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Abstract

Quality estimation (QE) is an essential tech-
nique to assess machine translation quality
without reference translations. In this paper, we
focus on Huawei Translation Services Center’s
(HW-TSC’s) submission to the sentence-level
QE shared task, named Ensemble-CrossQE.
Our system uses CrossQE, the same model ar-
chitecture as our last year’s submission, which
consists of a multilingual base model and a
task-specific downstream layer. The input is
the concatenation of the source and the trans-
lated sentences. To enhance the performance,
we finetuned and ensembled multiple base mod-
els such as XLM-R, InfoXLM, RemBERT and
CometKiwi. Moreover, we introduce a new
corruption-based data augmentation method,
which generates deletion, substitution and inser-
tion errors in the original translation and uses
a reference-based QE model to obtain pseudo
scores. Results show that our system achieves
impressive performance on sentence-level QE
test sets and ranked the first place for three
language pairs: English-Hindi, English-Tamil
and English-Telegu 1. In addition, we partic-
ipated in the error span detection task. The
submitted model outperforms the baseline on
Chinese-English and Hebrew-English language
pairs.

1 Introduction

Quality estimation (QE) involves automatically
scoring machine translation outputs without de-
pending on reference translations (Specia et al.,
2018). In the WMT 2023 QE shared task, there
are two subtasks — quality estimation and fine-
grained error span detection and each task involves
several language pairs. Our team — Huawei Trans-
lation Services Center (HW-TSC) — participated
in the sentence-level quality prediction and the fine-
grained error span detection tasks over all language

1http://www2.statmt.org/wmt23/
quality-estimation-task_results.html

pairs except the zero-shot language pair. Fine-
tuning pre-trained language models, which offers
abundant semantic information, has become the
paradigm for QE tasks (Rei et al., 2020). In this
paper, we describe Ensemble-CrossQE, HW-TSC’s
system for sentence-level QE task, which leverages
multiple pre-trained language models and data aug-
mentation technique. Our system designs can be
summarized as follow:

• Model: We employed our previous year’s ar-
chitecture, CrossQE (Tao et al., 2022), as the
foundation. For every language pair, models
were individually fine-tuned. Additionally, we
used CometKiwi (Rei et al., 2022), a multi-
lingual QE model and fine-tuned it for single
language pairs.

• Data augmentation: The original train-
ing dataset was augmented with a novel
corruption-based approach. A reference-
based QE model was used to generate pseudo
scores for corrupted translations by taking
the original translation as reference and a cor-
rupted translation as the new translation.

• Ensemble: For each language pair, 12 check-
points were considered for the final ensemble.
These checkpoints originated from four base
models: XLM-R (Conneau et al., 2020), In-
foXLM (Chi et al., 2021), RemBERT (Chung
et al., 2020), and CometKiwi (Rei et al.,
2022), and three training dataset configura-
tions: original dataset, augmented dataset, and
augmented dataset followed by the original
dataset. The ensemble weight for each check-
point was optimized with Optuna (Akiba et al.,
2019). On average, eight checkpoints were
used per language pair after optimization.

Our system achieves remarkable results and out-
performs the baseline given by the competition or-
ganizer by a large margin. Additionally, we provide

http://www2.statmt.org/wmt23/quality-estimation-task_results.html
http://www2.statmt.org/wmt23/quality-estimation-task_results.html


836

detailed results of each model with and without
data augmentation in Table 1. To analyze the im-
portance of each model in the ensemble, we present
the ensemble weights in Figure 1 and 2. It is worth
noting that the models fine-tuned with the proposed
data augmentation technique were assigned higher
weights in the ensemble.

2 Background

2.1 Task Description 2

Sentence-level QE with direct assessment (DA)
anotations: The goal is to predict the quality
score for each source-target sentence pair. The
golden-truth quality scores were obtained from hu-
man translators who rated each translation from
0 to 100. The scores from three or four transla-
tors were normalized and averaged to get the final
score. This year’s QE shared task has five language
pairs with DA quality scores: English-Marathi (en-
mr), English-Hindi (en-hi), English-Tamil (en-ta),
English-Telegu (en-te) and English-Gujarati (en-
gu). Only en-mr has 26,000 training samples, while
the other languages have just 7,000 training sam-
ples each.

Sentence-level QE with multi-dimensional
quality metrics (MQM) anotations: The goal
is to predict the quality score for each source-target
sentence pair. MQM can be used to identify quality
issues in translation products, classify them against
a shared, open and standardized error typology, and
generate quality measures that can be used to gauge
how well the translation product meets quality re-
quirements. Calculating different scores by error
type, the summing penalties for each MQM error
category are +1 point for minor errors +5 points
for major errors, and +10 points for critical errors.
This year’s QE shared task has two language pairs
with MQM quality scores: English-German(en-de)
and Chinese-English(zh-en). The en-de has 28900
training samples and zh-en has 35300 training sam-
ples.

Fine-grained error span detection: Partici-
pants of this task need to identify the error span
(start and end indices) and the error severity (major
or minor).

2.2 Base Models

• XLM-R (Conneau et al., 2020): A
transformer-based masked language model

2https://wmt-qe-task.github.io/

trained on a massive multilingual corpus with
more than two terabytes of data.

• InfoXLM (Chi et al., 2021): A cross-lingual
pre-trained model that leverages multilingual
masked language modeling, translation lan-
guage modeling and cross-lingual contrast
learning.

• RemBERT (Chung et al., 2020): A rebal-
anced mBERT model with factorization of the
embedding layers. The input embeddings are
smaller and kept for fine-tuning, while the out-
put embeddings are larger and discarded after
pre-training.

• CometKiwi (Rei et al., 2022): A multilingual
reference-free QE model that uses a regres-
sion approach and is built on top of InfoXLM.
It has been trained on direct assessments from
WMT17 to WMT20 and the MLQE-PE cor-
pus.

3 Method

3.1 Model Architecture
3.1.1 Task1: Sentence-level QE with direct

assessment (DA) and multi-dimensional
quality metrics (MQM) anotations

As shown in Equation 1 and 2, the embeddings of
source sentence s and translated sentence t are con-
catenated in both orders [s, t] and [t, s] to form the
input of pre-trained model fbase. The output token-
level embedding sequences are processed by an av-
erage pooling layer to obtain vector reprsentations
hs1 and ht1 for source and translation respectively.
These feature vectors are enhanced by taking their
absolute difference and element-wise multiplica-
tion, as shown in Equation 3 and 4. Finally, all
feature vectors are concatenated and fed into a re-
gression head that predicts the final score y (Equa-
tion 5). This architecture enables information ex-
change between source and translated sentences at
an early stage of the network and has proven to be
significantly more effective than combining cross-
lingual information after the pre-trained model.

hs1,ht1 = fbase([s, t]) (1)

ht2,hs2 = fbase([t, s]) (2)

f1 = [hs1,ht1, |hs1 − ht1|,hs1 ⊙ ht1] (3)

f2 = [hs2,ht2, |hs2 − ht2|,hs2 ⊙ ht2] (4)

y = fscore([f1, f2]) (5)

https://wmt-qe-task.github.io/
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3.1.2 Task2: Error span detection

Our model was adapted from CometKiwi (Rei
et al., 2022). The original binary classification
was changed to three-way classification with the
following labels: major error, minor error, no error.
We disabled the sentence-level prediction head by
setting the weight of the original sentence module
to 0.

3.2 Corruption-based Data Augmentation

Algorithm 1 Corruption-based data augmentation

Require: source s, translation t, DA score
Ensure: score > 70

1: n← min(randint(0, 5), len(t))
2: i← 0
3: t̂← t
4: while i < n do
5: t̂← corrupt(t̂)
6: i← i+ 1
7: end while
8: scorenew ← score× fQE(s,t̂,t)

fQE(s,t,t)

9: return s, t̂, scorenew

This year’s QE shared task primarily focuses on
low-resource languages. The scarcity of training
data poses a challenge of overfitting. We tried to
overcome this problem by augmenting the dataset
with various types of noise, including deletion, in-
sertion and substitution errors. Our approach is
described in Algorithm 1. We first selected source-
translation pairs (s and t) that had a score above 70.
We did not use low quality translations for augmen-
tation, as our approach was designed to generate
translation with lower scores compared to the orig-
inal translation. Then, we randomly sampled the
number of corruptions and iteratively incorporated
these corruptions into the translation, resulting in a
new translation (t̂). The corruption types are listed
as follows:

• Deletion: A random word in the translation
was deleted.

• Insertion: A random word in the translation
was selected and inserted in a random posi-
tion.

• Substitution: A random word was replaced
with another word in the translation.

To generate a pseudo score for each new transla-
tion, we employed a reference-based QE model 3

fQE . The key idea is to use the original translation
as the reference and the corrupted translation as
the new translation. Since the output of the QE
model is in the range between 0 and 1, we can
use this value to scale the original score to obtain
the pseudo score. However, we observed that even
when the reference and translation are the same, the
model will not generate a score close to 1, which is
inconsistent with the assumption that if there is no
corruption, the score should be unchanged. There-
fore, we constructed the scaling factor as the ratio
between the corrupted translation score and the un-
corrupted translation score (fQE(s,t̂,t)

fQE(s,t,t) ). This data
augmentation method can be viewed as distilling
knowledge from a pre-trained reference-based QE
model and it has the potential to increase model
generalisability and provide diverse checkpoints
for ensemble.

4 Experiments

4.1 Experimental setups

4.1.1 Task1
Our system is built on top of the COMET package 4.
We fine-tuned four pre-trained models, namely
XLM-R, InfoXLM, RemBERT and CometKiWi 5,
on a single Nvidia Tesla V100 GPU with a batch
size of 4, gradient accumulation of 8 and mean
square error loss function. We stopped the training
when there was no improvement in terms of Spear-
man correlation on the dev set for five test runs. For
each language pair, the augmented dataset, which
contains more than ten times data than the origi-
nal dataset, was pre-generated instead of generated
on-the-fly to improve training efficiency. We con-
sidered three schedules: training the model with
the original dataset; training it with the augmented
dataset (only DA training set); and first training
it with the augmented dataset and then finetuning
it on the original dataset. The training step took
around 3 hours and 10 hours with the original and
the augmented dataset respectively.

With four base models and three schedules, we
obtained twelve checkpoints for each language pair.
We ensembled these checkpoints by taking the

3https://huggingface.co/Unbabel/
wmt22-comet-da

4https://github.com/Unbabel/COMET
5https://huggingface.co/Unbabel/

wmt22-cometkiwi-da

https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
https://github.com/Unbabel/COMET
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
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Figure 1: The ensemble weights for each base model.

weighted-average of predicted scores. The weights
were optimized using Optuna, an automatic hyper-
parameter search framework. We used the Spear-
man correlation as the objective, set the step to
0.05, and ran 1000 trials on the dev set.

4.1.2 Task2
We fine-tuned two pre-trained models, XLM-R and
CometKiwi, for 10 epochs with batch size of 32.
We created two training subsets using the anno-
tated data from 2020 to 2022. Consequently, four
checkpoints were obtained for each language pair.
We combined the results of these checkpoints by
using the union of the predicted spans, which out-
performed token-level majority voting.

4.2 Results
4.2.1 Task1
Results of sentence-level QE in terms of Spear-
man correlation are shown in Table 1. Without
data augmentation, CometKiwi has the best aver-
age correlation of 0.597, while XLM-R, InfoXLM
and RemBERT are close behind with around 0.585.
Figure 1 reveals the importance of each model in
the ensemble. CometKiwi has the highest weight
for four language pairs, meaning it contributes most
to the final prediction. Other base models perform
similarly, with XLM-R being most important for
en-hi language pair.

The corruption-based data augmentation ap-
proach has the most notable benefits for the en-
mr language pair. The performance of models
based on XLM-R, InfoXLM and CometKiwi are
improved significantly. It is worth noting that these
models do not need to be fine-tuned on the original

Figure 2: The ensemble weights for different training
dataset configurations. ‘w/o aug’ and ‘+ aug’ mean
using the original or augmented dataset respectively. ‘+
aug & finetune’ means training on augmented dataset
and then finetuning on the original one.

training set to achieve comparable or better results
than no augmentation, even when more than 90%
of the targets are pseudo labels. For other language
pairs, data augmentation has limited benefits when
used with a single base model. One possible reason
is that the reference-based model did not produce
high-quality pseudo labels for language pairs with
limited resources. However, we did observe that
models with data augmentation played important
roles in the ensemble. As shown in Figure 2, on
average, models without data augmentation were
assigned a weight of only 20%, whereas models
that were trained purely on augmented data or pre-
trained on augmented data had a total weight of
80%, indicating that data augmentation can im-
prove the performance of the ensemble and prevent
overfitting.

Our final ensemble consists of 12 checkpoints,
but some of them have zero weight after optimiza-
tion. Therefore, the average number of models in
the ensemble for each language pair is eight. The
ensemble outperforms any single model on the dev
set by a noticeable margin. On the test set, the
ensemble achieves outstanding results, with Spear-
man scores higher than 0.69 for three language
pairs (en-mr, en-ta, en-gu) and the Spearman of
en-ta even reached 0.775. Our submissions are
much better than the organizer’s baseline. The as-
sessment results of MQM are shown in Table 2.
With the model ensemble methods, the assessment
results have been significantly improved.
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Method en-mr en-hi en-ta en-te en-gu Avg.
XLM-R 0.541 0.614 0.663 0.464 0.644 0.585

+augmentation 0.554 0.613 0.663 0.435 0.608 0.575
+augmentation & finetune 0.554 0.615 0.658 0.442 0.624 0.579

InfoXLM 0.527 0.600 0.663 0.461 0.654 0.581
+ augmentation 0.565 0.607 0.671 0.447 0.635 0.585

+ augmentation & finetune 0.557 0.612 0.669 0.454 0.651 0.589
RemBERT 0.549 0.603 0.663 0.436 0.682 0.587

+ augmentation 0.547 0.587 0.668 0.416 0.622 0.568
+ augmentation & finetune 0.532 0.598 0.659 0.417 0.633 0.568

CometKiwi 0.557 0.598 0.689 0.452 0.689 0.597
+ augmentation 0.580 0.583 0.673 0.458 0.660 0.591

+ augmentation & finetune 0.579 0.588 0.690 0.464 0.677 0.600
Ensemble 0.592 0.636 0.707 0.481 0.699 0.623

baseline (test set) 0.392 0.281 0.507 0.193 0.337 0.342
Ensemble (test set) 0.692 0.644 0.775 0.394 0.691 0.639

Table 1: Results for sentence-level QE in terms of Spearman correlation. Ground-truth annotations were derived
from Direct Assessment. Except for the last two rows which shows the results on test set, other results were based
on the dev set.

Method en-de zh-en
XLM-R 0.529 0.293

InfoXLM 0.520 0.213
RemBERT 0.525 0.178
CometKiwi 0.468 0.243
Ensemble 0.582 0.343

baseline (test set) 0.340 0.447
Ensemble (test set) 0.437 0.460

Table 2: Results for sentence-level QE in terms of
Spearman correlation. Ground-truth annotations were
derived from Multi-dimensional Quality Metrics.

4.2.2 Task2
The results for error span detection are displayed
in Table 3. Our system achieved an F1 score of
0.235 on the zh-en language pair, which is signifi-
cantly higher than the baseline. Moreover, for the
language pair without supervised data (he-en), our
system achieved a relative improvement of 33%
over the baseline.

5 Conclusion

This paper mainly presents HW-TSC’s sentence-
level QE system called Ensemble-CrossQE. Using
our previous year’s model CrossQE as the foun-
dation, we carried out comprehensive experiments
with different pre-trained models. To further im-
prove the robustness for low-resource language
pairs and provide various checkpoints for model

Method zh-en en-de he-en
XLM-R 0.169 / /

InfoXLM 0.176 0.143 0.085
+CometKiwi 0.187 0.151 0.095

baseline (test set) 0.219 0.167 0.227
Ensemble (test set) 0.235 0.166 0.266

Table 3: Results for error span detection in terms of F1
score.

ensemble, we introduced a corruption-based data
augmentation method. For sentence-level QE task,
our system delivers a good performance on all
language-pairs with DA annotations. In the future,
we will investigate distillation method to transfer
the knowledge of the ensemble to a single model
to improve efficiency and we plan to leverage ex-
ternal parallel data and translation models for data
enhancement. Additionally, in this paper, we only
present brief investigations of the error span detec-
tion task. Therefore, we plan to further explore
word-level QE tasks, which can improve the inter-
pretability of QE.
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