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Abstract

This paper presents the submissions of IOL Re-
search in WMT 2023 quality estimation shared
task. We participate in task 1 Quality Estima-
tion on both sentence and word levels, which
predicts sentence quality score and word qual-
ity tags. Our system is a cross-lingual and mul-
titask model for both sentence and word levels.
We utilize several multilingual Pretrained Lan-
guage Models (PLMs) as backbones and build
task modules on them to achieve better predic-
tions. A regression module on PLM is used to
predict sentence level score and word tagging
layer is used to classify the tag of each word
in the translation based on the encoded repre-
sentations from PLM. Each PLM is pretrained
on quality estimation and metrics data from the
previous WMT tasks before finetuning on train-
ing data this year. Furthermore, we integrate
predictions from different models for better per-
formance while the weights of each model are
automatically searched and optimized by per-
formance on Dev set. Our method achieves
competitive results.

1 Introduction

Quality Estimation (QE) is the task of predicting
the quality of a target machine translation without
using reference texts or human inputs (Specia et al.,
2018). Since machine translation is in high demand
nowadays, the development of QE system becomes
crucial for the broad application of machine trans-
lation. In WMT 2023 Quality Estimation shared
task, there are two tasks: quality estimation and
fine-grained error span detection. This paper de-
scribes our submission to task 1 quality estimation
in both sentence and word levels in detail.
Considering the powerful capability and widely
used in previous QE tasks of pretrained language
models (PLMs) (Zerva et al., 2022; Specia et al.,
2021), our method utilizes different multilingual
PLMs to encode source-translation sentence pairs
and predict sentence-level scores or word-level tags.

Such PLMs are pretrained on various languages
which could show incredible ability when trained
QE models are transferred to unseen language pairs.
Meanwhile, extra task modules are added to PLMs
to boost the interaction between source and trans-
lation sentences to make better predictions. Also,
it is common that using other task data similar to
QE can further improve the performance of QE.
According to the results from previous years’ QE
tasks, we use the data from QE and Metrics tasks
from previous years” WMT tasks, as well as Auto-
matic Post-Editing (APE) data, to pretrain PLMs
before training on data of this year.

Moreover, ensemble methods of different mod-
els are explored in sentence and word level tasks.
For sentence level, we sum scores with weights
from different models which are filtered by the per-
formance on the Dev set. As for word level, we
use voting or weighted sum of tag probabilities to
get the final predicted tags. Taking zero-shot lan-
guage pairs into account, we choose the best model
evaluated on other language pairs to test if they can
generalize to unseen language pairs.

2 Quality Estimation Task

2.1 Task description

WMT 2023 Quality Estimation task 1 contains two
tasks. The sentence level task aims at predicting
a quality score for translation and the word level
task is to classify a quality tag for each word in
translation. Both tasks have zero-shot language
pairs to test the generalization ability of QE models
and use the same source-translation pairs for each
language pair.

Sentence level There are two types of quality
scores. One is the Direct Assessments (DA) score
which is given by human annotators for each
source-translation pair. The other is the Multi-
dimensional Quality Metrics (MQM) score which
is defined and computed under MQM methodology.
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train_mtl
105992

train_word
263184

train_sent
224195

Table 1: The statistics of train data

Dev  Test
En-De 511 1897
Zh-En 505 1677
En-Mr 1000 1086
En-Gu 1000 1075
En-Hi 1000 1074
En-Ta 1000 1075
En-Te 1000 1075
He-En - 1182
En-Fa - 1000

Table 2: The statistics of dev and test data

A regression model is always employed to predict
quality scores.

Word level The tags of words in translation are
annotated by human annotators according to the
MQM or DA annotations. This task requires pre-
dicting an OK or BAD for each word in translation
given source-translation pairs. HTER (Specia and
Farzindar, 2010)-like scores for translations can be
collected by calculating the ratio of 'BAD’ tags in
tag sequence of translations. For example, given a
tag sequence "OK OK BAD BAD OK", an HTER-
like score is deduced by computing 2/5=0.4.

Data QE task provides official train and dev
datasets gathered from competitions of previous
years and the statistics are shown in Table 1 and
Table 2. On account of the task similarity to
QE, we also collect the MQM data (Freitag et al.,
2021a,b) from previous WMT Metrics tasks' and
APE data from QT21 (Specia et al., 2017) and
APE-QUEST (Depraetere et al., 2020) to do fur-
ther pretraining. We calculate HTER-like score for
each source-translation pair in APE data for the
purpose of merging with those of DA and MQM.

3 Method

3.1 Model architecture

We design distinct task modules on top of encoders
for regression on sentence level and sequence tag-
ging on word level. Source and translation texts
are concatenated and input into the encoder and

"https://github.com/Unbabel/COMET

then task modules to get scores or tags. Our model
architecture is illustrated in Fig.1.

score translation tags
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split

PLM encoder

Figure 1: Model architecture with task modules for
sentence-level scoring and word-level tagging

Sentence regression module Inspired by
ESIM (Chen et al., 2017) and RE2 (Yang et al.,
2019), the cross attention between source and
translation reflects the similarity between words in
different languages. Also considering that different
layers in a transformer (Vaswani et al., 2017) based
PLM catch different granularities of features of
source and translation (Jawahar et al., 2019), we
determine to combine these two kinds of methods
to strengthen the representations of source and
translation. In detail, for source s and translation
t respectively, mixed layer-wise representations
Smiz and i, from a PLM with L layers are
computed in Eq. 1~Eq. 4.

st = mean_pooling([s}, sb, ..., sL.]), (1)

D, (@

t' = mean_pooling([t}, th, ...

L L
Smmiz = Zwi * sl, whereE:wf9 =1 3
=1 =1

L L
tmiz = Zwi * tl, whereZwi =1 @
=1 =1

Then cross attention outputs s, and t., from the
last layer of PLM are calculated to get token level
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interactions between source and translation as
shown in Eq. 5 ~Eq. 9.

€ij = sTt Q)
exp( em
ti, Vi €
sz lexp (eir) o : o
(6)
exp( e” .
tca V 2
sz 1 exp ekj) % je[ 7n]
(7)
Sca = mean_pooling([s§®, s5%, ..., s5%])  (8)

R 7 U e D I ()

Next, features of source and translation are fused
separately to transform into a combined representa-
tion through feedforward network (FFN) layer by
Eq. 10 and Eq. 11.

tea = mean_pooling([t{

Scomb = FFN([Sca; Smix; ‘Sca_smix|§ Sca*smix])
(10)
comb FFN([ ca; mza:a ’tca tmiw|; tca * tmzx])
(11)

Finally, the sentence-level score is obtained by an-
other FEN layer in Eq. 12.

score = FFN ([Scomb; tecomb)) (12)

Word tagging module We choose two distinct
modules to generate tags for words after encoded
by PLM. A Bidirectional-LSTM (Hochreiter and
Schmidhuber, 1997) (BiLSTM) layer is added to
enhance the interaction between the representations
of source and translation, and a FFN layer on it to
predict tags in translation. Another kind of module
only adopts a FFN layer to generate tag predictions
to avoid overfitting on training data.

Multitask combination In order to boost the in-
dividual performance of sentence level and word
level models, we propose a multitask training ap-
proach. Both the regression module and tagging
module are added to the encoder which predicts the
sentence score like DA or MQM and word tags si-
multaneously. For language pairs that have no DA
or MQM data but only word tags, we take HTER
scores as sentence scores. We train word-level mod-
els by optimizing the prediction of HTER scores
and word tags simultaneously. To not damage the
potentiality of tagging module, some simple re-
gression modules are used when doing multitask
training, including

score = F'F'N(mean_pooling(t[i.,))) (13)

and

score = FFN([5;¢;|5 — t];5 % t]) (14)
where t[y.,,] 1s the list of word representations of
translation from tagging module, and 5 and ¢ are
the mean representations of words’ representations

of source and translation from the encoder.

Loss The losses for score regression, word tag-
ging and multitask training are described as fol-
lows:

Liens = (scOT€pred — scoretme)2 (15)
word - - Zlogp yz (16)
Emultitask = ﬁsem + Ewurd (17)

where p(y;) is the probability of OK/BAD tag from
the model.

3.2 Score refinement

According to the similar definitions and score inter-
vals of DA and MQM, we transform the score s out
of [-1, 1] as close to [-1,1] as possible while keep-
ing the Spearman correlation coefficient unchanged
using Eq. 18 to lessen the need for predicting ex-
treme values during training.

(s+D*0.1-1, s< —1
s ={s, 1<s<1 (18)
(s-1)*0.1+1, s>1

3.3 Encoder selection

QE requires texts from different languages as in-
put, so we take multilingual PLMs as encoders
which are pretrained on colossal multilingual cor-
pus. The following PLMs are selected as encoders:
XLM-Roberta-Large (Conneau et al., 2020)%, Rem-
Bert (Chung et al., 2021)3, InfoXLM-Large (Chi
et al., 2021)* and mDeBERTa (He et al., 2021)°.
Each PLM is combined with different task modules
for training.

“https://huggingface.co/xIm-roberta-large
3https://huggingface.co/google/rembert
*https://huggingface.co/microsoft/infoxIm-large
Shttps://huggingface.co/microsoft/mdeberta-v3-base
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3.4 Model Training

We first pretrain encoders with a simple regression
head to do regression on WMT Metrics and HTER
data while retaining the checkpoints of encoders
with the best performance on Dev set. When us-
ing WMT Metrics data, we train two versions of
models where one uses DA data only and the other
uses a mix of DA and MQM data. Subsequently,
we drop the regression head and then finetune the
pretrained encoder with different task modules on
multilingual QE data. In order to eliminate the pos-
sible side effect of position variation in translation,
we swap the input order of source and translation
as a comparison. We conduct single-task and mul-
titask training for both sentence and word levels.

3.5 Ensemble methods

Sentence level For each language pair having
training data, we randomly search weights for the
weighted sum of the top 10 models in accordance
with the Spearman correlation coefficient on Dev
set. As for zero-shot language pairs, we pick the
best two or three trained models from those lan-
guage pairs having training data individually then
predict and average the scores from them.

Word level We propose three strategies of tag
prediction ensemble for each word. At first, for
each language pair having training data, the top 10
models with the best Matthews Correlation Coef-
ficient on Dev set are picked out. Therefore each
word in translation has 10 predicted tags or 10 prob-
ability pairs of (OK, BAD) from different models.
The final tag of one word is acquired in one of three
ways:

1 if one of 10 tags is BAD, the final tag is BAD;
2 if one of 10 tags is OK, the final tag is OK;

3 if the weighted sum of probabilities of OK is
larger than that of BAD, the final tag is OK,
and vice versa.

When utilizing the third one, the weights of models
are searched randomly as in sentence-level ensem-
ble. As for zero-shot language pairs, we pick the
best two trained models from those language pairs
having training data individually and apply one of
the above strategies to get final predictions.

4 Experiments

4.1 Settings

All our models are completed with PyTorch and
transformers (Wolf et al., 2020)° and trained on
NVIDIA GeForce RTX 3090 24G for the pre-
training and finetuning described in 3.4. Models
are trained with AdamW (Loshchilov and Hutter,
2017) with learning rate of le-5, max sequence
length of 230, batch size of 16 and 3 epochs. Mod-
els with different task modules are optimized by
selecting the checkpoint with the best Spearman
correlation coefficient or Matthews Correlation Co-
efficient (MCC) on Dev set for each language pair
separately. Three versions of PLM are pretrained
as described in 3.4 for each combination of lan-
guage pair and PLM, which are listed in the order
of "DA-only, DA+MQM, HTER" in Table 4, Ta-
ble 7 and Table 8 while Table 3 are only "DA-only,
DA+MQM" for each language pair. Optuna (Akiba
et al., 2019) is used to search the weights of model
ensembles described in 3.5.

4.2 Results and Analysis

Sentence level For results in Table 3 of Dev set
with MQM annotations, results based on mDe-
BERTa perform best in all settings. Models with
PLMs pretrained on "DA-only" data achieve better
results than those "DA+MQM" models which indi-
cates that the difference in score range between DA
and MQM has a great effect. For Table 7 of Dev set
with DA annotations, models pretrained on "DA-
only" data perform best among different combina-
tions of PLMs and language pairs. Also, InfoXLM
and XLM-Roberta-Large show higher correlations
than other PLMs. Meanwhile, the score refinement
defined in 3.2 has a positive impact in both Table 3
and Table 7 which suggests the necessity to unify
the range of different scores. However, correlations
of different PLMs vary a lot for each language pair
which suggests we still have room for improvement.
Also, when using multitask training, the Spearman
correlation coefficient increases compared to only
training on sentence-level data. The "DA+MQM"
data improves the performance of En-De while be-
coming worse on Zh-En.

Word level The results in Table 4 indicate that
pretraining data, PLM and task modules affect
the model performance to varying degrees. Since
HTER data is most related to word-level task, the

®https://github.com/huggingface/transformers
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sentence level MQM

En-De Zh-En
DA-only
XLM-Roberta-Large 0.5162 0.4219 0.3424 0.3028
mDeBERTa 0.5467 0.5281 0.3310 0.3717
RemBert 0.5040 0.4231 0.3048 0.2948
InfoXLM 0.5295 0.3786 0.3670 0.2881
DA+MQM
XLM-Roberta-Large 0.5346 0.4459 0.2889 0.2495
mDeBERTa 0.5668 0.5470 0.3110 0.3597
RemBert 0.5141 0.4323 0.3042 0.2822
InfoXLM 0.5342 0.4451 0.3039 0.2793

DA-only w/ score_refine

XLM-Roberta-Large 0.5218 0.4277 0.3254 0.2772
mDeBERTa 0.5435 0.5202 0.3319 0.3594
RemBert 0.5144 0.4092 0.2894 0.3080
InfoXLM 0.5266 0.4047 0.3734 0.2945
DA+MQM w/ score_refine
XLM-Roberta-Large 0.5386 0.4561 0.3005 0.2473
mDeBERTa 0.5728 0.5494 0.3227 0.3547
RemBert 0.5092 0.4302 0.2973 0.2840
InfoXLM 0.5309 0.4599 0.3037 0.2863

Table 3: Spearman correlation on Dev of sentence
level on combinations of training data and score re-
finement(optional)

results based on pretraining on HTER data are best.
Besides, models with RemBert or InfoXLLM on En-
De give bad results while models with BiLSTM
as task module on Zh-En overfit on Dev set when
submitting to test. In addition, swapping the order
of source and translation has no improvement. For
En-De and En-Mr, training on word-level data only
is better than multitask training.

Multitask As shown in Table 8, multitask train-
ing improves the correlation of sentence-level task
on all language pairs while only MCC of Zh-En
grows. The score refinement method raises the cor-
relation of word-level task obviously compared to
models without applying score refinement. Yet, it
does not always have a positive effect on sentence-
level task. The multitask training for Zh-En avoids
overfitting on Dev set and using BiLSTM as task
module surpasses using FFN. Different PLMs will
perform better if combined with specific task mod-
ules, which needs further experiments.

Ensemble The official results of models ensem-
ble on dev and test for sentence level and word
level are shown in Table 5 and Table 6 respectively.
The ensemble method outperforms single model
performance by a large margin. Our models have
competitive results on all language pairs.

5 Conclusion

This paper describes our work for WMT 2023
Quality Estimation Task 1 on both sentence level
and word level. With the help of PLMs and extra
data, we can train better representations of source
text and its translation for quality estimation task.
We also experiment with diverse combinations of
PLMs, task modules, and pretraining datasets. We
find that QE systems for certain language pairs
need to adopt particular combinations to acquire
improvement, which reveals that there are distinct
characteristics between languages. Such features
make it hard to build one model for all languages,
especially those without labeled data. The mul-
titask training approach shows obvious improve-
ments and prevents models from overfitting. Be-
sides, the score refinement trick does not always
give us positive feedback which suggests the num-
ber range is not the only factor to train on DA and
MQM data properly. As expected, the ensemble
method makes the predictions have a higher corre-
lation with the ground truth. For future work, we
will explore more profitable pretraining techniques
for quality estimation and efficient modules that
work well for various language pairs.

Limitations

Although our method has shown competitive re-
sults on most language pairs, evaluation results on
zero-shot language pairs suggest that the model
is not so powerful in generalization and relies on
manual adjustment to some extent like choosing
the weights among different models in the ensem-
ble. Such operations could affect the model perfor-
mance when transferring to unseen language pairs.
Furthermore, we only designed two kinds of mod-
ules to generate tags in word-level task with slight
improvement over baselines. It will be a potential
research area to design more efficient prediction
modules that can predict more accurate tags and
we leave it as future work.

Also, other training configurations like weight
decay and layer-wise learning rate decay were not
experimented with sufficiently. Due to the discrep-
ancy between training loss and evaluation metric,
the choice of loss was a critical factor in model
performance which was unexplored. Lastly, the
limited amount of data constrained the improve-
ment of models and overfitting on Dev set still has
a great effect on optimization. We hope these analy-
ses can promote the research of quality estimation.
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word level En-De Zh-En En-Mr
BiLSTM + regression(Eq. 13)
mDeBERTa 0.3354 0.3364 0.3388 0.4483 0.4868 0.4447 0.3443 0.3500 0.3566
RemBert 0.0370 0.0160 0.0076 0.4842 0.4140 0.4736 0.3657 0.3601 0.3637
InfoXLM 0.0327 0.0456 0.0288 0.5491 0.4656 0.5249 0.3466 0.3385 0.3603
FFN + regression(Eq. 14)
mDeBERTa 0.3206 0.3306 0.3315 0.4666 0.5013 0.4727 0.3399 0.3396 0.3443
RemBert 0.3213  0.2477 0.3313 0.4715 0.4993 0.4575 0.3724 0.3158 0.3504
InfoXLM 0.2972  0.2905 0.3042 0.5411 0.4860 0.5230 0.3554 0.3407 0.3601
FEN + regression(Eq. 14) w/ swap_order
mDeBERTa 0.3167 0.3451 0.3306 0.5252 0.4951 0.4506 0.3305 0.3339 0.3469
RemBert 0.3123 0.2752 0.3023 0.4547 0.4513 04715 0.3610 0.3448 0.3153
InfoXLM 0.2969 0.2851 0.2957 0.5167 0.5032 0.5549 0.3520 0.3277 0.3626

Table 4: Spearman correlation on Dev of word level on combinations of tagging modules(BiLSTM/FFN) and

regression modules with swapping orders(optional)

Dev Test
En-De 0.612 0.483
Zh-En 0.403 0.482
En-Mr 0.626  0.505
En-Gu 0.706  0.695
En-Hi 0.603  0.600
En-Ta 0.708 0.740
En-Te 0474 0.376
He-En - 0.575
Multilingual - 0513

Table 5: Spearman correlation of sentence level on Dev
and Test

Dev Test
En-De 0.343 0.256
Zh-En 0.221 0.250
En-Mr 0.398 0.334
He-En - 0359
En-Fa - 0.351
Multilingual - 0.298

Table 6: MCC of word level on Dev and Test
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