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Abstract

A lack of consistency in terminology trans-
lation undermines quality of translation from
even the best performing neural machine trans-
lation (NMT) models, especially in narrow
domains like literature, medicine, and video
game jargon. Dictionaries containing termi-
nologies and their translations are often used
to improve consistency but are difficult to con-
struct and incorporate. We accompany our sub-
missions to the WMT ’23 Terminology Shared
Task with a description of our experimental
setup and procedure where we propose a frame-
work of terminology-aware machine transla-
tion. Our framework comprises of an auto-
matic terminology extraction process that con-
structs machine translation datasets with termi-
nology dictionaries in low-supervision settings
and two model architectures with terminology
constraints. Our models outperform baseline
models by 21.51%p and 19.36%p in terminol-
ogy recall respectively on the Chinese to En-
glish WMT’23 Terminology Shared Task test
data.

1 Introduction

The WMT’23 Terminology Shared Task aims to as-
sess machine translation models’ abilities to lever-
age additional information. A terminology dic-
tionary is provided with each line of source text.
This is particularly useful for terminology consis-
tency. The WMT’23 Terminology Shared task in-
cludes the language pairs Chinese-English, English-
Czech, and German-English. We focus our submis-
sion on the Chinese-English pair. The task consists
of three modes, as shown in Table 1.

Mode 1 assesses translation quality without ad-
ditional terminology information. Mode 2 assesses
translation quality with additional terminology in-
formation. Mode 3 assesses translation quality with
a glossary containing random non-terminology.

In this paper, we describe our model building
process for terminology translation from data pre-

processing to model evaluation. We present two
Transformer-based encoder-decoder models: Ter-
minology Self-selection Neural Machine Trans-
lation (TSSNMT) and ForceGen Transformer
(ForceGen-T). TSSNMT uses a shared encoder
with a gating mechanism (Bapna and Firat, 2019),
allowing the model to determine the weights of
the source sentence and terminologies to use dur-
ing generation. ForceGen-T enforces a decoder
to generate the terminologies via force decoding
(Reheman et al., 2023) and copy mechanism (Song
et al., 2019), which enables the model to attend
to terminologies during generation. Both models
significantly outperform the baseline model.

2 Related works

Previous work on enhancing machine translation
with pre-defined terminology encompasses three
primary approaches.

First, a data-driven approach where terminolo-
gies are appended to input sentences (Dinu et al.,
2019; Song et al., 2019). Song et al. (2019) sug-
gest using copy mechanism to instruct the model
to replicate the target terminology during the gen-
eration process.

Second, an alternative approach focuses on ma-
nipulating the model architecture. Bapna and Firat
(2019) have used input sentences and their corre-
sponding retrieved translation pairs to encode con-
ditional source target memory. This approach uses
a gated multi-source attention mechanism, which
takes the encoded representation and the hidden
state of the source as input, thereby steering the
model toward the generation of the intended trans-
lation.

Third, efforts have been directed at tailoring
the decoding process to incorporate terminologies.
Hokamp and Liu (2017) and Post and Vilar (2018)
have introduced constrained decoding techniques
that reinforce the translated output’s pre-specified
terminologies.
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Mode Source Input Glossary Input Target Output

1 脱离这些影响的建筑,
17世纪的建筑师伊尼戈琼斯和
克里斯托弗·雷恩牢固确立了
在英国的古典主义.

-
Architects Inigo Jones and Christopher Ren strongly
established classicalism in England in the 17th century,
free from these influences.

2
{“en”: “Christopher Wren”,
“zh”: “克里斯托弗·雷恩”}

Inigo Jones and Christopher Wren, two architects from
the 17th century, strongly established classical architecture
in England, free from these influences.

3
[“en”: “firmly”, “zh”: “牢固”,
“en”: “free”, “zh”: “脱离”]

Building designs that were free from these influences,
17th century architects Inigo Jones and Christopher Ren
firmly established classical architecture in England.

Table 1: Different Mode Scenarios

3 Data Process

The WMT’23 Terminology Shared Task is a con-
strained track, following the same rules of data
usage as the WMT’23 General MT Task, forbid-
ding the use of external data. However, unlike the
WMT’21 Terminology Task, the provided training
data lacks terminology information, and need to be
artificially constructed.

3.1 Data Filtering

We first filter noisy data. We referenced the data
cleaning methods described in the WMT’21 Termi-
nology submissions (Molchanov et al., 2021; Wang
et al., 2021).

1. Remove pairs that contain sentences that:

(a) are empty, too short, too long.
(b) are contain only symbols.
(c) are at least 3 times longer than their coun-

terpart.

2. Delete text pairs identified to be the wrong lan-
guage. We used a combination of our in-house
language detector for short texts and LangID
(Lui and Baldwin, 2012) for long texts.

3. Remove pairs outside of a selected cosine sim-
ilarity scope of latent vectors constructed by
the LaBSE model (Feng et al., 2022).

See Appendix A for the amount of data filtered and
the resulting performance comparison.

3.2 Word Alignment

After filtering data, we tokenize and word-align the
text to extract desired terminology pairs for Modes
2 and 3. The overall process is described in Fig-
ure 1. We use our in-house tokenizer, referring to
the tagging schema from Luo et al. (2019) for Chi-
nese and the Moses (Koehn et al., 2007) tokenizer
for English. Next, the tokenized parallel data is

fed into a LaBSE (Feng et al., 2022) based word
aligner, AccAlign (Wang et al., 2022). AccAlign
generates pairs of indices for words from the source
and target text, which are then utilized in extracting
terminology pairs.

3.3 Terminology Extraction: Mode 2

The terminology extracted for Mode 2 are named
entities, excluding time and number expressions.
We use SpaCy’s (Honnibal and Montani, 2017)
zh core web lg as the Chinese NER model and
en core web md as the English NER model. Fur-
thermore, we consider Chinese four-character id-
ioms extracted by our in-house tokenizer. The id-
ioms are added as additional Mode 2 candidates.
Next, we reference our word alignment results from
Section 3.2 to map candidates to their correspond-
ing targets.

AccAlign occasionally fails to align multi-word
terminology completely, which poses an issue for
Chinese idioms. To account for this, we implement
a soft matching strategy to interpret AccAlign’s
output indices, where we extract the entire phrase
if the aligner maps the beginning and end indices,
even when alignment is not complete in the middle
of the phrase. We use strict matching for named
entities, which only extracts words that appear in
the alignment results.

To guarantee that our extracted terminology is ac-
curate and exhaustive, we repurpose the provided
training data source WikiTitles as an additional
resource for terminology pairs. For each pair in
WikiTitles, we check whether a term and its trans-
lation were present on both sides of the parallel
text and add the relevant term pairs into the Mode
2 glossary.

3.4 Terminology Extraction: Mode 3

The terminology extracted for Mode 3 is intended
to be relatively random yet accurate pairs from
the parallel text. For simplicity, we exclusively
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Figure 1: Data Construction Process

processed from the English side when generating
Mode 3 candidates. We extracted n-grams (1 ≤
n ≤ 4) with high TF-IDF scores (Sparck Jones,
1988), as well as noun phrases (Loria, 2018), as the
Mode 3 candidates. We take all Mode 3 candidate
pairs that contain an appropriately aligned terminol-
ogy, stem the English terms using nltk (Bird et al.,
2009), and then randomly select of a maximum of
ten term pairs for the Mode 3 glossary.

3.5 Development Data

The official Chinese-English development data is
relatively small, thus we supplement it with a sub-
set of the allowed data. We construct a supplemen-
tal development data with a random proportional
sample from each provided training data source,
which consists of 1,000 identical sentences through-
out the three modes. Furthermore, we construct
terminology for the different modes according to
the above mentioned process. Additionally, we fil-
ter stop words and terms in neither the source nor
target texts.

4 Models

This section presents two distinct models designed
to incorporate terminologies into NMT models.
The first model, Terminology Self-selection Neural
Machine Translation (TSSNMT), employs a shared
encoder architecture featuring a gating mechanism.
This mechanism empowers the model to make de-
cisions regarding the proportion of the source sen-
tence and the terminologies to be processed during

generation. The second model, ForceGen Trans-
former (ForceGen-T), takes a more straightforward
approach, utilizing a standard Transformer model
with force decoding (Reheman et al., 2023) and
copy mechanism (Song et al., 2019). This approach
enforces the model to initially generate the pre-
defined terminologies before generating the remain-
der of the sentence. Copy mechanism is applied
to replicate source-side target terminologies in the
output.

4.1 TSSNMT

Figure 2: TSSNMT Model Structure. x, y, and c denote
source, target and corresponding terminology respec-
tively.

We have implemented the TSSNMT model with
minor changes to the transformer architecture. The
model has two encoders, as shown in Figure 2.
Each encoder receives input in source sentences
and source-target pair terminologies. These two en-
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Figure 3: ForceGen model structure. x, y, and c denote
source, target and corresponding terminology respec-
tively.

coders share parameters and encode both the source
sentences and the terminologies. The decoder cal-
culates cross-attentions with these two encoder hid-
den states separately and then projects them to a
gating mechanism (Bapna and Firat, 2019). Shar-
ing parameters allows the model to decide weight
distribution across the source and the terminology
during generation.

4.2 ForceGen Transformer

We tailor a Transformer-based model to ensure the
appearance of given terminologies in the generated
output. Modifying the input format and decod-
ing process incorporates copy mechanism on the
source side, allowing it to copy the target terminol-
ogy from the provided terminology pairs. Table 2
refers to the input sentence for this purpose.

During decoding, the model is reinforced to gen-
erate the given terminologies in a teacher-forcing
manner. This approach aligns with findings by Re-
heman et al. (2023), who force a model to generate
Translation Memory (TM) to enhance model per-
formance. Instead, we provide the model with the
terminologies, expecting it to consider them atten-
tively during the decoding process. Once the termi-
nologies are successfully generated, the model de-
codes the remainder of the input text. Copy mech-
anism enforces the source-side target constraints
into the output. This approach is inline with that
of Song et al. (2019), where copy mechanism sig-
nificantly improves the ratio of terminology occur-
rences in the output.

We conduct preliminary experiments by train-
ing our models using the IWSLT17 (Cettolo et al.,
2017) Chinese-English data and MUSE dictionary
(Conneau et al., 2017) to assess the impact of the
copy mechanism and force decoding. The pri-
mary objective is to determine whether the copy

mechanism and the force decoding technique could
complement each other. The outcomes, as pre-
sented in Table 3, reveal that the model yields the
most favorable results when both the copy mecha-
nism and force decoding are concurrently applied.
This finding underscores the benefit of replicating
source-side target terminology during the genera-
tion process, as it significantly aids in generating
pre-specified terminologies during the force decod-
ing phase. Consequently, when generating output
after force decoding, the model effectively focuses
on the target terminologies generated during decod-
ing, facilitating successful incorporation of these
terminologies into the final production. We apply
both methods to our model, ForceGen-T.

5 Experiments

5.1 Evaluation setting

5.1.1 Pseudo test data
Both the provided WMT Terminology test data and
blind data for the Chinese-English language pair
contain only Chinese source lines and no target, so
to evaluate the model, we constructed artificial tar-
get answers using ChatGPT (Ouyang et al., 2022)
and reviewed the produced data manually. We then
use this data as the test data to evaluate the model.

5.1.2 Evaluation metrics
The evaluation criteria for this translation task in-
clude overall terminology translation, terminol-
ogy usage, and translation quality. We chose
SacreBLEU (Post, 2018) , COMET (Rei et al.,
2020), chrF (Popović, 2015) and Copy Success
Rate (CSR). SacreBLEU and COMET scores are
commonly used metrics in machine translation
quality. For terminology translation and usage, we
utilize CSR, which we define as the appearance
rate of the desired terminology in the inferred text.

5.2 Experimental details

We use sentencepiece (Kudo and Richardson, 2018)
to learn a joint byte pair encoding with a vocab-
ulary size of 32K. Our preprocessing strategy in-
volves pre-tokenizing Chinese data through an in-
house Chinese tokenizer, while English data is ex-
clusively tokenized using the Sentencepiece model.
Please note that the training data tokenization pro-
cess slightly differs from the data construction de-
scribed in Section 3.

For all the experiments, we build upon the scale
of the Transformer Big model (Vaswani et al.,
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Source 郝仁,人如其名,是一个好人。
Term {“en”: “Hao Ren”, “zh”: “郝仁” }
Modified source 郝仁<C> Hao Ren </C>郝仁,人如其名,是一个好人
Modified target Hao Ren </C> Hao Ren, as his name suggests, is a good man

Table 2: ForceGen training data sample.
<C>, </C> are the separation token that distinguishes the source sentence from the terminologies.

Model COMET SacreBLEU chrF CSR
Baseline 0.7274 18.78 42.09 78%
+Copy 0.7347 19.44 42.16 92%
+Force decoding 0.7371 20.10 43.31 94%

Table 3: Preliminary experiment results of ForceGen-T
trained with IWSLT17 Chinese-English data.

Test data Model COMET SacreBLEU chrF CSR

Test data
Baseline 0.6932 17.13 45.13 54.35%
TSSNMT 0.7205 23.04 48.68 75.86%
ForceGen-T 0.7380 22.02 51.00 73.71%

Blind data
Baseline 0.6918 16.55 45.88 65.07%
TSSNMT 0.7181 23.26 49.18 83.45%
ForceGen-T 0.7336 20.96 51.57 89.38%

Table 4: Experiment results. Please note that the scores
are measured with Chat-GPT generated references.

2017) architecture implemented using our propri-
etary toolkit. This model consists of 12 encoder
layers and 6 decoder layers, providing a strong
foundation for effectively integrating specified ter-
minologies into the output. The specific config-
uration of each approach varies according to the
respective model specifications. We list detailed
configurations in Appendix B.

6 Results

Table 4 shows the Chinese-English translation re-
sults on the WMT’23 Terminology Task. We com-
pare two approaches - TSSNMT and ForceGen-T
against the baseline Transformer Big model. Both
TSSNMT and ForceGen-T significantly outper-
form the baseline model in all automatic evaluation
metrics. Highly elevated CSR scores underscore
the successful integration of provided terminolo-
gies into the translated output. In contrast, higher
scores in various syntactic and semantic metrics
(COMET, SacreBLEU, and chrF) indicate the flu-
ency and adequacy of the generated translations.
Within the test data, both TSSNMT and ForceGen-
T exhibit similar performance levels. However,
when evaluating based on the CSR score, TSSNMT
surpasses ForceGen-T by approximately 2%p. In
contrast, within the blind data, ForceGen-T consis-
tently demonstrates superior scores compared to

TSSNMT, with particularly notable advantages in
CSR scores.

7 Conclusion

This paper presents the comprehensive procedure
of our submissions for the WMT’23 Terminology
Shared Task. Our approach involves meticulous
refinement and pre-processing of the provided data,
subsequently used to train our models. We inves-
tigate and implement two strategies for effectively
integrating the given terminologies into the out-
put, demonstrating their superior performance com-
pared to the baseline. The result shows that our
approach can significantly improve translation ac-
curacy by increasing the recall of terminologies. As
a future endeavor, we aim to extend the validation
of our approach to other languages.

8 Limitations

In this paper, we propose two successful terminol-
ogy integration approaches in NMT. We confirm
that our models achieve significant performance
gains over the baseline model. Still, it is essential to
note that these observed improvements are specific
to a particular language pair, Chinese to English.
Therefore, further experiments on a wide range of
language pairs, including those with morphologi-
cally complex structures, are needed to validate the
broader efficacy of our approaches.

It is worth noting that the inference speed of
ForceGen-T linearly correlates with the number of
terminologies that need to be generated. ForceGen-
T is forced to generate the given terminologies
first in decoding, inevitably requiring additional
inference time. Consequently, the inference speed
of ForceGen-T is slower than that of the baseline
Transformer model.
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A Appendix

Data Num of raw data Num of filtered data ratio
Back-translated news 16,943,688 16,349,073 96.49%
CCMT Corpus(casia2015) 1,048,400 1,046,410 99.81%
CCMT Corpus(casict2011) 1,512,478 952,259 62.96%
CCMT Corpus(casict2015) 2,019,011 1,968,537 97.50%
CCMT Corpus(datum2017) 718,025 656,980 91.50%
CCMT Corpus(neu2017) 1,967,605 1,894,805 96.30%
News Commentary v18.1 311,904 309,410 99.20%
ParaCrawl v9 10,508,286 6,599,206 62.80%
UN Parallel Corpus v1.0 12,354,729 12,206,477 98.80%
WikiMatrix 2,276,736 1,035,916 45.50%

Total 49,660,862 43,019,073 86.63%

A.1: Data Filtering

Train data COMET sacreBLEU chrF CSR
raw data 0.5829 12.36 34.41 72.54%
filtered data 0.6445 15.04 40.58 73.64%

A.2: Comparison of WMT’23 raw data and filtered data
on the test data

B Appendix

Training configuration Hyper-parameters
embedding size 1024
num of encoder layers 12
num of decoder layers 6
num of heads 16
hidden size 1024
bottleneck size 4096
dropout rate 0.15
optimizer fusedadam
learning rate 1.8
lr scheduler noam
warm up step 4000
strategy deepspeed stage 2(Rajbhandari et al., 2020)

B.1: Training Configure
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