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Abstract

This paper discusses the methods that we
used for our submissions to the WMT 2023
Terminology Shared Task for German-to-
English (DE-EN), English-to-Czech (EN-CS),
and Chinese-to-English (ZH-EN) language pairs.
The task aims to advance machine translation
(MT) by challenging participants to develop
systems that accurately translate technical
terms, ultimately enhancing communication
and understanding in specialised domains.
To this end, we conduct experiments that
utilise large language models (LLMs) for
two purposes: generating synthetic bilingual
terminology-based data, and post-editing
translations generated by an MT model through
incorporating pre-approved terms. Our system
employs a four-step process: (i) using an LLM
to generate bilingual synthetic data based on the
provided terminology, (ii) fine-tuning a generic
encoder-decoder MT model, with a mix of the
terminology-based synthetic data generated in
the first step and a randomly sampled portion
of the original generic training data, (iii)
generating translations with the fine-tuned MT
model, and (iv) finally, leveraging an LLM for
terminology-constrained automatic post-editing
of the translations that do not include the
required terms. The results demonstrate the
effectiveness of our proposed approach in
improving the integration of pre-approved
terms into translations. The number of terms
incorporated into the translations of the blind
dataset increases from an average of 36.67%
with the generic model to an average of 72.88%
by the end of the process. In other words,
successful utilisation of terms nearly doubles
across the three language pairs.

1 Introduction

The primary goal of the WMT 2023 Terminology
Shared Task is to evaluate the ability of MT sys-
tems to accurately translate technical terminology.

SCorrespondence: first_name.last_name@adaptcentre.ie

The task aims to assess the extent to which MT
models can utilise additional information regard-
ing the translation of terminology. The shared task
requires the participants to provide three transla-
tions, one without terms and the others with two
individual sets of terms.

There have been several advancements in the
area of MT domain adaptation, where an MT model
is expected to follow the style and terminology
of a certain domain or client (Chu et al., 2017;
Kobus et al., 2017). Moreover, some researchers
give special focus to terminology while training
and fine-tuning MT systems (Dinu et al., 2019; Hu
et al., 2019b; Haque et al., 2020; Michon et al.,
2020; Nayak et al., 2023). However, forcing an
MT model to adhere to certain terminology at infer-
ence time is among the most challenging aspects of
MT. Hence, several researchers have investigated
approaches to terminology-constrained decoding
at translation time (Hokamp and Liu, 2017; Hasler
et al., 2018; Post and Vilar, 2018; Hu et al., 2019a;
Exel et al., 2020). The goal is to ensure that the
MT system can accommodate unseen terminology
while retaining translation accuracy and fluency.

Recently, since the emergence of advanced
LLMs such as GPT-3 (Brown et al., 2020),
BLOOM (Le Scao et al., 2022), PaLM (Chowdhery
et al., 2022), Falcon (Penedo et al., 2023), Llama 2
(Touvron et al., 2023), and Jais (Sengupta et al.,
2023) to mention just a few, researchers have been
exploring the capabilities of these models for a
number of tasks including MT (Bawden and Yvon,
2023; Hendy et al., 2023; Jiao et al., 2023; Moslem
et al., 2023; Vilar et al., 2023). Some work inves-
tigates whether it is possible to utilise LLMs for
terminology-constrained MT using a pre-defined
glossary (Moslem et al., 2023) or even a dictio-
nary (Ghazvininejad et al., 2023). They found the
approach is generally effective in increasing the
number of terms used in the translation, even for
low-resource languages.
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We highlight our key contributions with the sys-
tems that we submitted for the WMT 2023 Termi-
nology Shared Task as follows:

* LLMs for domain-specific data augmenta-
tion: In our previous work (Moslem et al.,
2022), we employed LL.Ms, namely GPT-J
(Wang and Komatsuzaki, 2021) and mGPT
(Shliazhko et al., 2022), to generate domain-
specific datasets based on the target sentences
in a small authentic dataset, then generated
the source sentences with back-translation
(Sennrich et al., 2016; Poncelas et al., 2019),
and finally fine-tuned an encoder-decoder MT
model on this data. In this work, we take
a couple of steps forward by instructing an
LLM, namely ChatGPT (Brown et al., 2020;
Ouyang et al., 2022), to generate terminology-
based bilingual synthetic data. In other words,
the LLM will generate both the source and
target sides of translation pairs, making sure
the pre-approved target terms provided by the
organisers are used in the translations.

* LLMs for terminology-constrained MT
and MT post-editing: In our previous work,
we utilised an LLM for translation and pro-
vided it with a list of terms to support in-
context learning, which improved adherence
to the required terminology at inference time
(Moslem et al., 2023). We also investigated
whether we could use an LLM for post-editing
MT generated by other systems. In this work,
we prompt ChatGPT to insert missing terms
into translations generated by an encoder-
decoder MT system. In other words, if some
of the translations generated by a fine-tuned
MT model still do not include the terms pro-
vided by the organisers, we feed these transla-
tions into an LLM, namely ChatGPT, instruct-
ing it to incorporate these terms while using
the same translation.

2 Method

In our submissions to the WMT 2023 Terminology
Shared Task, we followed these steps:

(i) Generate bilingual synthetic data based on the
pre-approved terms, using an LLLM, namely
ChatGPT.

(ii) Fine-tune a generic model, OPUS (Tiede-
mann and Thottingal, 2020), on a mix of the

terminology-based synthetic data generated
in (i) and a randomly sampled portion of the
original generic training data.

(iii)) Generate translations of the dev, test, and
blind datasets provided by the organisers with
the fine-tuned model from (ii).

(iv) Apply terminology-constrained automatic
post-editing using ChatGPT to incorporate
missing terms into translations that do not yet
include the required terminology.

2.1 Synthetic Data Generation

We used ChatGPT “gpt-3.5-turbo” to generate
bilingual sentence pairs, using the terms provided
by the organisers. So, given a target term, the
model was asked to generate multiple translation
pairs, including both the source (e.g. German) and
the target (e.g. English). For parameters of Chat-
GPT’s API, we used top_p 1 and temperature val-
ues 0 and 0.3 to generate diverse outputs.

Example prompt: Terminology-based generation

Please use the “Federal Ministry of Science” to generate just 20 numbered

sentences in German-English in one Python dictionary format.

To filter the generated data, we first removed
duplicate sentences from the whole dataset, based
on both the source and target. Then, we applied
language detection of both sides of the data using
fastText® and pycld2* libraries to ensure that the
generated sentences were in our desired languages.
We excluded any sentences whose scores were be-
low a certain threshold, namely 0.9 for fastText and
90 for pycld?.

The filtering step removed less than 1% of the
generated data. However, due to computational
resource and time limitations, we could not use all
the generated data. Table 1 reports the number of
generated, filtered, and used translation pairs.

Initially, we only had the development and test
datasets, so we used them for the German-to-
English language pair. Later, when the organisers
released the blind dataset, we used the develop-
ment, test and blind datasets for the Chinese-to-
English and English-to-Czech language pairs.

>The model “gpt-3.5-turbo” is a relatively efficient and
cost-effective option, so we wanted to understand the quality
we can achieve with it.

3https ://fasttext.cc/docs/en/
language-identification.html

4https ://github.com/aboSamoor/pycld?2
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Lang Raw Filtered Used
DE-EN 124215 104,318 68,265
EN-CS 187,471 103,797 64,218
ZH-EN 90,538 72,695 49,001

Table 1: Terminology-based bilingual data generated by
ChatGPT for fine-tuning the OPUS model

To assess the quality of the bilingual data gen-
erated by ChatGPT, we computed cross-entropy
scores (Moore and Lewis, 2010) of the synthetic
translation pairs based on the strong encoder-
decoder MT model, NLLB-200 3.3B (Costa-jussa
et al., 2022). For scoring, we used CTranslate2?
(Klein et al., 2020) score_batch() method with the
parameters batch_type “tokens” and max_batch_-
size 2024. We scored each synthetic translation
pair generated by ChatGPT, and then calculated the
average score for the whole dataset. Computing
dual cross-entropy scores according to two inverse
translation models trained on clean data is an ef-
fective method to evaluate data quality (Junczys-
Dowmunt, 2018). Hence, we computed the scores
of both directions of each language pair according
to the multilingual MT model NLLB-200 3.3B be-
cause both directions are generated by ChatGPT.
To produce a baseline for translation quality, we
generated the translations of the same datasets us-
ing NLLB-200 3.3B for each language direction
with beam_size 4, and then scored these transla-
tions with the same model. As the scores are in the
form of negative log probabilities, we converted
them to their exponential equivalents for readabil-
ity, which are reported in Table 2. It is normal that
the model NLLB-200 generates higher scores for
its own translations; however, we wanted to know
to what extent such scores are comparable to those
of ChatGPT’s synthetic translation pairs. Accord-
ing to the scores, the German<>English language
pair had the most comparable quality, followed by
Czech«»English, and Chinese <+English language
pairs.

Among the approaches that can be employed
for assessing the quality of synthetic bilingual data
is semantic similarity between the two sides of
each translation pair (e.g. with mUSE (Yang et al.,
2020)). However, the scoring approach that we
previously described and used achieves a similar
goal while comparing the quality of the synthetic
bilingual data to the translation quality of a strong
MT baseline model, namely NLLB-200 3.3B.

5https ://github.com/OpenNMT/CTranslate?2

Lang ChatGPT NLLB Diff.
DE-EN 0.59 0.68 0.09
EN-DE 0.56 0.64 0.08

Avg. 0.58 0.66 0.08
CS-EN 0.58 0.70 0.12
EN-CS 0.49 0.58 0.09

Avg. 0.54 0.64 0.10
ZH-EN 0.39 0.56 0.17
EN-ZH 0.09 0.34 0.25

Avg. 0.24 0.45 0.21

Table 2: Scores of translation pairs generated by ChatGPT
based on the NLLB-200 3.3B model

2.2 Fine-tuning

Using the term-based synthetic bilingual data gen-
erated in the previous step, we fine-tuned encoder-
decoder Transformer-based MT models (Vaswani
et al., 2017). In particular, we fine-tuned OPUS
MT models, with Hugging Face Transformers.
We applied mixed fine-tuning (Chu et al., 2017);
in other words, we fine-tuned the baseline model
with a mix of the terminology-based synthetic data
generated from the previous step (cf. Section
2.1) and a randomly sampled portion of the orig-
inal generic data used to train the OPUS baseline
model. The numbers of segments taken from the
OPUS generic data are as follows: CS: 372,928,
DE: 419,881, ZH: 462,780. We over-sampled the
synthetic terminology-based data to make it the
same size as the used portion of generic data. The
fine-tuning parameters are as follows: train = 0.9,
val = 0.1, batch_size = 32, learning_rate = 2e-5,
accumulate_gradient = 4, weight_decay = 0.01,
num_train_epochs = 1, max_input_length = 256,
max_target_length = 256. Finally, we used the
fine-tuned model to generate translations for the
development, test, and blind sets.

At first glance, the fine-tuning step might look
redundant if the LLM can achieve the same trans-
lation quality directly, either via zero-shot transla-
tion or few-shot in-context learning (Moslem et al.,
2023). However, domain-specific or terminology-
based knowledge distillation (Treviso et al., 2023)
from a massive LLM to a compact task-oriented
MT model can help boost efficiency at inference
time while enhancing domain adaptation and ter-
minology adherence. Obviously, when authentic
in-domain data is available, it can be used for fine-
tuning instead of synthetic data for domain adap-
tation of the MT model. In production workflows,

6https ://github.com/huggingface/transformers
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only segments that do not meet specific quality
criteria are passed to either human or automatic
post-editing. Hence, deployment of a model fine-
tuned on in-domain data can reduce the number of
translations that need post-editing.

2.3 Terminology-constrained Automatic
Post-Editing

For the shared task, the organisers provided two
term sets for each source sentence in the test and
blind datasets, and expected the participants to gen-
erate two translations that use one term set each.
In this step of terminology-constrained automatic
post-editing, we aim to refine the translations gen-
erated by an MT system by inserting the required
terminology. To this end, we checked the transla-
tions generated by the fine-tuned model from the
previous step (cf. Section 2.2). For each term set
provided for the sentence, if the translation does
not include all the terms, we ran this step of termi-
nology insertion into the translation.

This step involves instructing ChatGPT to post-
edit the translation by making sure it includes all
the terms without changing the rest of the transla-
tion. For the API’s parameters, we used fop_p 1
and temperature values 0 and 0.2, and then chose
the generation that fixed more terms.

Example prompt: Terminology-constrained post-editing

In the following <tgt_lang> translation, use the <tgt_term> to translate
the <src_lang> term <src_term>, and the...” Leave everything else

the same.\n\n

<src_lang>: <src_segment>\n

<tgt_lang>: <tgt_segment>

3 Evaluation

To assess the effectiveness of our process, we con-
ducted two types of evaluation: (i) term-level eval-
uation in order to measure the level of adherence to
the required terminology, and (ii) sentence-level
evaluation in order to see whether the process
affected the quality of the overall translation.

3.1 Term-level Evaluation

In Tables 3 and 4, we report the number of terms
used in the translations of the test and blind
datasets, respectively, in respect to the two term sets
provided by the organisers. The results show the ef-
fectiveness of our proposed process, increasing the

"We can add more terms, if needed.

integration of the required terms in the final transla-
tions of the blind dataset from an average of 36.67%
with the baseline generic model to an average of
72.88% after the LLM-based post-editing, across
the three language pairs. Interestingly, prompt-
ing an LLM to integrate the required terms into
the translations generated by a fine-tuned encoder-
decoder MT model was more effective than solely
using the fine-tuned model.

Lang System Total [1] Used [1] Total [2] Used [2] Avg %
Baseline 432 291 317 168 60.18

DE-EN Fine-tuned 432 302 317 165 60.98
Term APE 432 397 317 239 83.65

Baseline 550 221 313 139 42.30

EN-CS Fine-tuned 550 135 313 108 29.53
Term APE 550 466 313 283 87.57

Baseline 1779 498 1938 491 26.66

ZH-EN Fine-tuned 1779 854 1938 570 38.71
Term APE 1779 1137 1938 886 54.81

Baseline 43.05

Avg. % Fine-tuned 43.07
Term APE 75.34

Table 3: For the test dataset, the number of terms used in the
translations from the first term set [1] and the second term
set [2]. According to the results, terminology-constrained au-
tomatic post-editing (“Term APE”) using ChatGPT achieved
the best adoption of the required terminology.

Lang System Total [1] Used [1] Total [2] Used [2] Avg %
Baseline 11357 4120 11202 4623 38.77

DE-EN fine-tuned 11357 4130 11202 4621 38.81
Term APE 11357 6257 11202 5893 53.85

Baseline 10626 3964 10563 5122 42.90

EN-CS Fine-tuned 10626 3397 10563 4412 36.87
Term APE 10626 8727 10563 8681 82.16

Baseline 2892 1375 2908 265 28.33

ZH-EN Fine-tuned 2892 1422 2908 970 41.26
Term APE 2892 2471 2908 2322 82.65

Baseline 36.67

Avg. % Fine-tuned 38.98
Term APE 72.88

Table 4: For the blind dataset, the number of terms used in
the translations from the first term set [1] and the second term
set [2]. According to the results, terminology-based automatic
post-editing (“Term APE”) using ChatGPT achieved the best
adoption of the required terminology.

3.2 Sentence-level Evaluation

After the end of the submission phase, the organ-
isers released the references for the participants to
conduct automatic evaluation. The main purpose of
this sentence-based evaluation process is to deter-
mine whether terminology integration affected the
overall quality of translation. In general, as demon-
strated in Table 4 and Table 5, this terminology-
constrained automatic post-editing step signifi-
cantly increased the inclusion of the necessary
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terms into the final translation while improving
translation quality across the three language pairs.
For the automatic evaluation of each MT system,
we used the BLEU (Papineni et al., 2002), chrF++
(Popovié, 2017), and COMET (Rei et al., 2020)
metrics. Since many of the Chinese-to-English
segments in the blind dataset did not have two term
sets, we evaluated only those that had two term sets
(1629 segments out of 2640 segments). We observe
that the evaluation scores of the Chinese-to-English
translation task are much lower than those of the
two other language pairs. This can be due to the
literary nature of the blind dataset extracted from
Chinese novels, which might be difficult for both
the MT model and automatic evaluation metrics.

Lang Count System BLEU chrF++ COMET
Baseline 19.81 48.04 21.81
Fine-tuned 19.27 47.75 21.51
DE-EN 2963
Term APE [1] 32.36 60.84 40.25
Term APE [2]  27.84 56.84 33.20
Term APE Avg.  30.10 58.84 36.73
Baseline 29.13 53.11 50.90
Fine-tuned 24.54 49.14 33.78
EN-CS 3005
Term APE [1] 45.65 67.36 79.84
Term APE [2]  37.88 61.19 63.64
Term APE Avg.  41.77 64.28 71.74
Baseline 6.95 27.95 -50.90
Fine-tuned 7.76 29.26 -38.83
ZH-EN 1629
Term APE [1] 9.56 32.80 18.96
Term APE [2] 11.93 35.30 13.51
Term APE Avg.  10.75  34.05 16.24

Table 5: Automatic evaluation of the overall translation quality
across the three language pairs based on the blind dataset.
The “Baseline” refers to the OPUS model without fine-tuning,
while “Fine-tuned” refers to the model after domain adaptation
with the bilingual terminology-based synthetic data generated
by an LLM. Finally, the three last rows for each language pair
refer to using ChatGPT for terminology-constrained automatic
post-editing (“Term APE”) of the MT output generated by the
fine-tuned model. In other words, “Term APE [1]” indicates
the results when the first term set was used to prompt ChatGPT
to integrate terms of this set into the translation generated by
the fine-tuned model, while “Term APE [2]” refers to using
the second term set. Finally, “Term APE Avg.” is the average
of “Term APE [1]” and “Term APE [2]” for each language
pair. Terminology-constrained automatic post-editing with
ChatGPT achieves the best results across the three language
pairs in terms of the overall translation quality. As reported
in Table 4, the number of terms integrated after the automatic
post-editing step also increased.

Moreover, it is worth noting that we used the
English term while generating bilingual synthetic
data (cf. Section 2.1) for the three language pairs.
However, English is the target language for both
Chinese-to-English and German-to-English lan-
guage directions, while it is the source language
for the English-to-Czech language direction. This
can explain the performance degradation after the

fine-tuning step in the English-to-Czech language
direction (cf. Tables 4 and 5). In other words, it
is recommended in the step of bilingual synthetic
data generation to either use the target term or both
the source and target terms while prompting the
LLM to generate translation pairs.

As explained in Section 2.3, our final step of
terminology-constrained automatic post-editing in-
volves instructing an LLM to insert terms that were
missing from the output of the fine-tuned model.
This significantly increased term usage across
all the Chinese-to-English, English-to-Czech, and
German-to-English language pairs (cf. Table 4).
Furthermore, as demonstrated in Table 5, this step
had no detrimental effects on translation quality. In
fact, integrating the necessary terms into the trans-
lation using ChatGPT improved translation quality
according to our automatic evaluation.

4 Conclusion and Future Work

In this work, we showed that applying a multistep
process of mixed fine-tuning on terminology-based
synthetic bilingual data and then terminology-
constrained automatic post-editing with an LLM
can increase the adherence to the pre-approved
terms in the generated translations. By the end
of the process, the use of the required terms has
increased in the translations of the blind dataset
across the three language pairs from an average of
36.67% with the baseline generic model to an aver-
age of 72.88% after instructing an LLM to integrate
the required terms into the translations.

Due to the task restrictions, we had to fine-tune
OPUS models only. We would like to experiment
with fine-tuning NLLB models, and probably the
new SeamlessM4T (Barrault et al., 2023), Mistral
(Jiang et al., 2023), and MADLAD-400 models
(Kudugunta et al., 2023), on the same data and
compare the output quality. In our experiments,
we employed ChatGPT “gpt-3.5-turbo” for both
terminology-based synthetic data generation and
terminology-constrained automatic post-editing, as
it is a relatively efficient and cost-effective option.
In the future, we would like to repeat the same
experiments with GPT-4 in order to assess the ben-
efit of using a stronger language model on overall
performance. We observe that BLOOM can be
used as an alternative LLM for data generation;
however, one-shot generation might work better
than zero-shot generation. In this case, the prompt
can consist of a term, a bilingual sentence pair,

906



and then another term. Interestingly, the model
will predict a new translation pair including the
second term. While certain open-source models
such as Llama 2 and Falcon might be employed for
the terminology-constrained automatic post-editing
step for certain languages, we suspect that they will
need fine-tuning before being reliably usable for
most languages.

In future work, we will carry out a deeper analy-
sis of the generated synthetic data together with the
outputs of the fine-tuned models in order to under-
stand how the properties of the synthetic data affect
the fine-tuning results. It is important also to test
the same approach for other languages, especially
low-resource language pairs.

Moreover, it would be interesting to exclude the
fine-tuning step and assess the overall translation
quality after LLM-based post-editing. It is pos-
sible that domain adaptation through fine-tuning
the baseline MT model either on authentic or syn-
thetic data would still be beneficial. It can lead
to domain-specific improvements in the overall
translation quality that may not be achievable by
the baseline model or the terminology-constrained
post-editing step. Again, deploying a model fine-
tuned on in-domain data into production can en-
hance terminology adherence in initial translations.
As there is no need to send the translations that
already include the pre-approved terms to the LLM
for terminology-constrained post-editing, this can
reduce the number of translations that require post-
editing. Such an efficient workflow can allow us
to save resources, and minimise latency at infer-
ence time. Similarly, there are potential advantages
of employing an LLM for post-editing rather than
for direct translation. Instead of solely relying on
the translation quality of the LLM, quality estima-
tion can be performed to select the best MT model
in general or for the current source text segment.
Ultimately, only segments that do not meet quality
criteria are then passed to the LLM for post-editing.
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