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Abstract

The NLP community has recently witnessed
the success of Large Language Models (LLMs)
across various Natural Language Processing
(NLP) tasks. However, the potential of LLMs
for word-level auto-completion in a multilin-
gual context has not been thoroughly explored
yet. To address this gap and benchmark the
performance of LLMs, we propose an LLM-
based system for the WMT23 Word-Level
Auto-Completion (WLAC) task. Our system
utilizes ChatGPT to represent LLMs and evalu-
ates its performance in three translation direc-
tions: Chinese-English, German-English, and
English-German. We also study the task under
zero-shot and few-shot settings to assess the
potential benefits of incorporating exemplars
from the training set in guiding the LLM to
perform the task. The results of our experi-
ments show that, on average, our system attains
a29.8% accuracy on the test set. Further anal-
yses reveal that LLMs struggle with WLAC
in the zero-shot setting, but performance sig-
nificantly improves with the help of additional
exemplars, though some common errors still
appear frequently. These findings have impor-
tant implications for incorporating LLMs into
computer-aided translation systems, as they
can potentially enhance the quality of trans-
lations. Our codes for evaluation are available
at https://github.com/ethanyiwu/WLAC.

1 Introduction

Recent advancements in machine translation, es-
pecially due to the development of transformers
and pre-trained language models, have been signif-
icant (Kong and Fan, 2021; Sun et al., 2023; Mo-
hammadshahi et al., 2022). These methods have
yielded impressive results in traditional sentence-
level translation tasks (Bahdanau et al., 2015).
However, challenges still exist that hinder the
further progress of Computer-Aided Translation
(CAT) (Espla-Gomis et al., 2022) systems. Among
various components that constitute CAT, Word-

—————————————————————————————————————————————

X
1991 ££ F1 199255&15’&’752%;; SH AN REE RE TR ™R

(1 s c,
this region defi drought affected

o e e e e e e e R
e e e e e e e e e e e e e e = ——— N
! Target Output !
1

i w H
: defined :
\ ’

_______________________________________________

Figure 1: Illustration of the WLAC task for translating
from Chinese to English, including various components
involved in the translation process. The inputs consist
of the source sentence z, the left context in the target
sentence c;, the right context in the target sentence ¢,
and the pre-typed character sequence of the word to be
predicted s. The task aims to predict the target output
word w accurately.

level AutoCompletion (WLAC) stands out as a core
function (Li et al., 2021; Casacuberta et al., 2022).
As shown in Figure 1, WLAC aims to suggest
the correct word translation in the target language
based on a sequence of human-typed characters
and bidirectional context.

While this task might seem straightforward for
seasoned human translators, existing deep-learning
approaches struggle to handle it effectively. This
can be attributed to the fact that performant transla-
tion methods, which rely on pre-trained language
models, cannot effectively interpret the typed se-
quence of characters as they are pre-trained at the
token level. Other related studies have either only
considered the source contextualization (Huang
et al., 2015) or have been unable to handle mul-
tilingual translations effectively (Huang et al.,
2018). Previous works have demonstrated that
transformer-based frameworks, when trained with
carefully designed masking or context transforma-
tion strategies, can efficiently tackle this task (Yang
et al., 2022a,b; Navarro et al., 2022). Yet, these
frameworks require extensive training, and their
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ability to transfer across different languages re-
mains questionable.

With the recent progress made by Large Lan-
guage Models (LLMs), such as ChatGPT (OpenAl,
2022), researchers have conducted extensive stud-
ies regarding their performances on various NLP
tasks (Laskar et al., 2023; Liu et al., 2023; Li et al.,
2023a; Yu et al., 2023). These LLMs possess ad-
vantages, such as ease of deployment and robust
multilingual reasoning ability, making them partic-
ularly suitable for tasks like WLAC. However, a
detailed study of LLMSs’ application in this context
is lacking, and the systematic use of LLMs to as-
sist CAT, especially in performing WLAC, remains
unexplored.

This paper addresses these gaps by introducing a
system that employs LLMs, specifically ChatGPT,
for the WLAC task. ChatGPT has been chosen
for its exceptional performance in general natural
language tasks, negating the need for deploying
or fine-tuning other models. Our approach uses a
prompt-engineering-based method to convert all
WLAC task inputs into comprehensible natural
language sentences. Following this, we synthe-
size exemplars from the existing training set to
facilitate in-context learning with ChatGPT (Wei
et al., 2022b). The generations are subsequently
parsed using carefully crafted rules to yield the fi-
nal “predictions” from ChatGPT (Section 3). We
then conduct comprehensive experiments using our
system, covering scenarios from zero-shot to five-
shots. Our experimental results indicate that our
system achieves an average accuracy of 29.8% on
the testing set. Through error analysis and case
studies, we found that LLMs face challenges with
WLAC in the zero-shot setting and identified four
common types of mistakes that can be particularly
addressed in the future. However, ChatGPT’s per-
formance significantly improves when provided
with additional exemplars, highlighting the crucial
role of in-context learning in tackling WLAC for
LLMs (Section 4). We will make all codes publicly
available upon acceptance of this paper.

2 Preliminaries

2.1 Task Definition

Formally, the objective of the WLAC task (Li et al.,
2021) is to predict the target word w using three
parts of inputs, which are denoted as the source
sequence x, the human-typed characters s, and the
translation context ¢, where ¢ = (¢, ¢, ). The trans-

| Training  Validation  Test
zh-en | 39,473 29,051 16,386
de-en | 40,000 29,596 14,564
en-de | 40,000 29,895 14,539

Table 1: Statistics regarding the number of data across
three translation languages in each split.

lation context consists of left context ¢; and right
context ¢, where ¢; is a sub-sequence of the trans-
lated context on the left side of s, and ¢, is a sub-
sequence of the translated context on the right side
of s. A running example is shown in Figure 1.

Specifically, a notable challenge in training a
masked language model for the WLAC task is the
incomplete nature of the left and right contexts.
These contexts may not necessarily constitute com-
plete sentences; they can consist of partial words
or even be empty. As a result, the context ¢ and
the typed sequence s do not necessarily provide
a fully translated result of the source sequence.
Moreover, the training data for this task does not in-
clude the complete translated result as a reference.
This lack of complete supervision further compli-
cates the establishment of robust training signals
for masked language modeling (Li et al., 2023b),
especially when compared to traditional translation
tasks (Navarro et al., 2022).

2.2 Large Language Models

The emergence of large language models (LLMs)
has recently gained the spotlight in the NLP com-
munity. GPT3.5 (Brown et al., 2020; Ouyang
et al.,, 2022), ChatGPT (OpenAl, 2022), and
LLaMA (Touvron et al., 2023) are some of the
notable LL.Ms that have been well-developed, each
boasting an exceptionally vast number of parame-
ters. These LLLMs are trained on massive corpora
using advanced techniques, such as instruction tun-
ing (Wei et al., 2022a) and reinforcement learning
from human feedback (Christiano et al., 2017), on
large computational infrastructures. As a result, re-
cent studies have shown that LLMs excel at various
downstream tasks, including causal reasoning and
grounding (Chan et al., 2023; Wang et al., 2023c;
Ou et al., 2023), commonsense reasoning (Fang
et al., 2023, 2021b,a; Bian et al., 2023; Wang et al.,
2023b), question-answering (Wang et al., 2023a;
Qin et al., 2023), translation (Peng et al., 2023;
Lu et al., 2023), and data mining tasks (Jin et al.,
2023a,b,c). Since the WLAC task demands sub-
stantial reasoning and generation capabilities that
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Figure 2: An overview of our framework when dealing with WLAC in translating from Chinese to English (zh-en).
The input sentences (marked in blue) are concatenated with pre-constructed exemplars (marked in gray) to form
a unified prompt. A large language model (ChatGPT) is then deployed to generate the response (marked in red),
which is subsequently parsed to obtain the final prediction y.

rely on bidirectional contexts to accurately predict
the target word, LLMs make for an ideal choice
to perform WLAC due to their exceptional natu-
ral language understanding abilities and ease of
deployment.

2.3 Dataset

We use the dataset provided by (Casacuberta et al.,
2022) as our primary evaluation benchmark. We
select three translation language pairs from the
dataset: Chinese to English (zh-en), German to
English (de-en), and English to German (en-de).
To maintain consistency, we follow the trn/dev/test
split released in the original dataset. Detailed statis-
tics on the number of data are shown in Table 1.

3 Method

Figure 2 shows an overview of our framework,
which consists of three steps: exemplar sampling,
prompt design, and generation parsing.

3.1 Exemplar Sampling and Construction

To generate the input prompt for the LLM, we be-
gin by employing random sampling to choose &
data instances from the training split of the dataset.
These selected instances serve as in-context learn-
ing exemplars. In our experiments, we explore

different values of k£ € {0,1,5} to evaluate the
performance of the LLM in both zero-shot and few-
shot scenarios. The aim is to improve the model’s
familiarity with the task and its capacity to deliver
precise answers by incorporating the provided ex-
emplars into its learning process.

3.2 Prompt Design

We then design a natural language prompt to sys-
tematically combine both sampled exemplars and
every testing data entry from the testing split, which
serves as the input for the LLM. To assist the LLM
in distinguishing different components of the input
and the desired output, we introduce instructive
tokens such as “Source” (the source sentence to
be translated), “Target” (the target sentence with
context ¢; and ¢, provided), “Answer prefix” (the
pre-typed sequence s indicating the target word
to be predicted at [MASK]), and “Answer” (repre-
senting the target prediction word w). For each
testing data entry, we construct such a prompted
sentence with the “Answer” for the testing entry
left blank, awaiting completion. Combining all
these prompted sentences creates a comprehensive
paragraph of sentence input, as illustrated in Fig-
ure 2. This transforms the task into a blank-filling
exercise, wherein the model fills in the missing
word, the last word in our case.
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Figure 3: The fault rate and accuracy under different settings. (a) refers to the accuracy. (b) refers to the proportion

of instances that don’t start with the typed sequence s.

sequence of words.

3.3 Generation Parsing

Since the generated content is in free-text form,
it requires parsing to identify the predicted word
as the final output of the WLAC task. The first
step is to remove the cue word, such as “Answer,”
and separate the remaining sequence of tokens into
individual words by splitting at blank spaces. To
ensure that the selected word satisfies the constraint
of the pre-typed sequence, we search for the first
word that starts with the pre-typed sequence s as
the final prediction. If such a word does not exist,
the first word in the sequence is chosen as the final
prediction. For example, if the generated content is
“Answer: Hello World” and the pre-typed sequence
is “Wo,” the word “World” is the final prediction
after parsing.

4 Experiments

4.1 Setup

We utilize the official ChatGPT API' to access
the large language model for sentence completion.
The model code employed is gpt-3.5-turbo, and
the access date is July 2023. The temperature is
set to 0.7 when generating to ensure consistent
generation, while other control parameters are set
to their default values.

4.2 Results

Our experimental results are presented in Table 2.
We observe that five-shot prompting yielded the
best performance, while not incorporating any train-
ing exemplar led to the worst performance. This
outcome is reasonable, considering the model may
not clearly understand the task objective and rea-
soning process. Importantly, incorporating just one

1h'ctps ://chat.openai.com/

(c) refers to the ratio of the generations which contain a

Task | Shot #
| O-shot 1-shot 5-shot
Zh - En ‘ 11.15 22.66  29.21
En-De | 1026 1545 2251
De - En ‘ 8.12 1599  23.66

Table 2: Evaluation results (Accuracy %) on the testing
sets of three translation directions.

additional exemplar had a significantly positive im-
pact. This suggests that ChatGPT can quickly learn
from provided exemplars and develop a sufficient
understanding of the task. The accuracy improve-
ment trends across the three translation directions
are consistent, leading us to conclude that Chat-
GPT can achieve acceptable performance on the
WLAC task with the help of training exemplars
and in-context learning. However, even with five-
shot prompting, the performance is only around
25% in terms of accuracy, leaving a large space
for future improvements. Therefore, leveraging
more advanced or meticulously designed prompts
should be considered further to enhance ChatGPT’s
performance on the WLAC task.

4.3 Error Analysis

Upon further analysis of the results, we identify
two common types of mistakes where the gener-
ated output deviates from the targeted answer. The
first type of mistake occurs when the generated
output fails to begin with the specified sequence s,
while the second type of mistake involves the pres-
ence of multiple words in the generated output after
removing the cue word. As depicted in Figure 3,
the overall performance improves significantly as
the number of shots increases. Nevertheless, there
is a remarkably high rate of faults in generating
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Table 3: Case studies of generations from ChatGPT. We select generation results from the 5-shot scenario.

word sequences that violate the instruction of using
only a single word in the zero-shot approach. The
transition from zero-shot to one-shot learning re-
sults in a considerable reduction in both fault rates.
This indicates that the language model adheres to
instructions more accurately by adding a single
example. Moreover, the fault rate also further de-
creases in the five-shot setting.

4.4 Case Studies

To further demonstrate the difficulty of the task
and the performance of ChatGPT, we select some
generation results in the Chinese-English transla-
tion split, as shown in Table 3. Among these cases,
we observe four types of tricky but common mis-
takes. Firstly, although the generated output and
the target share the same semantic meaning, the
generation is syntactically incorrect. We exemplify
two generations that contain grammatical mistakes.
Secondly, our approach may generate semantically
accurate output that deviates from the target, par-
ticularly in cases where the input lacks detailed
context. Moreover, the model may generate the
content immediately after the context instead of
following instructions to find a semantically cor-
rect word that matches the typed sequence. Finally,
the model does not always comply with the instruc-
tions that require it to generate only one word. It
may give a phrase or part of a sentence to combine

the context into a complete sentence.

4.5 Discussions

While our system achieves acceptable performance,
it falls significantly short of the performance
achieved by systems last year (Casacuberta et al.,
2022). This suggests that additional efforts are re-
quired to enhance ChatGPT’s performance on the
WLAC task, which might include: (a) Incorporat-
ing more training exemplars. For instance, increas-
ing the number of training shots to ten or even more
could be beneficial. (b) Reframing the exemplar
selection problem as a subset selection problem.
This approach involves selecting training exem-
plars based on their similarity to the testing entry or
their diversity in relation to other exemplars, as pro-
posed by Ye et al. (2023). (c) Improving the prompt
to better leverage both left and right contexts. Addi-
tionally, advanced prompting techniques like chain-
of-thought (Wei et al., 2022b) could be explored.
(d) Incorporating external knowledge for reason-
ing, such as complex knowledge (Bai et al., 2023),
conceptualization (He et al., 2022), and graph rea-
soning (Liu and Song, 2022; Liu et al., 2022, 2020).

5 Conclusions

In conclusion, this paper presents a novel LLM-
prompting system to address the WLAC task. Our
findings demonstrate that LLMs are highly capable
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problem solvers and adept at learning in context
for this particular task, albeit with performance that
falls short of previous supervised learning systems.
A detailed analysis uncovers several error types that
contribute to the limited performance of ChatGPT.
Therefore, we urge researchers to devote additional
attention to the WLAC task using LLMs.
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