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Abstract

This paper presents the results of the low-
resource Indic language translation task or-
ganized alongside the Eighth Conference on
Machine Translation (WMT) 2023. In this
task, participants were asked to build machine
translation systems for any of four language
pairs, namely, English-Assamese, English-
Mizo, English-Khasi, and English-Manipuri.
For this task, the IndicNE-Corp1.0 dataset is re-
leased, which consists of parallel and monolin-
gual corpora for northeastern Indic languages
such as Assamese, Mizo, Khasi, and Manipuri.
The evaluation will be carried out using auto-
matic evaluation metrics (BLEU, TER, RIBES,
COMET, ChrF) and human evaluation.

1 Introduction

Low-resource Indic languages refer to the vast ar-
ray of languages spoken in India, which, unfortu-
nately, possess limited linguistic resources avail-
able for their study and development. These lan-
guages typically suffer from a combination of fac-
tors that set them apart from the more prominent
and widely supported languages spoken in the coun-
try. The challenges these languages face include
having a smaller number of speakers, a relative lack
of governmental support, inadequate documenta-
tion, and limited access to technological resources.

India is renowned for its linguistic diversity, with
a rich tapestry of languages spoken across the sub-
continent. The Eighth Schedule of the Indian Con-
stitution officially recognizes 22 languages, which
receive significant government backing and protec-
tion. However, beyond these major languages, nu-
merous smaller languages and dialects are spoken
by various indigenous and minority communities
throughout the country.

These low-resource Indic languages face a se-
ries of interconnected challenges that make their
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preservation and promotion difficult: lack of writ-
ten scripts, limited vocabulary resources, inade-
quate linguistic research, and insufficient digital
content. The collective impact of these factors
makes it challenging to preserve and promote low-
resource Indic languages. As a consequence, they
are at risk of falling into disuse, with their speak-
ers shifting to more widely recognized languages.
Efforts to document, revitalize, and support these
languages are crucial not only for linguistic diver-
sity but also for the preservation of cultural heritage
and the rights of minority language communities
in India.

Efforts are being made by various organizations,
researchers, and language enthusiasts to address
the issues faced by low-resource Indic languages
(Pal et al., 2013a,b; Pal, 2018). These initiatives
involve language documentation, the development
of writing systems, the creation of linguistic re-
sources such as parallel corpora (Ramesh et al.,
2022), parallel fragment extraction from compara-
ble corpora (Gupta et al., 2013; Pal et al., 2014),
dictionaries and grammars, and the promotion of
language use through educational programs and
digital platforms.

Technology indeed plays a pivotal role in sup-
porting low-resource Indic languages. In recent
years, machine learning and natural language pro-
cessing techniques have been harnessed to create
innovative solutions for these languages, includ-
ing speech recognition, machine translation, and
text-to-speech systems. These technological ad-
vancements offer a transformative potential in ad-
dressing the linguistic challenges faced by these
languages and can have a profound impact on their
preservation and revitalization.

To work towards the goal of supporting low-
resource Indic languages, we organized the "In-
dic MT Shared Task" focusing on several less-
popular languages that belong to different lan-
guage families. These languages include As-
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samese (Indo-Aryan), Mizo (Sino-Tibetan), Khasi
(Austroasiatic), and Manipuri (Sino-Tibetan). In
this shared task, we present IndicNE-Corp1.0 in
which parallel (English-Assamese (en—as), English—
Mizo (en—lus), English—Khasi (en—kha), English—
Manipuri (en—mni)) and monolingual (Assamese,
Mizo, Khasi, Manipuri) corpora for northeastern
Indic languages available.

2 Shared Task: Low-Resource Indic
Language Translation

In recent years, there has been significant improve-
ment in the performance of machine translation
(MT) systems. This progress can be attributed to
the development of new techniques, such as multi-
lingual translation and transfer learning. As aresult,
the benefits of MT are no longer restricted to users
of widely spoken languages. This advancement has
led to a growing interest within the research com-
munity in expanding MT coverage to encompass a
wider range of languages, each with its unique geo-
graphical presence, degree of diffusion, and level
of digitalization.

However, despite the enthusiasm for extending
MT to more languages and users, there remains a
substantial challenge. The challenge stems from
the fact that MT methods typically require large
volumes of parallel data for training high-quality
translation systems. This requirement has proven
to be a major hurdle, particularly when dealing
with low-resource languages where obtaining such
extensive parallel data can be exceedingly diffi-
cult. Consequently, there is a pressing need to
develop MT systems that can perform well even
when trained on relatively small parallel datasets.
The ability to achieve effective machine translation
with limited resources is of paramount importance
for increasing accessibility and usability across a
wide spectrum of languages and linguistic commu-
nities. In this translation task, our focus was on the
following language pairs (both directions for each):

* Subtask-1 : English <> Assamese
* Subtask-2 : English <> Mizo
* Subtask-3 : English <+ Khasi
* Subtask-4 : English <> Manipuri

In this translation task, participants had the oppor-
tunity to submit up to 1 PRIMARY system for
each language pair/translation direction, where no

additional parallel data was permitted for train-
ing. Additionally, participants could submit up
to 2 CONTRASTIVE systems for each language
pair/translation direction. This structure allowed
participants to showcase their translation systems
under various conditions and constraints, including
the absence of additional parallel data in the case
of PRIMARY systems.

3 Dataset: IndicNE-Corpl.0

In the creation of IndicNE-Corp1.0, we compiled
datasets from our prior research projects, includ-
ing contributions from Laskar et al. (2020, 2022);
Khenglawt et al. (2022); Laskar et al. (2021);
Laitonjam and Ranbir Singh (2021). These datasets
served as the foundation for constructing both
parallel and monolingual corpora. In our earlier
works, we undertook the development of English-
Assamese (eng-asm) (Laskar et al., 2020, 2022),
English-Mizo (eng-lus) (Khenglawt et al., 2022),
English-khasi (eng-kha) (Laskar et al., 2021),
English-Manipuri (eng-mni) (Laitonjam and Ran-
bir Singh, 2021) parallel and monolingual cor-
pora for Assamese, Mizo, Khasi and Manipuri lan-
guages. The different online sources were explored
that include Bible, multilingual online dictionary
(Xobdo and Glosbe), multilingual question paper,
PMIndia' (Haddow and Kirefu, 2020), web pages,
blogs and online news papers. The collected data
statistics for parallel (train, validation and test set)
and monolingual corpora are presented in subse-
quent sections below. For primary investigation in
this shared task, we have not included very com-
plex sentences in the test set.

3.1 Assamese

Assamese exhibits a subject-object-verb (SOV)
word order, in contrast to the subject-verb-object
(SVO) word order found in English. Additionally,
it is characterized as an agglutinative language, as
discussed by Sarma et al. (2017) and Baruah et al.
(2021), signifying its propensity to incorporate suf-
fixes and prefixes into words to convey diverse
grammatical meanings. This intricacy poses a no-
table challenge for machine translation systems, as
they must accurately analyze and generate these
intricate word forms.

Furthermore, Assamese boasts a complex verb
conjugation system encompassing tense, aspect,
mood, and agreement markers. These markers hold

"http://data.statmt.org/pmindia/v1/ parallel/
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the power to significantly alter the meaning of a
verb, making it a formidable task for translation
systems to capture these subtleties with precision.
The data statistics for the English-Assamese paral-
lel data are presented in Table 1.

Type Sentences Tokens

eng asm
Train 50,000 969,623 825,063
Validation | 2,000 31,503 25,929
Test 2,000 32,466 27,483

Table 1: English-Assamese parallel data statistics for
train, valid, and test set

3.2 Mizo

Mizo follows the object-subject-verb order when
the object is considered. Mizo is a tonal language
(Lalrempuii et al., 2021; Khenglawt et al., 2022),
which means that differences in pitch or tone can
represent different meanings. The vowels (a, aw, e,
i, 0, u) primarily indicate intonation. In the Mizo
language, the main tones are rising, falling, high,
and low. For example, depending on the tone, the
word “ban” in Mizo can mean a pillar, the arm, to
stretch, arrive at, sticky, or dismiss. A circumflex
(") is frequently used to indicate long intonations
(primarily to distinguish them from short intona-
tions). Mizo is an agglutinative and highly inflected
language with declension of nouns and pronouns.
It also has many monosyllables and decomposable
polysyllables, with meaning derived from each syl-
lable. A sentence’s tense can be changed by includ-
ing particles such as “ang,” “dawn,” “mek,” “tawh,”
and so on. The data statistics for the English-Mizo
parallel data are presented in Table 2.

Type Sentences eng Tokens lus
Train 50,000 981,468 1,06,2414
Validation | 1,500 38,525 40,983
Test 2,000 21,905 25,098

Table 2: English-Mizo parallel data statistics for train,
valid and test set

3.3 Khasi

Khasi follows the subject-verb-object word order.
It orthography has 23 alphabets and has six vowels,
the vowels are “a e 110 u”. In Khasi orthography
the alphabets “c f q v x z” are not present and in-
stead the letters “i i ng” are present which makes
the orthography to be different from English or
other orthographies (Warjri et al., 2021). Khasi is

rich in subject agreement markers. Subject agree-
ment is indicated by verbs, adjectives, and adverbs.
Nouns have their own grammatical number and
gender. In morphology, Khasi is mostly isolating;
while some words are derived through specific mor-
phological processing, others are found standing
alone with no morphology indicated. As a result,
(a) word categories such as Nouns, Verbs, Adjec-
tives, and so on are invariant, and (b) words are
mostly mono-morphemic in nature, so it is com-
mon to encounter only isolating words in a single
long sentence or discourse. The data statistics for
the English-Khasi parallel data are presented in
Table 3.

Type Sentences eng Tokens Kkha
Train 24,000 7,29,930  8,75,545
Validation | 1,000 24,609 37,407
Test 1,000 24,150 35,901

Table 3: English-Khasi parallel data statistics for train,
valid and test set

3.4 Manipuri

Manipuri language uses Bengali script” and Meetei
mayek? in written form. In this dataset, we use
the Bengali script. Manipuri language also has
an extensive suffix with limited prefixation and
verb-final word order in a sentence, i.e., subject-
object-verb order (Huidrom et al., 2021). Linguis-
tic features of this language include agglutinative
verb morphology, tone, the absence of grammatical
person, number, gender, and a prevalence of as-
pect over tense. The data statistics for the English-
Manipuri parallel data are presented in Table 4.

Type Sentences Tokens .
eng mni
Train 21,687 390,730 330,319
Validation | 1,000 16,905 14,469
Test 1,000 14,886 12,775

Table 4: English-Manipuri parallel data statistics for
train, valid, and test set

Table 5 presents the statistics for parallel data
length differences among the four language pairs.
In Figure 1, we illustrate the overlapping tokens
between the test set and the training and validation
sets for these same four language pairs. In addition
to the parallel data, we have also made available
monolingual corpora for Assamese, Mizo, Khasi,

Zhttp://unicode.org/charts/PDF/U0980.pdf
3http://unicode.org/charts/PDF/UABCO.pdf
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Figure 1: Overlapping tokens among test-train and test-
validation data set of English-Assamese, English-Mizo,
English-Khasi and English-Manipuri

and Manipuri. The monolingual data statistics per
languages are presented in Table 6.

Language | Size (MB) Sentences Tokens

asm 805 2,624,715 49,232,154
lus 145 1,909,823 27,936,225
kha 104 182,737 22,140,361
mni 716 2,144,897 36,514,693

Table 6: Monolingual data statistics for Assamese,
Mizo, Khasi and Manipuri languages

4 Participants and System Descriptions

In this shared task, a total of 31 teams registered
and contributed, as indicated in Table 8, the re-
leased the dataset have been distributed among par-
ticipants. In Table 7, we have compiled the system
outputs submitted by participants, encompassing
both primary and contrastive submission types.

Language Pair
English-Assamese
English-Mizo
English-Khasi
English-Manipuri

Number of Participants
13 (Primary), 11 (contrastive)
10 (Primary), 8 (contrastive)
11 (Primary), 8 (contrastive)
14 (Primary), 11 (contrastive)

Table 7: Number of participants in the low-resource
Indic language translation task at WMT23

However, we have received system description
papers from 9 teams and included concise system
details for those teams where the authors provided
such information.

CFILT-IITB (Gaikwad et al., 2023): The par-
ticipant utilized phrase-pair injection (Sen et al.,
2021), back-translation (Sennrich et al., 2016), and
transfer learning with the help of large pre-trained
multilingual IndicTrans2 model (Gala et al., 2023)
to build NMT systems for the English-Assamese
and English-Manipuri language pairs.

IOL Research (Zhang et al., 2023): The contrib-
utor used monolingual data to train two denoising
language models similar to TS (Raffel et al., 2020)
and BART (Lewis et al., 2019), and then used par-
allel data to fine-tune the pre-trained language mod-
els to obtain two multilingual machine translation
models. Besides, the multilingual machine transla-
tion models were used to translate English mono-
lingual data into other multilingual data, form-
ing multilingual parallel data as augmented data
(Sennrich et al., 2016) to build NMT systems for
English-Assamese, English-Mizo, English-Khasi,
and English-Manipuri language pairs.

TACS-LRILT (Suman et al., 2023): The team
IACS-LRILT used IndicBART (Dabre et al., 2022)
pre-trained language model for fine-tuning the
training data to build NMT systems for English-
Assamese, and English-Manipuri language pairs.

GUIT-NLP (Ahmed et al., 2023): Team GUIT-
NLP used back-translation (Sennrich et al., 2016)
strategy and explored NMT systems by leveraging
subword tokenization (Sennrich et al., 2015; Kudo
and Richardson, 2018) and hyperparameters tuning
for English-Assamese, English-Mizo, and English-
Khasi language pairs.

NITS-CNLP (Singh et al., 2023): The NITS-
CNLP team used the OpenNMT toolkit (Klein
etal., 2017) and built a transformer-based (Vaswani
et al., 2017) NMT model with hyperparameters tun-
ing for the English-Manipuri language pair.

NICT-AI4B (Dabre et al., 2023): The group
explored NMT systems by leveraging back-
translation strategy (Sennrich et al., 2016) with de-
noising techniques (Lewis et al., 2020; Dabre et al.,
2022) and fine-tuned IndicTrans2 model (Gala
et al., 2023) for the English-Assamese, English-
Mizo, English-Khasi, and English-Manipuri lan-
guage pairs.

MUNI-NLP (Signoroni and Rychly, 2023):
The participant explored transformer-based
(Vaswani et al., 2017) NMT systems by inves-
tigating different hyperparameters tuning for
English-Assamese, English-Mizo, English-Khasi,
and English-Manipuri language pairs.

CUNI (Kvapilikova and Bojar, 2023): The
CUNI team used back-translation (Sennrich et al.,
2016) for data augmentation, denoising, leverag-
ing multilingual masked language modelling, and
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Data | Length Number of Sentences .
eng-asm | eng-lus | eng-kha | eng-mni
1-10 435 1071 61 327
11-20 1013 804 315 462
Test | 21-30 481 120 381 164
31-40 71 5 194 43
41-50 49 4
1-10 560 148 32 339
11-20 910 437 341 335
Train | 21-30 468 433 385 216
31-40 62 292 194 86
41-50 190 48 24
1-10 6895 10940 488 6351
11-20 21032 16264 5559 7681
Valid | 21-30 18679 14316 7320 4764
31-40 3245 8007 6656 1947
41-50 149 473 3977 944

Table 5: Length-wise sentence group distribution for the test, train, and validation parallel data of English-Assamese,

English-Mizo, English-Khasi, and English-Manipuri

built NMT systems for English-Assamese, English-
Mizo, English-Khasi, and English-Manipuri lan-
guage pairs.

ATULYA-NITS (Agrawal et al., 2023): This
group used Google Colab, and trained the trans-
former model (Vaswani et al., 2017) using a
T4 GPU for the English-Assamese, and English-
Manipuri language pairs.

Organizer: The shared task organizer used
the OpenNMT toolkit (Klein et al., 2017) and
built biLSTM-based NMT systems with hyper-
parameters tuning only on parallel data for the
English-Assamese, English-Mizo, English-Khasi,
and English-Manipuri language pairs.

5 Results and Discussion

We present results* for both directions of the four
language pairs, namely, English-Assamese in
Table 9, English-Mizo in Table 10, English-Khasi
in Table 11, and English-Manipuri in Table 12.
Here, we have reported the evaluation scores of
those teams who submitted system output and their
associated papers. To evaluate quantitative results,
standard evaluation metrics (Papineni et al., 2002),
namely, BLEU (bilingual evaluation under study),
TER (translation error rate) (Snover et al., 2006),
RIBES (rank-based intuitive bilingual evaluation
score) (Isozaki et al., 2010), ChrF (character

*“http://www2.statmt.org/wmt23/indic-mt-task.html

n-gram F-score) (Popovié, 2015) and COMET (Rei
et al., 2020). Moreover, we have hired linguistic
experts who possess linguistic knowledge of the
concerned language pair and randomly selected
20 sample sentences of primary submission type
for manual evaluation (reported in Table 13 to
16). The human evaluator evaluates the candidate
translations based on adequacy, fluency, and
overall rating. Adequacy of translation measures
the amount of meaning of reference translation,
which is contained in a candidate translation.
Furthermore, a translation is considered fluent
if it is a well-formed sentence of the target
language, irrespective of its correspondence with
the reference translation. For example, given the
reference translation to be “He wakes up early
in the morning,” the candidate translation “He is
flying to Delhi” is inadequate, as it contains no
content of the reference translation. However, the
translation is fluent because the sentence has a
proper meaning, and it is a well-formed sentence in
the English language. The overall rating takes into
account adequacy as well as fluency of candidate
translation. An adequate and fluent translation is
considered excellent and assigned a high overall
rating. The human evaluation parameters have
been rated on a scale of 0-5, with larger values
signifying the better. Final adequacy, fluency, and
overall rating scores are the average scores of
individual test sentences.
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Team Name Organization
BITS-P Birla Institute of Technology and Science, Pilani, India
NITS-CNLP National Institute Of Technology, Silchar, India
OneMT [II'T-Hyderabad, India
SML lab IISc, Bangalore, India
NICT-AI4B NICT Japan
ANVITA Centre for Al and Robotics (CAIR), India
MUNI-NLP Masaryk University, Czechia
HV-NITS National Institute Of Technology, Silchar, India
IREL-IIITH IIIT HYDERABAD India

NVIDIA-India
AIMLNLP-IITI
NLP_NITH
TRANSSION MT
CNLP-IISC
CUNI

A3-108

IOL Research
SLP-BV
TACS-LRILT
NITR

II'T-NLP lab

Team SiggyMorph
Lexical wizards
JUNLP
ATULYA-NITS
CFILT-IITB

COGNITIVE LAB-IIITM

LRNMT-IIITH
GUIT-NLP
TRDDC
HW-TSC

NVIDIA, India

Indian Institute of Technology, Indore, India

NIT Hamirpur, India

TRANNSION, China

IISc, Bangalore, India

Charles University, Czechia

LTRC, IIIT Hyderabad, India

Transn, China

Banasthali Vidyapith, India

Indian Assosciation for the Cultivation of Science, India
NIT Rourkela, India

IIT dharwad, India

University of British Columbia, Canada

Kalinga Institute of Industrial Technology, India
Jadavpur University, India

National Institute of Technology, Silchar, India
Indian Institute of Technology, Bombay, India
Indian Institute of Information Technology, Manipur, India
IIIT Hyderabad, India

Gauhati University, India

TCS Research, India

Huawei Translate Center, China

Table 8: Registered participants in the low-resource Indic language translation task at WMT23 and dataset released
to them. Not all the teams participated in all language pairs. Bold marks are those who submitted system outputs

and system description papers
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Discussion:

e For both directions of English-Assamese,
Team: IACS-LRILT attains the best BLEU
score (as shown in Table 9). They utilized the
IndicBART language model in fine-tuning the
training model. Also, Assamese-to-English
translation attains higher scores than English-
to-Assamese translation. It is due to the fact
that Assamese is a highly inflectional, mor-
phologically rich, and agglutinative language.

* For both directions of English-Mizo, Team:
NICT-AI4B attains the best BLEU score (as
shown in Table 10). They utilized IndicTrans2
model in fine-tuning the training model. It is
observed that encountering tonal words for
English-to-Mizo translation is a challenging
task.

* For both directions of English-Khasi, Team:
IOL Research attains the best BLEU score
(as shown in Table 11). They used denois-
ing language models (T5 / BART) and data
augmentation techniques.

* For English-to-Manipuri translation, Team:
CUNI attains the best BLEU score (as shown
in Table 12). They used data augmenta-
tion, denoising, leveraging multilingual, and
masked language modelling techniques. And,
Manipuri-to-English translation, Team: IACS-
LRILT attains the best BLEU score (as shown
in Table 12) by utilizing the IndicBART lan-
guage model in fine-tuning the training model.
Also, it is observed that Manipuri-to-English
translation attains higher scores than English-
to-Manipuri translation. This is due to the fact
that Manipuri is a morphologically rich and
highly agglutinative language.

* In human evaluation, it is noticed that fluency
scores are better than adequacy scores for all
language pairs submission. The reason be-
hind this is that NMT systems are well known
for producing fluent translations (Koehn and
Knowles, 2017).

6 Conclusion

We presented the results of the participating teams
in the four language pairs translation task in terms
of automatic and human evaluation metrics. We

released a dataset, namely, IndicNE-Corpl.0 in
the shared task on low-resource Indic language
translation at the eighth conference on machine
translation (WMT) 2023. The dataset comprises
four low-resource languages, namely, Assamese,
Mizo, Khasi, and Manipuri which belong to the
northeastern region of India. In the future, we will
include more northeastern Indic language datasets
in addition to increasing the existing dataset size.

Comments

A few teams, namely, TRANSSION MT (TRANN-
SION, China), HW-TSC (Huawei Translate Cen-
ter, China), ANVITA (Centre for Al and Robotics
(CAIR), India), COGNITIVE LAB-IIITM (Indian
Institute of Information Technology, Manipur, In-
dia) and NITR (NIT Rourkela, India) submitted
system results but unfortunately did not submit the
associated system description paper. Therefore, we
have not reported their results in this paper.
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Team Name Translation Type BLEU ChrF RIBES TER COMET

English-To-Assamese (Primary) 3482  56.58 0.87 55.10 0.77
English-To-Assamese (Contrastive-1)  34.71 56.59 0.87 54.75 0.78
English-To-Assamese (Contrastive-2) 6.57 39.71 0.45 86.26 0.79
IACS-LRILT Assamese-To-English (Primary) 66.36  75.88 0.93 37.44 0.84
Assamese-To-English (Contrastive-1)  66.33  75.88 0.93 37.38 0.84
Assamese-To-English (Contrastive-2)  23.19  48.42 0.61 71.79 0.75

English-To-Assamese (Primary) 18.15  50.16 0.53 75.53 0.80
English-To-Assamese (Contrastive) 18.15 50.16 0.53 75.53 0.80
CFILT-IITB Assamese-To-English (Primary) 3524 57.73 0.70 60.85 0.80
Assamese-To-English (Contrastive) 3524  57.73 0.70 60.85 0.80
English-To-Assamese (Primary) 17.03 4531 0.58 76.57 0.78

English-To-Assamese (Contrastive-2)  21.07  51.71 0.58 73.03 0.81
English-To-Assamese (Contrastive-1) 18.09 51.98 0.57 73.41 0.82
NICT-AI4B Assamese-To-English (Primary) 27.02  50.71 0.71 62.46 0.76
Assamese-To-English (Contrastive-1)  37.28 59.97 0.72 58.81 0.81
Assamese-To-English (Contrastive-2)  36.97  59.82 0.72 58.53 0.81

English-To-Assamese (Primary) 1435  43.87 0.63 73.37 0.78
English-To-Assamese (Contrastive) 14.10  43.66 0.63 72.77 0.78
IOL Research Assamese-To-English (Primary) 28.73  51.99 0.76 57.06 0.78
Assamese-To-English (Contrastive) 27.83 51.45 0.76 57.44 0.78
English-To-Assamese (Primary) 13.92  41.66 0.60 80.26 0.76

English-To-Assamese (Contrastive-1) 3.98 41.57 0.59 78.91 0.75
English-To-Assamese (Contrastive-2) 3.88 39.68 0.59 80.34 0.75
CUNI Assamese-To-English (Primary) 20.71 4494 0.69 73.56 0.72
Assamese-To-English (Contrastive-1)  17.49  42.21 0.65 80.90 0.70
Assamese-To-English (Contrastive-2) 16.85  41.55 0.65 85.24 0.70

English-To-Assamese (Primary) 8.57 25.24 0.44 86.14 0.59
Organizer Assamese-To-English (Primary) 11.28  28.70 0.53 83.10 0.56
English-To-Assamese (Primary) 7.96 27.31 0.31 91.38 0.59
MUNI-NLP Assamese-To-English (Primary) 11.29  30.13 0.64 73.39 0.64
English-To-Assamese (Primary) 5.47 21.66 0.32 96.76 0.57
ATULYA-NITS | Assamese-To-English (Primary) 8.50 24.36 0.45 89.53 0.53
English-To-Assamese (Primary) 4.89 25.16 0.46 87.21 0.61

English-To-Assamese (Contrastive-1) 4.27 24.59 0.43 90.13 0.59
English-To-Assamese (Contrastive-2) 3.75 22.65 0.42 93.57 0.58
GUIT-NLP Assamese-To-English (Primary) 5.50 25.81 0.56 80.10 0.57
Assamese-To-English (Contrastive-1) 4.70 24.96 0.55 81.53 0.56
Assamese-To-English (Contrastive-2) 4.14 23.73 0.53 83.41 0.55

Table 9: Automatic evaluation scores of participated teams for English-Assamese language pair

Team Name Translation Type BLEU ChrF RIBES TER COMET
English-To-Mizo (Primary) 33.18 56.73 0.73 55.68 0.70
English-To-Mizo (Contrastive-2)  33.64  56.88 0.72 57.71 0.71
English-To-Mizo (Contrastive-1) ~ 26.47  50.60 0.66 65.97 0.69
NICT-AI4B Mizo-To-English (Primary) 3247  51.33 0.69 60.56 0.67
Mizo-To-English (Contrastive-2)  33.30  52.74 0.70 60.87 0.68
Mizo-To-English (Contrastive-1) ~ 28.47  47.93 0.61 67.54 0.69
English-To-Mizo (Primary) 31.20  54.56 0.76 54.54 0.70
English-To-Mizo (Contrastive-1)  31.28  54.58 0.76 54.20 0.70
English-To-Mizo (Contrastive-2)  30.66  54.48 0.76 54.98 0.69
CUNI Mizo-To-English (Primary) 2947  49.98 0.73 60.44 0.66
Mizo-To-English (Contrastive-1) ~ 28.63  48.58 0.72 62.21 0.65
Mizo-To-English (Contrastive-2)  28.53  49.51 0.73 62.55 0.66

English-To-Mizo (Primary) 28.24  54.02 0.78 53.04 0.70
English-To-Mizo (Contrastive-1) ~ 27.74  53.71 0.78 53.40 0.70
IOL Research | Mizo-To-English (Primary) 32.54 51.83 0.78 53.48 0.71
Mizo-To-English (Contrastive-1) ~ 31.37  50.94 0.77 55.37 0.70
English-To-Mizo (Primary) 23.67 45.1 0.71 62.29 0.67
Organizer Mizo-To-English (Primary) 22.59 3953 0.66 68.83 0.57
English-To-Mizo (Primary) 23.29  46.72 0.75 59.93 0.68
English-To-Mizo (Contrastive-1) ~ 23.78  48.06 0.75 58.07 0.69
GUIT-NLP Mizo-To-English (Primary) 18.81  40.33 0.66 73.65 0.57
Mizo-To-English (Contrastive-1) ~ 18.51  41.32 0.67 73.70 0.60
English-To-Mizo (Primary) 20.48  45.60 0.73 61.22 0.68
MUNI-NLP Mizo-To-English (Primary) 23.16  43.02 0.72 62.31 0.63

Table 10: Automatic evaluation scores of participated teams for English-Mizo language pair
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Team Name Translation Type BLEU ChrF RIBES TER COMET
English-To-Khasi (Primary) 21.63  44.47 0.72 62.10 0.68
English-To-Khasi (Contrastive) 2148 4430 0.65 62.55 0.68

IOL Research | Khasi-To-English (Primary) 20.72 4334 0.72 71.78 0.63
Khasi-To-English (Contrastive) 20.60  43.09 0.58 71.35 0.63
English-To-Khasi (Primary) 19.95  43.30 0.68 66.47 0.67
English-To-Khasi (Contrastive-2)  21.05  46.06 0.65 73.80 0.68
English-To-Khasi (Contrastive-1) ~ 20.77  43.82 0.65 69.51 0.68

NICT-AI4B Khasi-To-English (Primary) 17.80  39.22 0.66 74.10 0.60
Khasi-To-English (Contrastive-1) ~ 20.06  40.33 0.58 78.44 0.60
Khasi-To-English (Contrastive-2) ~ 20.02 ~ 39.82 0.59 77.50 0.59
English-To-Khasi (Primary) 16.64  39.92 0.65 70.69 0.67
English-To-Khasi (Contrastive-1) ~ 16.49  40.00 0.65 69.92 0.67
English-To-Khasi (Contrastive-2) 15.79  38.79 0.65 71.29 0.66

CUNI Khasi-To-English (Primary) 13.84  37.05 0.65 79.73 0.58
Khasi-To-English (Contrastive-1) 12.71 36.32 0.66 81.37 0.57
Khasi-To-English (Contrastive-2) ~ 11.55  35.62 0.64 87.54 0.56
English-To-Khasi (Primary) 13.90 37.31 0.61 73.99 0.65

MUNI-NLP Khasi-To-English (Primary) 12.71  34.55 0.65 78.15 0.56
English-To-Khasi (Primary) 10.41  33.31 0.63 71.67 0.64

GUIT-NLP Khasi-To-English (Primary) 8.74 30.54 0.63 79.64 0.52
English-To-Khasi (Primary) 10.08  31.13 0.59 75.57 0.62

Organizer Khasi-To-English (Primary) 8.02 28.04 0.56 86.94 0.49

Table 11: Automatic evaluation scores of participated teams for English-Khasi language pair

Team Name Translation Type BLEU ChrF RIBES TER COMET
English-To-Manipuri (Primary) 2950 59.85 0.73 60.60 0.74
English-To-Manipuri (Contrastive-1) 5.96 60.96 0.75 58.97 0.75
English-To-Manipuri (Contrastive-2) 5.86 60.13 0.73 60.25 0.74

CUNI Manipuri-To-English (Primary) 36.08  62.29 0.76 61.19 0.76
Manipuri-To-English (Contrastive-1)  33.62  60.29 0.75 65.96 0.75
Manipuri-To-English (Contrastive-2)  31.03  59.08 0.74 77.42 0.74
English-To-Manipuri (Primary) 2736  61.60 0.74 58.28 0.76
English-To-Manipuri (Contrastive-2) ~ 27.40  61.55 0.74 58.16 0.76
English-To-Manipuri (Contrastive-1) ~ 24.17  62.95 0.70 62.85 0.76

NICT-AI4B Manipuri-To-English (Primary) 3940 64.70 0.77 51.27 0.79
Manipuri-To-English (Contrastive-1)  46.06  69.96 0.80 47.44 0.83
Manipuri-To-English (Contrastive-2) ~ 43.35  69.27 0.80 47.43 0.82
English-To-Manipuri (Primary) 2636 63.48 0.70 62.04 0.76
English-To-Manipuri (Contrastive-1)  26.36  63.48 0.70 62.04 0.76

CFILT-1IITB Manipuri-To-English (Primary) 4754 7041 0.81 47.17 0.83
Manipuri-To-English (Contrastive-1) ~ 47.54  70.41 0.81 47.17 0.83
English-To-Manipuri (Primary) 25.78 4994 0.84 60.43 0.71
English-To-Manipuri (Contrastive-1)  25.82  49.93 0.84 60.57 0.71
English-To-Manipuri (Contrastive-2) 9.69 40.45 0.54 81.18 0.67

IACS-LRILT Manipuri-To-English (Primary) 69.75  78.16 0.94 32.08 0.84
Manipuri-To-English (Contrastive-1) ~ 69.75  78.16 0.94 32.10 0.84
Manipuri-To-English (Contrastive-2) ~ 22.10  48.03 0.63 72.19 0.70
English-To-Manipuri (Primary) 23.51  60.03 0.74 60.68 0.75
English-To-Manipuri (Contrastive) 23.05 59.85 0.70 61.04 0.75

IOL Research Manipuri-To-English (Primary) 42.68  67.55 0.83 46.27 0.82
Manipuri-To-English (Contrastive) 4248 6751 0.80 46.31 0.82
English-To-Manipuri (Primary) 22775  48.35 0.61 70.02 0.70

NITS-CNLP Manipuri-To-English (Primary) 26.92  48.64 0.65 67.62 0.66
English-To-Manipuri (Primary) 21.58 4597 0.61 69.76 0.69

Organizer Manipuri-To-English (Primary) 2486  46.37 0.64 70.26 0.63
English-To-Manipuri (Primary) 19.65 53.26 0.66 69.70 0.72

MUNI-NLP Manipuri-To-English (Primary) 32.18  58.71 0.76 56.35 0.74
Manipuri-To-English (Contrastive) 32.18  58.71 0.74 67.86 0.74
English-To-Manipuri (Primary) 15.02 3596 0.46 85.96 0.65

ATULYA-NITS | Manipuri-To-English (Primary) 18.70  38.49 0.54 81.02 0.59

Table 12: Automatic evaluation scores of participated teams for English-Manipuri language pair
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Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Assamese (Primary) 3.60 4.35 3.98
NICT-AI4B Assamese-To-English (Primary) 3.75 4.30 4.03
English-To-Assamese (Primary) 2.80 3.85 3.33
CFILT-IITB Assamese-To-English (Primary) 3.50 4.35 3.93
English-To-Assamese (Primary) 2.55 3.20 2.88
IACS-LRILT Assamese-To-English (Primary) 3.20 3.35 3.28
English-To-Assamese (Primary) 3.10 4.20 3.65
IOL Research Assamese-To-English (Primary) 3.70 4.60 4.15
English-To-Assamese (Primary) 3.60 4.05 3.82
CUNI Assamese-To-English (Primary) 2.85 3.80 3.32
English-To-Assamese (Primary) 1.60 3.05 4.65
Organizer Assamese-To-English (Primary) 1.50 2.55 2.02
English-To-Assamese (Primary) 1.35 3.35 2.35
MUNI-NLP Assamese-To-English (Primary) 1.50 2.45 1.97
English-To-Assamese (Primary) 1.50 2.95 222
ATULYA-NITS | Assamese-To-English (Primary) 1.30 2.60 3.90
English-To-Assamese (Primary) 1.35 3.05 2.20
GUIT-NLP Assamese-To-English (Primary) 1.00 2.45 3.45
Table 13: Human evaluation score of English-Assamese
Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Mizo (Primary) 3.60 4.25 3.92
NICT-AI4B Mizo-To-English (Primary) 3.10 4.50 3.80
English-To-Mizo (Primary) 2.85 4.35 3.60
CUNI Mizo-To-English (Primary) 3.30 4.40 3.85
English-To-Mizo (Primary) 3.95 4.45 4.20
IOL Research | Mizo-To-English (Primary) 3.75 4.55 4.15
English-To-Mizo (Primary) 2.05 3.55 2.80
Organizer Mizo-To-English (Primary) 1.60 3.35 247
English-To-Mizo (Primary) 3.05 3.85 3.45
MUNI-NLP Mizo-To-English (Primary) 2.50 4.20 3.35
English-To-Mizo (Primary) 3.25 4.15 3.70
GUIT-NLP Mizo-To-English (Primary) 2.00 3.75 2.87
Table 14: Human evaluation score of English-Mizo
Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Khasi (Primary) 4.45 4.75 4.60
IOL Research | Khasi-To-English (Primary) 4.30 4.70 4.50
English-To-Khasi (Primary) 4.20 4.60 4.40
NICT-AI4B Khasi-To-English (Primary) 3.70 4.40 4.05
English-To-Khasi (Primary) 3.30 4.20 3.75
CUNI Khasi-To-English (Primary) 3.40 4.40 3.90
English-To-Khasi (Primary) 2.70 4.50 3.60
MUNI-NLP Khasi-To-English (Primary) 2.65 4.05 3.35
English-To-Khasi (Primary) 2.80 4.60 3.70
GUIT-NLP Khasi-To-English (Primary) 2.45 3.80 3.12
English-To-Khasi (Primary) 1.95 4.05 3.00
Organizer Khasi-To-English (Primary) 1.80 3.45 2.62

Table 15: Human evaluation score of English-Khasi
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Team Name Translation Type Adequacy Fluency Overall Rating
English-To-Manipuri (Primary) 3.25 3.55 3.45
CUNI Manipuri-To-English (Primary) 3.05 3.15 3.00
English-To-Manipuri (Primary) 2.95 4.10 3.50
NICT-AI4B Manipuri-To-English (Primary) 3.50 3.50 3.45
English-To-Manipuri (Primary) 4.25 4.50 4.35
CFILT-IITB Manipuri-To-English (Primary) 4.80 4.75 4.75
English-To-Manipuri (Primary) 245 2.65 245
IACS-LRILT Manipuri-To-English (Primary) 3.45 3.45 3.45
English-To-Manipuri (Primary) 2.80 4.60 3.70
IOL Research Manipuri-To-English (Primary) 3.95 4.00 3.95
English-To-Manipuri (Primary) 2.45 3.05 2.70
NITS-CNLP Manipuri-To-English (Primary) 2.15 2.50 2.20
English-To-Manipuri (Primary) 2.50 3.50 2.95
Organizer Manipuri-To-English (Primary) 2.05 2.10 2.05
English-To-Manipuri (Primary) 3.00 3.50 3.15
MUNI-NLP Manipuri-To-English (Primary) 3.20 3.30 3.20
English-To-Manipuri (Primary) 1.75 2.15 1.95
ATULYA-NITS | Manipuri-To-English (Primary) 1.80 1.85 1.80

Table 16: Human evaluation score of English-Manipuri
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