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Abstract

In this paper, we describe our NAIST-
NICT submission to the WMT’23 English >
Japanese general machine translation task. Our
system generates diverse translation candidates
and reranks them using a two-stage reranking
system to find the best translation. First, we
generated 50 candidates each from 18 transla-
tion methods using a variety of techniques to
increase the diversity of the translation candi-
dates. We trained seven models per language
direction using various combinations of hyper-
parameters. From these models we used vari-
ous decoding algorithms, ensembling the mod-
els, and using kNN-MT (Khandelwal et al.,
2021). We processed the 900 translation candi-
dates through a two-stage reranking system to
find the most promising candidate. In the first
step, we compared 50 candidates from each
translation method using DrINMT (Lee et al.,
2021) and returned the candidate with the best
score. We ranked the final 18 candidates using
COMET-MBR (Fernandes et al., 2022) and re-
turned the best score as the system output. We
found that generating diverse translation can-
didates improved translation quality using the
well-designed reranker model.

1 Introduction

We participated in the WMT’23 general machine
translation task for English-to-Japanese (En-Ja) and
Japanese-to-English (Ja-En) translation. Our team
aimed to improve translation performance using
only the provided parallel data. Our system gen-
erates diverse translation candidates and reranks
them using a two-stage reranking system to find
the best translation.

Figure 1 shows an overview of our system. We
trained 7 Transformer (Vaswani et al., 2017) NMT
models per language direction using various combi-
nations of hyperparameters. The translation gener-
ator consists of 9 instances: 7 MT models, the
ensemble model, and a ANN-MT (Khandelwal
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Figure 1: Overview of our system. “E18-D4” denotes
“18-layer encoder and 4-layer decoder”, and “do” and
“ado” denote “dropout” and “dropout after applying at-
tention softmax”, respectively.

et al., 2021) system that interpolates tokens from
retrieved examples using the ensemble model. The
generator generates the 50-best translations each
from two decoding methods: beam search and top-
p sampling. This combination allows the generator
to find diverse translation candidates. Next, the 900
candidates (9 generators x 2 decoding methods x
50 best) are passed to our two-stage reranker to
find the best translation. The first step of rerank-
ing uses DINMT (Lee et al., 2021) to rerank the
50-best translation candidates to select the 1-best
translation from each of the 18 generator and de-
coding method combinations. DrNMT is trained to
maximize the BLEU (Papineni et al., 2002) score,
whereas we use the second step reranking to find
the highest COMET (Rei et al., 2020) score ex-
pectation from the remaining candidates. The 18
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candidates from the first step are reranked using
COMET-MBR (Fernandes et al., 2022) to select
the best translation that is returned by the system.

Our experiments show that our two-stage
reranker outperforms the BLEU, chrF, and COMET
scores by DrNMT alone, and the BLEU and chrF
scores by COMET-MBR alone in both En-Ja and
Ja-En translation tasks on wmttest2022 (Kocmi
et al., 2022).

2 Preprocessing

For the training data, we used the provided bilin-
gual parallel data, which included JParaCrawl
v3 (Morishita et al., 2020), News Commentary
v18.1, Wiki Titles v3, WikiMatrix, the Japanese-
English Subtitle Corpus (Pryzant et al., 2017),
the Kyoto Free Translation Task Corpus (Neubig,
2011), and the Web Inventory of Transcribed and
Translated Talks (Cettolo et al., 2012). We did not
backtranslate the monolingual data due to resource
constraints for training MT models and a reranker
model.

As the English translation of the Japanese-
English Subtitle Corpus was only available in low-
ercase, we trained a Moses truecaser (Koehn et al.,
2007) using the other corpora to add capitalization
to the subtitle corpus. After truecasing, the first
letter of each sentence was capitalized using de-
truecasing to produce sentence-case English text
that matched the casing in the other corpora.

We cleaned the data by removing duplicate lines
and applying language filtering. Because much of
the training data were crawled from the internet,
we used fasttext (Joulin et al., 2016a,b) to predict
the language of each sentence and removed sen-
tences that were not predicted to be in the correct
language. This helped to reduce noise in the dataset
by removing sentences with garbage tokens.

We tokenized text into subword units using sen-
tencepiece (Kudo and Richardson, 2018). Since
our system generates many candidates using mul-
tiple models, we preliminary measured the gen-
eration speed and selected the number of vocabu-
lary with the fastest decoding. Our initial experi-
ments demonstrated that when the target language
was Japanese, a vocabulary size of 32k resulted
in fewer tokens needing to be generated, which
increased the translation speed. However, when
the target language was English, a vocabulary size
of 16k was faster than an English vocabulary of
32k. Therefore, we trained separate dictionaries

111

#sentence pairs

No filter 33,875,242
+ deduplicate 29,940,444
++ language filter 29,279,161
+++ length filter 27,880,378

Table 1: Number of sentence pairs in the training data
after each preprocessing step.

Generator: MT model

Architecture Transformer big
Embedding dimension 1,024
FFN inner dimension 8,192
Dropout (do) 0.1
Attention dropout (ado) 0.0
Loss function label smoothed cross entropy
Label smoothing e=0.1
Optimizer Adam (81 = 0.9, B2 = 0.98)
Learning rate (LR) le-3
LR scheduler inverse square root
Warm-up steps 4,000
Global batch size Roughly 512,000 tokens
Training steps 60,000
Reranker: DrNMT
Architecture XLM-R large
Classifier dropout 0.2

Loss function (Section 3.2.1)

Optimizer Adam (81 = 0.9, B2 = 0.98)
Learning rate (LR) 5e-5

LR scheduler polynomial decay

Warm-up steps 8,000

Global batch size 512 sentences * 50 hypotheses

Table 2: Hyperparameters of the models we trained.

for English and Japanese, with the English-side
dictionary containing nearly 16k tokens and the
Japanese-side containing nearly 32k tokens. The
character coverage of the tokenizers also varied be-
tween languages. We trained the English tokenizer
with 100% character coverage, whereas character
coverage for Japanese was 99.98%.

After subword segmentation, we removed all
sentences shorter than one token or longer than 250
tokens. We also removed all sentences in which
the number of tokens in one language was more
than double the number of tokens in the translation,
i.e., the ratio of tokens between the source and
target was >2.0. The number of sentence pairs
before/after preprocessing is shown in Table 1.

3 Translation System

3.1 Generator

The generator generates diverse translation candi-
dates from multiple models and multiple decod-



ing methods. The generator consists of seven MT
models, an ensemble of the seven models, and the
ensemble enhanced with kKNN-MT (Khandelwal
et al., 2021) for a total of 9 instances.

3.1.1 MT models

The 7 MT models are trained from the provided
parallel data. Our MT model with the default set-
ting is shown in Table 2. Six of the seven models
vary from the default setting only in dropout and
attention dropout, while the last varies the number
of layers. Our model has two types of dropouts
whose values are varied: “dropout (do)” and “atten-
tion dropout (ado)”. The dropout (do) is applied to
the token embedding layer and the outputs of the
sub-layers within each layer, i.e., the outputs of the
attention layers and feed-forward network. The at-
tention dropout (ado) is applied after softmax to the
attention weights, i.e., before multiplying the val-
ues. Six models are trained with varying dropouts,
one for each combination of do = {0.1,0.2,0.3}
and ado = {0.0,0.1}. In addition to the mod-
els that vary dropout, we trained a deep-shallow
model (Kasai et al., 2021), which has 18 encoder
layers and 4 decoder layers. For each model, we
averaged the parameters of the last 10 checkpoints
(10,000 training steps).

3.1.2 ENN-MT

Datastore construction ANN-MT (Khandelwal
et al., 2021) requires a datastore to be constructed
to store the translation examples to be accessed
during decoding. Let & = (21,...,%|4) € Vfl

and y = (y1,..-,Ypy|) € Vﬁlfl denote a source
sentence and target sentence, respectively, where
|-| is the length of the sequence, and Vx and Vy- are
the vocabularies of the source language and target
language, respectively. The datastore for KNN-
MT consists of translation examples in the form
of key—value pairs, as shown in Figure 2. Each
target token y; from the translation examples is
stored in the datastore with a d-dimensional key (€
R?), which is the representation of the translation
context (&, y<¢) obtained from the decoder of the
pre-trained NMT model. The datastore M C R? x
Vy is formally defined as a set of tuples as follows:

M = {(f(m7y<t)>yt) ’ (may) € D7 1 <t< |y|}7
(1
where D denotes parallel data and f : V‘)? | x
Vf,_l — R returns the intermediate representation
of the final decoder layer from the source sentence
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Figure 2: Datastore construction.

kNN index
Implementation FAISS
Index IndexIVFPQ
# of entries
Ja (En-Ja) 732,222,393
En (Ja-En) 836,254,078
# of centroids 131,072
# of bits in PQ 8 bits
# of sub-vectors in PQ M = 64
Vector pre-transform OPQ (Ge et al., 2014)
Decoding
# of retrieved tokens k=64
Temperature of ppnny 7 = 100
Weight for ppnn A=0.1

# of probed clusters 32

Table 3: Hyperparameters of our kNN indexes and ANN-
MT.

and prefix target tokens. The representation used
as the key vector is the vector that is passed into the
final feed-forward layer (Khandelwal et al., 2021).

In our system, we used the model trained with
the default settings (as seen in Table 2) to obtain
the keys for the datastore.

kNN index To search the k-nearest-neighbor
tokens efficiently, we used FAISS (Johnson
et al., 2019). For the kNN indexes, we used
faiss.IndexIVFPQ which consists of an inverted
file index (IVF) that performs k-means cluster-
ing and product quantization (PQ) (Jégou et al.,
2011) which divides a vector into M sub-vectors
and performs vector quantization in each subspace.
Note that in IVFPQ, the codewords of PQ are
learned from the residual vectors from the cen-
troids of the IVF. Additionaly, we used optimized
PQ (OPQ) (Ge et al., 2014) to reduce the quantiza-
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tion error of PQ. The hyperparameters of our kNN
indexes are summarized in Table 3.

Decoding During decoding, ANN-MT re-
trieves the k-nearest-neighbor key-value pairs
{(ki,v;)}s_, € R? x Vy from the datastore M
using the query vector f(x,y<;) at timestep t.
Next, ppnn is calculated as follows:

PENN (Yt 2, Y<t)

k
- kz_ ) 3
w03 1y, exp IR T

=1

where 7 is the temperature parameter for piNn.
Then, KNN-MT generates the output probability
by computing the linear interpolation between the
kNN and MT probabilities, prnn and pyr, respec-
tively:

P(yi|z, y<)
= ApeNN (e, y<t) + (1 — N)pmr (el 2, y<it).
3)
ENN-MT with the ensemble model ANN-MT is

typically used with a single model, whereas in our
system, we obtain the output probability for each
token by interpolating between the kNN probability
and the probability from the ensemble model. The
output probability from the ensemble KNN-MT
is formulated by defining pyir in Equation 3 as
follows:

1
M (Ye| T, Y<i30) = — (pvr (Ye| T, y<i501)+

6|
oo+ oyt (Y|, Y<i;0)0)), 4)
where 6 = {01,...,0,9} denotes the parameters

of the trained MT models; |@| = 7 in our system.
The KNN-MT decoding interpolated between the
token distribution of the retrieved translation con-
text tokens and the full ensemble of models. As
such, the weight assigned to the kNN token distri-
bution was kept small so as not to overpower the
information from the ensemble. We used A = 0.1
and 7 = 100 in the kNN-MT decoding shown in
Table 3.

3.1.3 Decoding algorithms

From each model, we output the 50 best hypotheses
generated using beam search with a beam width of
50. For diversity, we generated another 50 hypothe-
ses using top-p sampling with p = 0.7 and a beam
width of 50. We formed an ensemble of models to
produce two more sets of 50 hypothesis sentences
from beam search and top-p sampling.

3.2 Reranker

We use a two-stage reranker consisting of an intra-
system reranker, which selects the best of the 50
hypotheses from each system, and an inter-system
reranker, which selects the best hypothesis from
the 18 remaining candidate translations.

3.2.1 DrNMT

Discriminative reranking for NMT (DrNMT) (Lee
et al., 2021) is a discriminative model that learns
to predict the distributions of the evaluation scores
of a set of translation hypotheses given a source
sentence. DrNMT is similar to a quality estima-
tion model (Zerva et al., 2022), but it is optimized
to distinguish the better translation from hypothe-
ses generated from a single system. In addition,
it cannot be used for comparing inter-systems be-
cause the weights for features are tuned using the
translation hypotheses of the development set. We
used BLEU (Papineni et al., 2002) as the evaluation
metric for this first-stage reranker.

Model The DrNMT model takes as input a
source sentence T € Vé? | concatenated with a hy-

pothesis translation y/) ¢ Vlyy (J)‘. The DrNMT
model passes this into XLM-R (Conneau et al.,
2020), which is a multilingual pre-trained encoder.
The hidden state of the [CLS] token then represents
the combination of the source and hypothesis and
is converted into a scalar score by the classification
head of RoBERTa (Liu et al., 2019). We used an
input dimension of 1,024, a hidden dimension of
768, and output dimension of 1. The activation
function for the classification head is tanh.

Objective The objective function minimizes the
KL-divergence between the DrNMT model distri-
bution and the distribution of BLEU scores of the
n-best hypotheses; that is, the objective function
L(0) is as follows:

L(0) = KL[pr || pn]

=- Zn:pT (v, y") 10gpar (yPa:6) .
j=1
(%)

where n denotes the number of translation hypothe-
ses, and pys and pr denote the distributions of the
DrNMT model and BLEU scores, respectively. y*
denotes the reference translation of . The BLEU
scores are normalized using min-max scaling and
the distribution of the BLEU scores is emphasized
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using the temperature coefficient 7'. In this paper,
we use T' = 0.5.

Training We trained the DrNMT model using
the 50 best translation hypotheses generated by
the model with the default configuration for each
source sentence over the entire training set, i.e.,
28M source sentences. The model is trained using
early stopping, which selects the checkpoint with
the maximum BLEU score in the validation set.

Tuning The score of the first-stage reranker is a
weighted sum of the DrNMT model score, transla-
tion model score, and length penalty. This combi-
nation of scores is similar to minimum error rate
training (Och, 2003). The weights that maximize
the BLEU score of the validation set were learned
and used.

Implementation We used the implementation
published in FAIRSEQ!. Note that this implemen-
tation uses SACREBLEU (Post, 2018) to compute
the BLEU scores. We modified the published code
of DrNMT to change the SACREBLEU tokeniz-
ers according to the target language because the
published implementation always calls the English
tokenizer.

3.2.2 COMET-MBR

COMET-MBR (Fernandes et al., 2022) performs
minimum Bayes risk (MBR) decoding (Kumar and
Byrne, 2004; Eikema and Aziz, 2020; Miiller and
Sennrich, 2021; Eikema and Aziz, 2022) using a
COMET (Rei et al., 2020, 2022) model trained on
direct assessments. A translation gMAF € V}@ |
is typically generated using maximum-a-posteriori
(MAP) decoding as follows:

gMAP — argmaxlog p(y|x), (©)

yey

where Y C |32, Vi is the search space of target
sentences. In MBR decoding, instead of finding
the most probable translation, the goal is to find
the translation that minimizes the Bayes risk as
follows:

QMBR — argmax Ey’~p(y|$) [U(y/, h)]? (7)
hey ~
1 & :
~ ) n

"https://github.com/facebookresearch/fairseq/
tree/main/examples/discriminative_reranking_nmt

where ) C ) is a set of translation hypotheses
and u : Y x Y — R is the utility function. In
this paper, we used COMET? (Rei et al., 2020,
2022) as utility function u. Note that we share
the hypotheses ) and the sample set for expecta-
tion estimation {y"), ..., y(™}, except for h, i.e.,
{yM,...,y(™} = Y\ {h}. Thus, given a can-
didate set, the computational complexity of MBR
decoding is in the order of O(m?), which results
in a slower inference speed when m is large.

3.2.3 Two-stage reranking

We applied two-stage reranking with DrNMT and
COMET-MBR, which allowed us to use each
model for the task it was trained to handle best,
to optimize for two metrics and to reduce the infer-
ence speed of reranking.

In the first stage, DINMT (Lee et al., 2021) is
used to prune the 50 candidates for each candidate
set generated from each of the 18 combinations of
decoding methods and generators. As DINMT is
trained to rerank the n-best candidates from a sin-
gle model, it is ideally suited to the task of rerank-
ing the candidates generated with the same combi-
nation of model and decoding method, i.e., within
a system. In the second stage, COMET-MBR (Fer-
nandes et al., 2022) is used to select the system
output from the 18 candidate translations selected
by DrNMT.

We use COMET-MBR to rerank the best outputs
of each system because COMET was trained on
translation scores from the output of various mod-
els from previous WMT translation tasks, making
it well suited to inter-system comparisons. Each of
the two stages is trained to optimize a different met-
ric: Stage one uses BLEU, which evaluates surface
forms, whereas stage two uses COMET, which
evaluates semantics. Additionally, the inference
speed of COMET-MBR makes it time-consuming
for large candidate sets, but pruning with DINMT,
which performs inference in a single forward com-
putation, reduces the computational cost.

4 Experimental Results

We evaluated the translation performance of our
system on wmttest2022 (Kocmi et al., 2022).
We measured the BLEU and chrF scores us-
ing SACREBLEU, and the COMET score using
Unbabel/wmt22-comet-da. The models of our

2https://huggingface.co/Unbabel/
wmt22-comet-da
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En-Ja Ja-En
Method #of cands. BLEU chrF COMET BLEU chrF COMET
1-best of the ensemble 1 255 34.0 86.4 23.1 48.0 80.9
DrNMT 50 26.7 34.7 86.6 23.7 484 81.1
COMET-MBR 900 26.1 354 90.5 22.0 48.0 84.1
DrNMT+COMET-MBR (ours) 900 271 35.6 88.4 244 49.3 82.4
DrNMT+Oracle-COMET-DA 900 30.5 39.1 90.2 29.0 53.7 85.5

Table 4: Experimental results of our system on wmttest2022. “# of cands.” denotes the number of candidates
generated by the translation generator. The bold scores indicate the best scores in each translation direction.

generator were trained using FAIRSEQ (Ott et al.,
2019). We used KNN-SEQ? (Deguchi et al., 2023)
for kKNN-MT generation built on top of FAIRSEQ.
The first stage of our reranker, DrINMT, was also
built using FAIRSEQ, whereas COMET-MBR was
built using COMET (Rei et al., 2020).

Table 4 shows the results of our system. In
the table, the translation candidates of “1-best of
the ensemble” were generated using the ensemble
model without KNN-MT using beam search decod-
ing. The candidates of “DrNMT” were generated
using the ensemble model and the 50-best trans-
lations were obtained using beam search decod-
ing. As DrNMT uses the log probability of an MT
model for inference, it cannot compare candidates
generated by different MT models or generation
methods. The results show that DINMT not only
improved the BLEU scores but also the chrF and
COMET scores from the 1-best translation, despite
only being trained to maximize the BLEU score.
“COMET-MBR” reranks all candidates, i.e., 900
translations (= 9 generators x 2 decoding methods
X 50 best candidates). COMET-MBR achieved
the highest COMET scores for both En-Ja and
Ja-En, but the BLEU and chrF scores were not
improved for Ja-En, and the inference speed of
COMET-MBR with 900 translation candidates was
slow. Our primary system used “DrNMT+COMET-
MBR” described in Section 3.2.3. This method
obtained higher scores for all metrics compared
with using DrNMT alone in both translation direc-
tions, in addition to the highest BLEU and chrF
scores overall. To summarize, our results show that
using the rerankers appropriately as intra- and inter-
system rerankers is effective for improving trans-
lation quality. Dr-NMT+Oracle-COMET-DA is the
oracle performance of the second stage reranker,

3h'ctps ://github.com/naist-nlp/knn-seq

i.e., the score computed by the largest COMET-
DA score for candidates after reranking the 50-
best of each system using DrNMT (first stage
reranker). Our DINMT+COMET-MBR scores un-
derperformed the oracle performance, and we leave
its improvement for future work.

In addition, we investigated which hypoth-
esis was selected as the system output in
DrNMT+COMET-MBR. Figure 3 shows the per-
centages of counts selected as the system output.
In the figure, when the system output comes from
multiple hypotheses, i.e., duplicated hypotheses
are selected, each hypothesis is counted as selected.
The results show that the hypotheses generated by
beam search of the ensemble and ensemble+kNN-
MT models were selected as the system outputs
roughly 40% in En-Ja and 50% in Ja-En. Thus,
half of the system outputs were not selected from
hypotheses generated from the ensemble model
using beam search. Therefore, it can be said that
“DrNMT+COMET-MBR” outperformed “DrNMT”
by selecting from the hypotheses generated by var-
ious generators and various decoding methods.

5 Conclusion

In this paper, we described our submission as a joint
team of NAIST and NICT (NAIST-NICT) to the
WMT’23 general MT task. We participated in this
task in the En-Ja and Ja-En translation directions.
We built our system using a diverse translation
generator and two-stage reranker. In future work,
we will investigate qualitatively how translation
diversity contributes to translation quality.

Limitations

A limitation of our system is its reliance on large
computation resources. As our system generates
50 candidates using two decoding methods from
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Figure 3: Percentages of counts selected as the system
output by COMET-MBR.

each of the nine generators, it requires significant
resources. The beam size of 50 is larger than most
machine translators and requires more computing
power (memory and time).

Note that the reranking approach cannot output
translations of higher quality than those translated
by the generators.

Ethics Statement

Our system did not restrict the training data and
the translator’s outputs. Therefore, similar to other
translation systems, it may generate factually inac-
curate translations.
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