
NoEnc 90.0 70.5 101.0 96.8
NoDec 100.0 98.6 96.0 87.4
SharedEncNoDec 97.6 98.9 97.5 89.0

SharedEncNoDecd
′
ff=49152 97.0 83.2 94.0 82.9

Table 5: Similarity of the representations (%) of cor-
responding modules of different architectures vs. the
Transformer Big for WMT22 EN →DE. These scores
are normalized by comparing them to the CKA and LNS
benchmark scores. For NoDec configurations we com-
pare the final output of the Transformer layer as a whole
as they have different modules than the baseline. The
columns for shared and for dropped FFNs are high-
lighted in gray and blue respectively.

4.4.1 Similarity to Baseline
We ground the pairwise similarity metrics, by nor-
malizing them against a benchmark. As mentioned
in Section 3, we establish the benchmark scores by
training two additional Transformer Big models,
but using different random seeds. These models
achieve similar accuracy as the baseline model (see
Appendix C.1 for more details). The benchmark
score is the similarity between the baseline and
these models Because the benchmark is calculated
by averaging similarity scores from different train-
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(a) Encoder self similarity. (b) Decoder self similarity.

Figure 1: CKA self similarity of encoder and decoder layers of the One Wide Encoder model vs. the Transformer
Big baseline. We identify each component with a label: index.name. For example, 0.sa refers to the self-attention
on layer 0, while 4.ca refers to the cross-attention on layer 4.

ing runs of our baseline, individual runs can have a
normalized score above 100%.

Table 5 shows normalized similarity scores for
several models. Under the Encoder columns we
compare the encoder representations, and under the
Decoder columns we compare decoder represen-
tations. Sharing FFNs leads to consistenly lower
(normalized) similarity scores than models that do
not share, both in terms of internal representation
(CKA) and semantic spaces (LNS). As shown, al-
though models that share FFNs have lower sim-
ilarity scores compared to those that do not, the
scores are still very close to 100%. Moreover, these
decreases align with the drops in BLEU seen in
Table 2, where the model with the lowest similar-
ity score (ShareEncDec) is also the least accurate
model. We observe a similar trend for models that
drop the FFNs in the encoder or decoder, these
models exhibit lower similarity scores with the re-
spective component than models sharing them, as
shown by NoEnc and NoDec. In addition, the former
result again suggests the FFNs in the encoder are
more important than in the decoder as the similarity
shifts drastically compared to all other settings.

For completeness, we report on the last row the
similarity scores for the One Wide FFN model,
which is more accurate than the base model. The
internal representations generated by that model
diverge from those of the base model. Interestingly,
we observe a larger drop in LNS scores than in CKA

scores, indicating that the shift occurs mostly in
semantic space, rather than the Euclidean space
captured by CKA. For a detailed layer-wise similar-
ity analysis that breaks out the aggregate analysis
in Table 5 see Appendix C.2.

4.4.2 A Qualitative View of Redundancy

We now study into the impact of our One Wide
FFN model on the redundancy of the internal repre-
sentations. In addition to adopting their definition
of redundancy, we also adopt Dalvi et al. (2020)’s
method of computing self-similarity, namely look-
ing at how the representations change as they go
through each module (self-attention, FFN, or cross-
attention) of the model. In particular, we use CKA

to compute similarity between the output of differ-
ent modules within the same model.

In Figure 1a, we show the CKA self-similarity
matrices for the encoders of the One Wide FFN
model and the Transformer Big. We do the same
for the decoders in Figure 1b. These matrices show
how similar each module of the network is to all
other modules within that network. The diagonal
of the matrix is the similarity between a module
and itself and is always 1.

As shown, there is high similarity between ad-
jacent modules of the Transformer Big, both on
the encoder and decoder, indicated by areas with
darker red around the diagonal. The prevalence of
high similarity patterns among adjacent modules
suggests a substantial degree of redundancy, and
eliminating a module has a negligible impact on
the final representations. On the other hand, we
observe a distinct checkerboard pattern on the self-
similarity matrices of the One Wide FFN model,
where individual modules tend to exhibit lower sim-
ilarity with their immediate neighbors than with
their second neighbors (i.e., the neighbors of the
neighbors). On the encoder, the checkerboard pat-
tern emerges especially in the earlier modules while
on the decoder, that pattern appears more consis-
tently throughout the layers. This pattern gives an
indication that our model is learning non-trivial
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transformations of the input, leading to decreased
redundancy within the network.

4.5 Other architectures and Languages

So far, all our experiments focused on the Trans-
former Big and on WMT22 EN →DE. In this
section, we apply what we learned to other archi-
tectures and language pairs. We run experiments
on the low resource language direction EN →RO

and a large scale multilingual model.
For EN →DE, we apply our proposal to a Trans-

former Base model, a Deep Encoder Shallow De-
coder model (Kasai et al., 2021), and a Decoder-
Only model. For the Transformer Base, we observe
an accuracy gain of 0.5 BLEU (2.2 BLEU over the
vanilla SharedEncNoDec model) and an inference
speedup of around 25%. In the Deep Encoder Shal-
low Decoder model, we observe a more modest
accuracy gain of 0.2 BLEU points (0.9 BLEU over
the vanilla SharedEncNoDec model). However, the
inference speedup from dropping the decoder FFNs
is minimal (< 1%), which is expected because of
the small depth of the decoder in this architecture.

Decoder-only models With the advent of Large
Language Models (LLMs) like GPT (Brown et al.,
2020), and PaLM (Chowdhery et al., 2022), a lot
of effort has been put on decoder-only Transformer
models. We train a decoder-only model on WMT22
EN →DE, as shown on Table 6. Due to the ab-
sence of an encoder, we are limited to applying
a wide FFN on the decoder side. As in the other
setups, we get an accuracy gain of +0.3 BLEU over
the baseline decoder-only model (+1.7 BLEU over
ShareDec), but the latency degrades by 12%. This
is not surprising: due to the autoregressive nature
of the decoder, increasing the size of its FFN has a
bigger impact on speed.

Low-resource languages In EN →RO the ac-
curacy of the One Wide FFN Model is only on
par compared to the base model, even though it is
a higher than the vanilla SharedEncNoDec model.
We hypothesize that due to the low resource condi-
tion, our proposed model already reaches saturation
as there are not that many salient textual patterns
to be learned by the FFN.

Multilingual Finally, we observe the similar
trend on the multilingual setup, where the One
Wide FFN Model is +1.2 SPBLEU points more ac-
curate than the baseline Transformer Big and +2.5
SPBLEU points more accurate than the vanilla

SharedEncNoDec, this gain is significant in 79 out
of 90 directions and when all tests sets are con-
catenated. Additionally, this large accuracy gain
also comes with around 18% inference speed-up,
consistent with our previous results.

5 Related Work

Weight pruning and parameter sharing are well-
known techniques to reduce a model’s footprint.
Given the scale of the latest models (Chowdhery
et al., 2022), there have been multiple efforts to
prune neurons based on different automatic meth-
ods (Dalvi et al., 2020; Michel et al., 2019; Voita
et al., 2019), sharing parameters efficiently (Ge
et al., 2022; Reid et al., 2021), and factorizing cer-
tain components (Lan et al., 2020; Hu et al., 2022).

Neuron pruning methods often focus on finding
and pruning redundant neurons through correlation
methods (Dalvi et al., 2020), but also on how Trans-
former components like the multi-head attention
can be pruned significantly due to model redun-
dancy in the encoder or decoder either by checking
the gradients salience (Michel et al., 2019) or a
differentiable relaxation of the l0 regularization at
training time (Voita et al., 2019).

For parameter sharing, the Universal Trans-
former (Dehghani et al., 2019) proposed a model
where all layers are shared (i.e., in effect it reduced
the model to a single shared layer). Takase and
Kiyono (2023) proposes finding an optimal config-
uration of shared layers in the encoder or decoder
through different methods of sharing (in sequence,
in cycle, or in reversed cycle) always keeping a
specified number of final layers9. Similarly, Reid
et al. (2021) proposes an approach where just the
middle layers are shared, while the bottom and top
layers are independent, and using a lower dimen-
sionality for the embedding layer. Analogously, Ge
et al. (2022) focus on minimizing the number of
parameters and the number of calls to each param-
eters’ group in order to optimise on-device models.
They achieve this by sharing the encoder and de-
coder in a similar way to both previous methods,
particularly by sharing all layer parameters in cycle
like Takase and Kiyono (2023).

Previous works also focus on reducing the di-
mensionality of certain parameters, mostly through
low rank factorization. Lan et al. (2020) decom-
poses the embedding layer into a lower rank em-

9See Appendix A for a detailed description and compari-
son.
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BLEU CHRF COMET Speed | θ | (%)

Transformer Base EN →DE 34.2 61.6 54.1 116.3±0.9 70M (100)
+ SharedEncNoDec FFN dff′ = 2, 048 32.5† 60.1† 50.0 146.0±1.6 47M (67)
+ SharedEncNoDec FFN dff′ = 24, 576 34.7 61.8 55.6 146.8±1.3 70M (100)

Transformer Decoder-Only EN →DE 35.8 62.8 57.7 79.8±1.9 202M (100)
+ ShareDec FFN dff′ = 4, 096 34.4† 61.7† 54.1 79.7±1.3 110M (48)
+ ShareDec FFN dff′ = 49, 152 36.1 62.9 59.4 69.3±0.2 202M (100)

Transformer Deep Enc. Shallow Dec. EN →DE 35.5 62.4 58.0 230.1±0.8 236M (100)
+ ShareEncNoDec FFN dff′ = 4, 096 34.8† 61.6† 55.4 235.0±0.5 127M (54)
+ ShareEncNoDec FFN dff′ = 57, 344 35.7 62.4 58.9 233.5±0.7 236M (100)

Transformer Base EN →RO 22.9 52.9 50.9 119.3±1.1 64M (100)
+ SharedEncNoDec FFN dff′ = 2, 048 22.2† 52.5† 45.8 152.8±1.4 41M (64)
+ SharedEncNoDec FFN dff′ = 24, 576 22.9 52.8 46.7 150.6±0.5 64M (100)

Transformer Big Multilingual 26.8 46.3 47.7 94.6±1.6 422M (100)
+ SharedEncNoDec FFN dff′ = 4, 096 25.5† 45.1† 40.8 107.1±1.4 330M (78)

+ SharedEncNoDec FFN dff′ = 49, 152 28.0† 47.3† 50.7 111.5±1.1 422M (100)

Table 6: Accuracy of One Wide FFN for EN →DE with Transformer Base, Decoder Only, and Deep Encoder
Shallow Decoder on WMT22; for low resource EN →RO with Base version on WMT16, and multilingual with
Transformer big on Flores. † implies the system is statistical significantly different at p < 0.05.

bedding matrix and a projection to the actual hid-
den size while also sharing all parameters across
all layers. In addition to sharing parameters ef-
ficiently, Ge et al. (2022) proposes a lightweight
decomposition of the FFN where instead of a single
component there are 2 projections with a smaller di-
mensionality than vanilla Transformers. Our work
is close to Ge et al. (2022) but instead of factoriz-
ing we explore sharing and full pruning of the FFN.
In contrast with previous works, we also explore
increasing the encoder FFN size while dropping
the decoder’s completely.

6 Conclusion

In this work, we studied the importance of the FFN
in Transformer models. We analyzed the impact of
removing and/or sharing the FFN across layers and
found that, due to this component’s redundancy, the
model sizes can be substantially reduced with little
impact on accuracy for Machine Translation. In
particular, we found that sharing the FFN across all
encoder layers while making it larger and removing
it from the decoder layers leads to models that are
more accurate and faster at inference.

Our findings are applicable across multiple set-
tings, including decoder-only and multilingual
models. In a low-resource setting the results are
modest but our approach can still recover the base-

line’s performance with a faster inference.
Finally, we conducted a thorough similarity anal-

ysis between the vanilla Transformer and our pro-
posed architectures, and found that the latter’s inter-
nal representations do not differ significantly from
the former’s, except in that they are less redundant.

Limitations

In this work, our focus was Machine Translation.
Although we expect the results to generalize to
other sequence-to-sequence tasks, further experi-
ments are needed, which we leave for future work.

Ethics Statement

One important consideration is the energy con-
sumption for model training, which results in green-
house emissions (Strubell et al., 2019). Our work
uses existing datasets, and inherits some of the
risks associated with them, such as privacy leakage
(Carlini et al., 2021) and gender bias (Cho et al.,
2019). Mitigation strategies such as those from
Vanmassenhove et al. (2018) may be necessary.
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A Custom Sharing of Multiple FFNs

There is a combinatorial number of ways of sharing
M < N FFNs within a module of N layers. Since
this is prohibitive, we investigate the following
strategies from Takase and Kiyono (2023):

• Sequence: assign one FFN for every M/N
consecutive layers, forming a block pattern.

FFNi(·)
tied
= FFNseqm(·),∀i : 1 ≤ i ≤

N,m = ⌊(i− 1)/(N/M)⌋

• Cycle: stack M FFNs in an identical order,
forming a repetitive checkerboard pattern.

FFNi(·)
tied
= FFNcycm(·), ∀i : 1 ≤ i ≤

N,m = (i− 1) modulo M

• Cycle (Rev): stack M FFNs in a reverse
order, forming a repetitive palindrome series.

FFNi(·)
tied
= FFNcycrevm(·),∀i : 1 ≤ i ≤

N,m = N/M − i

Note that we assume that N is an even number
and divisible by N . Cycle (Rev) is only valid
for M = N/2. The EdgeFormer (Ge et al., 2022)
adopts Cycle with M = 2 for the encoder FFNs.

Table 7 shows the results of these strategies ap-
plied on the encoder. As references, we copy the re-
sults of the Transformer Big and ShareEnc from
Table 2. Not only is the accuracy of ShareEnc sim-
ilar to Takase and Kiyono (2023)’s strategies, but it
also uses fewer parameters and is easier to extend.

Architecture BLEU | θ | (%)

Transformer Big 35.6 228M (100)
+ SharedEnc (M=1) 35.4 186M (82)

+ Sequence M=2 35.2 194M (85)
+ Sequence M=3 35.3 202M (88)
+ Cycle M=2 35.2 194M (85)
+ Cycle M=3 35.5 202M (88)
+ Cycle Rev M=2 35.2 194M (85)
+ Cycle Rev M=3 35.5 202M (88)

Table 7: Accuracy of different FFN sharing strategies
on WMT22 EN → DE.

B Sharing or Dropping Attention

We report the results of sharing attention modules
(either self, cross or both) across layers in Table 8.
In contrast with the FFN, attention seems to play
a more crucial role in the model’s performance, as
sharing the different attention mechanisms in both
encoder and decoder causes a large accuracy drop
across all settings, with the exception of sharing
the decoder’s cross attention and the encoder’s self
attention.

Encoder Decoder BLEU | θ | (%)
Self-Att Self-Att Cross-Att

Transformer Big 35.6 228M(100)
Shared Shared Shared 27.5 165M (72)
Shared Shared Indiv. 27.6 186M (82)
Shared Indiv. Indiv. 35.5 207M (91)
Indiv. Shared Indiv. 26.5 207M (91)
Indiv. Shared Shared 25.7 186M (82)
Indiv. Indiv. Shared 35.5 207M (91)

Table 8: BLEU scores on WMT 22 EN →DE when
sharing the attention of both encoder and decoder (self
and cross). Nomenclature follows Section 3 but with
Self Attn an Cross Attn as the encoder/decoder’s self
attention and cross-attention (decoder), respectively.

https://doi.org/10.18653/v1/D18-1334
https://doi.org/10.18653/v1/D18-1334
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
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C Details on Internal Representations
Analysis

C.1 Raw Similarity Scores for Benchmarking

We establish a benchmark score for the expected
similarity of our two metrics by comparing the
baseline Transformer Big with identical models
trained from different random seeds. Table 9
presents the raw similarity scores from which we
compute the normalized scores presented in Table 5.
As shown, the similarity between

Architecture
Encoder Decoder
CKA LNS CKA LNS

TransformerBig Seed 2 .96 .61 .94 .62
TransformerBig Seed 3 .96 .62 .95 .62

SharedEnc .94 .58 .95 .62
SharedDec .97 .62 .93 .59
SharedEncSharedDec .95 .59 .94 .59
SharedEncDec .94 .57 .93 .58
NoEnc .87 .43 .95 .60
NoDec .96 .60 .90 .54
ShareEncNoDec .94 .59 .92 .55

ShareEncNoDecd
′
ff=41952 .94 .51 .89 .51

Table 9: Raw similarity of the representations of cor-
responding layer-modules of different architectures vs.
the Transformer Big for WMT22 EN →DE. For NoDec
configurations we compare the final output of the trans-
former layer as a whole as they have different sub-
modules. The columns for shared and for dropped FFNs
are highlighted in gray and blue respectively.

C.2 Layer-wise Analysis

In Table 5, we report the aggregated similarity
scores across all layers of Transformer encoder
and decoder. Here, we report a more fine-grained
layer-wise similarity score mostly to showcase the
reliability of the aggregated scores. In Figure 2,
we plot layerwise LNS to study how similar the
semantic information captured at each layer is to
that of the baseline model at every layer. When
LNS scores are high, the network is producing sim-
ilar local neighborhoods for each sentence in our
evaluation set. In particular, we are interested in
comparing the benchmark LNS scores and those of
SharedEncSharedDec at each layer. As shown, the
layer-wise LNS scores of SharedEncSharedDec
track the baseline scores at almost every layer, con-
firming the reliability of the aggregated score. We

observe similar pattern for all the models that we
evaluate in this paper.
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Figure 2: Layerwise LNS between
SharedEncSharedDec and Transformer Big
(blue bars). LNS between two versions of Transformer
Big trained from different random initializations are
shown by the grey bars to ground the comparison.
FFN sharing does not dramatically change activations
produced at each layer.

D Effect of batch size on decoding speed

In Section 4.3, we compared the decoding speeds of
the One Wide FFN model and the Transformer Big,
with a batch size of 1. In Table 10, we delve into
how the decoding speed evolves as the batch size
increases. As shown, the One Wide FFN model
is faster for smaller batch sizes, but its advantage
diminishes as the batch size increases, being slower
than the Transformer Big for large batch sizes. We
suspect this slowdown is due to the fact that the
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| Batch | Transformer Big One Wide FFN Speed-up (%) # batches

1 110.8±1.2 137.5±1.1 24 2, 047
2 221.7±14.3 260.9±6.5 18 1, 024
4 397.4±8.0 448.9±2.0 13 512
8 718.3±8.0 748.7±10.6 4 256

16 1, 220.7±56.2 1, 226.9±17.2 1 128
32 1, 958.5±112.4 1, 837.6±15.3 −6 64
64 1, 319.1±36.7 1, 259.0±70.0 −5 32
128 1, 925.1±64.8 1, 705.0±62.3 −11 16
256 2, 312.1±67.4 1, 976.5±123.2 −15 8
512 2, 512.0±50.1 1, 957.9±32.6 −22 4

Table 10: Effect of batch size on decoding speed (in tokens/s) for the Transformer Big and One Wide FFN
(dff′ = 49, 152). ∆ is the percentage change in inference speed, and # batches is the number of batches used to
evaluate. For large batch sizes, there are fewer batches (since the dataset size is fixed), which leads to higher
variance in the measurements.

large FFN size requires higher peak memory, mak-
ing the larger sizes non-optimal for this model.


