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Abstract

Quality Estimation (QE), the evaluation of ma-
chine translation output without the need of ex-
plicit references, has seen big improvements in
the last years with the use of neural metrics. In
this paper we analyze the viability of using QE
metrics for filtering out bad quality sentence
pairs in the training data of neural machine
translation systems (NMT). While most cor-
pus filtering methods are focused on detecting
noisy examples in collections of texts, usually
huge amounts of web crawled data, QE models
are trained to discriminate more fine-grained
quality differences. We show that by selecting
the highest quality sentence pairs in the training
data, we can improve translation quality while
reducing the training size by half. We also pro-
vide a detailed analysis of the filtering results,
which highlights the differences between both
approaches.

1 Introduction

In the times of statistical machine translation, a
well-known motto was “there’s no data like more
data”. Experimental results seemed to confirm this,
with the performance of the systems steadily im-
proving as more data was made available. Web
crawling has proven to be a valuable source of data
for training translation systems, with projects like
Common Crawl' or ParaCrawl (Baii6n et al., 2020)
providing numerous parallel sentences with which
to train MT systems. Inevitably, when crawling
huge amounts of data, noise will be present. Tak-
ing the web as an example, the quality of available
texts varies greatly between websites. There are
sources which reliably produce high-quality text,
e.g. large circulations newspaper websites usually
contain text written and proof-read by professional
journalists. But by its open nature, the web also
contains texts of dubious quality (both in style and
in content) which may pollute the collected texts.

* Equal contribution.
! https://commoncrawl.org/

When considering bilingual data collection, an
additional difficulty comes into play, namely the
alignment of segments between two or more lan-
guages. Sentence alignment algorithms (Gale and
Church, 1993; Moore, 2002; Sennrich and Volk,
2011; Thompson and Koehn, 2019) are bound to
make mistakes, resulting in pairing of sentences
that are not necessarily translations of each other.
Even if the correspondence between sentences may
be correct, the quality of sentences may differ
greatly between languages. While one source may
provide high quality text in its original language,
the available translations may be of sub-par quality
due to a variety of reasons (Freitag et al., 2022b).
In addition, given the increased availability (and
quality) of machine translation engines, MT out-
put is expected to be part of the crawled data, thus
contaminating the training material.

Statistical systems were robust against such type
of noise (Goutte et al., 2012). The maximum likeli-
hood estimators of phrase probabilities (and related
models) were based on relative frequencies, with
the consequence that noisy translation units, while
being available to the system at translation time,
had a low chance of being used. In fact, works
on filtering data dealing with statistical systems,
e.g. Johnson et al. (2007) were more concerned
with the efficiency of the systems, rather than with
quality.

With the advent of neural machine translation,
the situation has changed, and the quality of the
data has a major impact in the resulting quality
of the translation system. Neural networks have a
great ability of memorizing (parts of) the training
data (Arpit et al., 2017; Feldman and Zhang, 2020).
Whereas for phrase-based models the noise was di-
luted in the abundance of better-quality data, in neu-
ral models such outliers may have a critical effect
on the output of the system. Therefore data filtering
has become increasingly important, even spawning
dedicated shared tasks (Koehn et al., 2018, 2019,
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2020). Research in this area has allowed NMT sys-
tems to take advantage of big amounts of training
data. As an example, initial versions of ParaCrawl
degraded translation quality when adding them un-
filtered to the training data of MT systems (Junczys-
Dowmunt, 2018b; Schamper et al., 2018), whereas
nowadays it is one of the main data sources used in
WMT for the languages where it is available.

Thanks to these filtering techniques, huge
amounts of parallel sentences are available for sev-
eral languages, in some cases reaching up to hun-
dreds of millions of sentences. But as noted above,
not all texts are of the same quality. It is only
natural to ask the question, once the training data
reaches a size which is “big enough”, if all the
available text is useful for training NMT systems,
or if the lower quality sentences are hindering the
system. Note that most data filtering systems are
focused in detecting noise or problems in the trans-
lation (e.g. under- or overtranslation). In very
wide strokes, most systems answer the question “Is
sentence A a translation of sentence B?”, without
looking (too much) into the quality.

Judging the quality of translations is the focus
of the Quality Estimation (QE) field of machine
translation. It can be considered an extension of
machine translation evaluation, where references
are not available. In the last years, the use of neural
models has improved the results in this area dra-
matically. Would it then be possible to use quality
estimation methods for filtering data and improve
the quality of a neural machine translation system,
which has been trained on already cleaned data? In
other words, can we do a more fine-grained data
selection beyond discarding “obvious” errors, fo-
cusing on selecting the best data that can be found
in the training corpus? We explore these questions
in this paper.

Our scientific contributions are:

¢ We show that neural QE metrics are effective
methods for data filtering.

* We analyze the differences between the sen-
tences filtered by the methods and find out that
QE methods are more sensitive toward quality
differences, being able to detect bad quality
translations or fine grained translation errors
(e.g. wrong named entities in a perfectly valid
translation).

* We show that on the other hand QE filtering
cannot account for some actual noise prob-

lems. Thus a “traditional” method for filter-
ing the raw data coming from crawls is still
needed as a first step.

2 Related Work

Already in the early days of the popularization of
statistical methods for machine translation, the po-
tential of mining data from the web was recognized
by Resnik (1999). In contrast to other data sources
at the time (e.g. Canadian Hansards, European
Parliament Proceedings) which consisted largely
of clean data, the necessity of including additional
“quality assurance” steps were recognized in this
work. As pointed out above, statistical systems
were robust against noisy input data (Goutte et al.,
2012), and as such, the topic of “corpus filtering”
was mainly focused on selecting subsets of data
closer to a given domain (Axelrod et al., 2011).
Nevertheless Taghipour et al. (2011) shows that
statistical systems may also benefit from careful
curation of the training data.

The situation changed dramatically with the ad-
vent of neural machine translation, as such sys-
tems are much more sensitive to noisy input data
(Khayrallah and Koehn, 2018). A clear reflection
of this fact was the creation of a new dedicated
shared task in the WMT yearly conference (Koehn
etal., 2018, 2019, 2020) in the years 2018 to 2020.2

Junczys-Dowmunt (2018a) was the best perform-
ing system in the first edition of the filtering shared
task, using a cross-entropy approach between two
translation systems trained on clean data. In the
next edition, the focus was moved towards low
resource conditions. That year Chaudhary et al.
(2019) presented the best performing system, using
a system based on LASER embeddings (Schwenk
and Douze, 2017).

The 2020 edition continued the focus on low-
resource languages. At that evaluation, three were
the best performing systems: Lu et al. (2020) and
Lo and Joanis (2020) both use pre-trained multilin-
gual models as a key component of their filtering
systems. Espla-Gomis et al. (2020) used an im-
proved version of BICLEANER, their submission
for the 2018 campaign (Sanchez-Cartagena et al.,
2018). The authors further improved their system
(Ramirez-Sénchez et al., 2020), including an ex-
tension using neural models (Zaragoza-Bernabeu
et al., 2022). This latest version is considered state-

%In this year’s WMT there is a new related shared task:
“Parallel Data Curation”.
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of-the art and it is that which we take as baseline
for comparing our method.

Of course, this is just but a very rough overview
of the best performing systems in each evaluation
campaign. We refer to the reports of each cam-
paign for a more detailed overview of the methods
explored each year. Bane et al. (2022) provide one
more recent overview of data filtering methods. In
this work, the authors sample 5SM sentences from
original training data and added 1M noise samples
manually. They show that a two-stage approach
can be beneficial for improving the quality of a
translation system.

All of these methods have a common focus on
detecting the type of noise that may originate from
crawled data. This type of noise has been ana-
lyzed in Khayrallah and Koehn (2018), and Herold
et al. (2022) build on their work and carry out a
comparison of the efficiency of different filtering
methods on various types of noise. Kreutzer et al.
(2022) also provide an extensive analysis on the
noise present in several widely used corpora.

Most similar to our work Carpuat et al. (2017)
start with already clean data and analyze the effect
of semantic divergence on translation quality. They
are able to effectively select a subset of the training
data and improve translation quality measured in
BLEU. Bernier-Colborne and Lo (2019) use YiSi-2,
also a quality estimation metric as a component in
their corpus filtering system for the WMT 2019
shared task. Lo and Simard (2019) extend this
idea by including BERT (word) alignments in the
YiSi pipeline. We follow a conceptionally similar
approach to these papers, using state-of-the-art QE
metrics and provide a more in-depth comparison
to other corpus filtering methods more oriented
towards noise detection.

Quality estimation is again its own area of re-
search, with dedicated shared tasks, e.g. (Zerva
et al., 2022), that measure how well metrics can
predict word- and sentence-level quality scores. In
contrast to traditional MT evaluation, QE aims to
assess the quality of the output texts without the use
of a reference translations. The most successful QE
metrics learn to jointly predict word- and sentence-
level scores, like COMETKIWI (Kepler et al., 2019;
Rei et al., 2022). Another possibility is to modify
the input to a learned reference-based metrics like
BLEURT (Sellam et al., 2020) or COMET (Rei et al.,
2020) to use the source segment instead of a ref-
erence translation to predict sentence-level quality

scores (Rei et al., 2021). We follow the latter ap-
proach and train a QE version of BLEURT that pre-
dicts sentence-level quality scores (see Section 3)
that are used for data filtering.

3 From BLEURT to BLEURTQE

The QE metric that we propose for data filtering
is a learned MT evaluation metric that is based on
a BLEURT-style architecture (Sellam et al., 2020).
BLEURT is a reference-based regression metric that
is trained to predict a quality score for a hypothesis
translation given a reference. The hypothesis and
reference are concatenated together with a special
token in between, then fed as input to the metric,
which predicts a floating point quality score.

Our QE metric is a modification of the original
model. To make it a QE metric, we pass the source
segment as input to the metric instead of the refer-
ence. Then, we follow the winning submission to
the WMT’22 Metrics Shared Task (Freitag et al.,
2022a), MetricX, and use a modified version of the
mT5 encoder-decoder language model (Xue et al.,
2021) as our network architecture. Not that these
is a multilingual model, so the same system can
be used for a variety of languages. The source and
hypothesis are passed as input to the encoder, and
an arbitrary logit from the first step of the decoder
is trained to predict the hypothesis quality score.

The QE metric is trained on the direct assess-
ment quality judgments that were collected as part
of the WMT Metrics Shared Task from 2015-2020
(Bojar et al., 2015, 2016, 2017; Specia et al., 2018,
2020; Fonseca et al., 2019) for all available lan-
guage pairs. To (meta-)evaluate the metric we mea-
sure its correlation with ground-truth translation
quality ratings using the benchmark MQM dataset
from WMT’22 (Zerva et al., 2022) that includes 3
language pairs: en-de, zh-en, and en-ru. Since our
metric is used to score individual segments and not
systems, we report the segment-level correlation
between our metrics’ scores and the gold MQM
scores using Pearson’s 7 and Kendall’s 7, shown in
Table 1. The correlations are competitive to the top
QE submissions to the WMT’22 Metrics Shared
Task.

A (more refined) version of this metric has been
submitted to this year’s QE shared task (Juraska
et al., 2023), and has been open sourced. We refer
the reader to the system description for a more
fine-grained discussion of the details of the metric.
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en-de en-ru zh-en
Metric T T r T r T
UniTE-src 040 029 039 034 040 043
CoMETKIWI 043 0.29 039 036 0.51 0.36
BLEURTQE 0.38 0.29 041 0.39 0.38 0.35

Table 1: Segment-level Pearson’s r and Kendall’s 7
on the WMT’22 MQM ratings for our QE metric,
BLEURTQE and the top-performing metrics in the
WMT’22 Metrics Shared Task, COMETKIWI (Rei et al.,
2022), UniTE-src (Wan et al., 2022).

4 Experiments

We report experiments on three language pairs: En-
glish <+ German, Japanese <+ English and Chinese
<> English. Our starting point is the full training
data as provided by the WMT evaluation campaign.
Corpus sizes can be found in Table 3. As can be
seen in that table, we are working on a medium-
to-large data condition, with the smallest language
pair already having over 30M sentence pairs.

One thing to note is that these datasets have al-
ready undergone a cleaning process by the WMT
organizers. l.e. a system trained on the entirety of
this data is already able to obtain very good perfor-
mance. In fact, many of the systems participating
in the WMT evaluations take the available data
as-is.

For each language pair we will consider different
ways to reduce the size to 50% of their original size.
This value was chosen in preliminary experiments
on the English to German data, and it is comparable
to previous work (Bane et al., 2022). Fixing the
target size beforehand also allows a fair comparison
between all the methods.

4.1 Filtering Approaches

We will consider three different filtering ap-
proaches for our experiments.

4.1.1 Random Selection

The most straightforward method to reduce the size
of the training data is to just randomly select the
desired amount of sentence pairs. We do not expect
this method to perform well, but it constitutes the
most direct baseline for data size reduction.

4.1.2 BICLEANER

As arepresentative for the “noise-detection” corpus
filtering methods we chose to use BICLEANER Al>

3h'ctps ://github.com/bitextor/bicleaner-ai

This tool is an extension of the previous BI-
CLEANER tool. The underlying method is based
on a classifier that predicts if a sentence is a trans-
lation of another. BICLEANER Al substitutes the
original classifier, based on handcrafted rules and
extremely randomized trees, with a neural classi-
fier based on XLM-RoBERTa. Zaragoza-Bernabeu
et al. (2022) provide a detailed description of the
tool and present an extensive experimental com-
parison showing state of the art results for filtering
ParaCrawl.

It is also worth noting that BICLEANER is part
of the pre-processing pipeline for generating the
ParaCrawl dataset.

4.1.3 Quality Estimation for Filtering

For testing the performance of QE metrics
for filtering we use two state-of-the-art met-
rics, COMETKIWI* (Kepler et al., 2019) and
BLEURTQE? as described in Section 3. For each
sentence pair in the training data, we compute the
QE score for the translation from English into the
foreign language. We use these scores for filtering
for both translation directions, i.e. the resulting par-
allel data is the same for English — Foreign than
from Foreign — English. We are aware that this
may introduce a certain bias, as the performance of
the QE metrics is not symmetrical. However scor-
ing the full training data is a costly operation as we
have to run big neural models on tens or hundreds
of millions of sentence pairs. We still expect to see
improvements even when using the wrong direction
for data filtering. The only exception may be the
backtranslated portion of the Chinese <> English
dataset: As the starting data is Chinese, the filter-
ing method may miss low quality backtranslations
produced by an automatic system.

4.2 Experimental Setup

For all the filtering methods (except random selec-
tion), we compute the score of each sentence pair,
and then select a threshold as to keep 50% of the
original data. We then train an NMT system from
scratch using the resulting training data sets.

Our translation system is a transformer-based
encoder-decoder model based on PaxML®, very
similar to most of the systems participating in the
WMT evaluation campaign. It consists of 6 encoder

4https: //unbabel.github.io/OpenKiwi

5The tool will be open-sourced with the publication of the
shared task system description.

6https ://github.com/google/paxml
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and 6 decoder layers, a model dimension of 1024,
hidden dimension of 8192 and 16 attention heads.
GELUs with gated activation are used as activation
functions. We use a 32k shared vocabulary for
each language pair, and limit the maximal sentence
length to 128 tokens. The model has a total of
551M parameters.

We removed all sentences which have more than
128 tokens, but did not perform any other filtering
or preprocessing of the data. All models are trained
until they converged and we selected the check-
point with the best BLEURT score on the WMT
2022 test sets.

In the discussion of the results we focus on
the evaluation using COMET22. Traditional met-
rics like BLEU and CHRF are consistently out-
performed by neural metrics in the WMT metrics
shared task (Freitag et al., 2022a), thus we favor
the use of such new metrics. We chose COMET22
over BLEURT in order to avoid overfitting on this
last metric, as our proposed BLEURTQE model is
based on it, and it also guides the checkpoint se-
lection. Nevertheless, BLEURT, BLEU and CHRF
scores are given in Appendix B.2 and confirm the
trends reported here.

4.3 Test Data

In order to test on a variety of domains we use
test sets from the WMT and IWSLT evaluation
campaigns. We use the WMT 2019 (where avail-
able) consisting of news data, and the WMT 2022
and WMT2023 test sets, which are composed of
a mix of different domains each. Additionally we
experiment on the IWSLT 21 test set, sourced from
TED talks (Anastasopoulos et al., 2021), and the
IWSLT’23 dev set’, which is based on ACL talks
presentations (Agarwal et al., 2023).

Following the training data settings, we also fil-
tered the test sentences longer than 128 tokens. As
the WMT 2023 test set includes paragraph level
evaluation, its size is reduced for en — de from 557
segments to 404 and for de — en from 549 to 468.
All other test sets are barely affected (see Table 6
in Appendix A).

4.4 Experimental Results

Translation results for the English <+ German lan-
guage pair are shown in Table 2a. For en — de we
can see that randomly selecting data hurts perfor-
mance by 1 point on the WMT23 test set. Using

"We use the dev set for IWSLT 23, since the test set is
currently not publicly available.

each of the other filtering methods we are able
to improve performance over using the full train-
ing dataset. For BICLEANER the improvement is
rather modest, around 0.4 points for most test cor-
pora. Note however that BICLEANER was already
applied to the ParaCrawl dataset, which consti-
tutes a big portion of the available training data
for this language pair. As such it is understand-
able, or even expected, that translation quality is
not improved by applying it again. The QE metrics
perform similarly to each other, with a slight ad-
vantage of BLEURTQE over COMETKIWI. Using
BLEURTQE we are able to achieve an improvement
of up to 1.7 points on the WMT?23 test set.

The results for de — en majorly confirm the
previous observations. The best results are again
achieved in this case on the WMT’ 23 data, with
an improvement of 1.3 points achieved by both
QE methods. For the WMT’ 22, IWSLT’21 and
IWSLT’23 test sets, the translation performance
basically stays constant for all filtering methods.

Results on English <+ Japanese, shown in Ta-
ble 2b also show similar trends. In this case the
biggest improvement comprises 2.3 points on the
WMT 23 test set®, obtained by BLEURTQE. How-
ever for the ja — en translation direction we find an
outlier, where no filtering achieves improvements
over the baseline on the IWSLT’ 23 data.

Lastly, Table 2c shows the results for the Chinese
<> English language pair. Again we can confirm
the same trends as for the other two language pairs.
The QE metrics are able to improve up to 2.8 points
for the WMT’23 test set. The IWSLT’23 dataset
again fails to achieve improvements, and in this
case BICLEANER deteriorates translation quality,
while the QE metrics are able to keep the perfor-
mance.

Overall, we see that the QE metrics are effective
in improving translation quality while retaining just
half of the training data. The improvements can
rage up to more than 2 COMET22 points, depend-
ing on language pair and test set. For IWSLT’23,
having a more specialized technical domain, the
QE metrics are not able to improve quality, for sev-
eral language directions. But except for the case of
English — Japanese, they also do not hurt perfor-
mance. Additional results differentiating between
the single domains of the WMT’ 22 and WMT’23
corpora can be found in Appendix B.1. In Ap-

8A slightly bigger improvement of 2.4 is obtained for

WMT’22, but we skip this as we used this corpus to choose
the best checkpoint during training.
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(a) COMET22 scores for en <+ de experiments.

Filter WMT’22 (dev) WMT’19 WMT’23 IWSLT’21 IWSLT’23
Random 84.0 85.5 80.8 82.8 84.2
None 82 8.0 818 832 845
en — de BICLEANER 86.7* 86.4* 82.2 83.3 84.9
COMETKIWI 86.9** 86.7** 82.9* 83.6* 84.8
BLEURTQE 87.2%* 86.7** 83.5** 83.9** 85.1*
Random 84.2 84.3 83.5 84.1 87.2
None 845 846 83 842 874
de —en BICLEANER 84.2%* 84.8 84.0* 84.1 87.3
COMETKIWI 84.6* 85.1* 84.6™ 84.4* 87.3
BLEURTQE 84.8** 85.2* 84.6** 84.4* 87.3

(b) COMET22 scores for en <> ja experiments.

Filter WMT’22 (dev) WMT’23 IWSLT’23
Random 85 807 85.8
L None 85.6 82.3 86.9
en—rJja BICLEANER 86.0* 83.2* 87.2
COMETKIWI 86.6** 83.7** 87.9*
BLEURTQE 87.0* 84.0 87.4
Random 759 750 84.6
4 en None 77.6 75.9 85.5*
J BICLEANER 78.1%* 77.4* 85.0
COMETKIWI 78.7** 78.0** 85.0
BLEURTQE 79.0 > 78.2** 85.1
(c) COMET22 scores for en <> zh experiments.
Filter WMT’22 (dev) WMT’19 WMT’23 IWSLT’23
Random 802 772 n3 82.1
b None 81.2 71.6 79.7 84.2*
2 BICLEANER 81.7* 78.4* 80.3* 83.3
COMETKIWI 83.0** 80.1** 82.5*** 84.1*
BLEURTQE 83.4** 79.9** 82.2** 84.1*
Random 72.2 78.1 74.2 84.1
h s en None 728 783 747 84.9*
z ¢ BICLEANER 74.8* 79.6* 75.7* 84.2
COMETKIWI 75.2** 80.0** 76.0** 84.5
BLEURTQE 75.4* 79.9** 76.0** 84.8*

Table 2: COMET22 scores all experiments. For each language direction, systems marked with stars are statistically
significantly better than systems with fewer stars (pairwise permutation test (Koehn, 2004) with p=0.05). "Random"
was excluded from the significance computation.
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Language pair Full Filtered Common
de < en 292.8M 146M 105M
en <> zh 552M  27.6M 17.5M
en < ja 339M 16.9M 10.4M

Table 3: Amount of sentences before filtering, after fil-
tering, i.e. 50% of the original corpus size, and number
of sentences kept by both BLEURTQE and BICLEANER.
All language directions include ParaCrawl data. En-
glish ++ Chinese includes around 19.7M backtranslated
Chinese sentences, as provided by the WMT organizers.

pendix B.2 we also report the results of the same ex-
periments using BLEU, CHRF and BLEURT. These
metrics confirm the observations presented in this
section.

Koehn et al. (2020) mentions that on average
metrics that select shorter sentences performed bet-
ter on Parallel Corpus Filtering. Contrary to that
we observed that dropping 50% of the data with the
proposed method led to on average slightly longer
sentences e.g. from 14.4 to 15.5 words per sentence
for BLEURTQE on English <> German.

5 Analysis

In this section we provide an in-depth analysis of
the differences between the BLEURTQE-based and
the BICLEANER filtering methods. Table 3 shows
the amount of sentence pairs that are kept by both
methods, which is roughly two thirds of the fil-
tered sentences for all language pairs. Thus, it is
clear that both methods do indeed perform quite
different filtering. We will first report on manual in-
spection of the most striking divergences between
both methods. In Section 5.2 we will then provide
a more quantitative analysis of the behaviour of the
methods using synthetic data.

5.1 Human Inspection

We will now analyze the difference in the filtering
methods by looking into the sentences that are se-
lected by each method. To this end, we select the
sentences where one method filters it but the other
does not. In addition we use automatic clustering
methods in the spirit of (Aharoni and Goldberg,
2020) in order to get insights about topic distribu-
tion. We limit our analysis to the German—English
language pair’, but as the methods are largely lan-
guage independent, we feel confident that our find-

None of the authors are speakers of Japanese or Chinese.

ings will generalize to the other language pairs.
Also, due to the fuzzy and partially subjective na-
ture of this investigation, we are unable to provide
exact statistics about each kind of effect.!'”

We have encountered the following major differ-
ences in the working of the methods. For each of
these categories it is easy to find an abundance of
examples (easily in the thousands) in the filtered
data.

Single Entity Mistranslations When looking
into the parallel data available for training, one can
find a big amount of “templated texts”, i.e. sen-
tences that have a common structure, but that differ
in one or few components, frequently named en-
tities or numbers. Some examples can be found
in Table 4a. The first entry in this table is a typi-
cal example. In the travel domain, there is a big
amount of sentences of the form “Flights from ciryA
to cityB”, “Hotels in city” or similar formulations.
One frequent source of sentence alignment errors
originates from sentences that follow the same tem-
plate, but have different instantiations. Although
the travel domain is one of the biggest representa-
tive of these type of sentences, it is by no mean the
only one, as the other examples in Table 4a show,
including the financial and the technical domain.

In these type of sentences, the QE metric seems
to be more sensitive to alignment errors. All the
sentences shown in Table 4a (and many others)
are selected by BICLEANER, while BLEURTQE
discards them.

Low Quality Translations In this category we
include training examples where one or both sides
are of low quality. Examples can be found in Ta-
ble 4b. We can see that the language quality of the
examples is borderline at best. Strictly speaking,
the translations are “correct” in the sense that they
preserve the structure of the sentence. As such BI-
CLEANER gives them a relative high score and are
kept in the training corpus. BLEURTQE, on the
other hand, is explicitly trained to flag such erro-
neous sentences (as they might very well originate
from MT engines), and thus these examples are
filtered out.

Bad Related Sentence Alignments As pointed
out above, sentence alignment is also an automatic
process. While both methods perform quite well
when detecting clearly bad aligned sentences (see
Section 5.2), we found that there are cases where

101f we were able to develop such statistics in an automatic

way, we would be able to improve the filtering methods by
including the same approaches!
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(a) Single Entity Mistranslations. Templated texts where the specific instantiation is different in both languages. BLEURTQE
filters out these examples, while BICLEANER keeps them.

English

German

Comments

Flights from Tallinn to Stockholm

Fliige ab Tallinn nach Friedrichshafen

“Stockholm™ changed to
“Friedrichshafen”.

Total EU spending in Germany — €
11.013 billion

Gesamtzuschiisse der EU in den
Niederlanden: 2,359 Milliarden EUR

Land and amount changed.

Documents that we receive from a
manufacturer of a Redball Electrical
565 can be divided into several groups.

Dokumente, die wir vom Produzenten
des Gerits Trevi AVX 565 erhalten,
konnen wir in mehrere Gruppen teilen.

Product code changed.

(b) Examples of low quality sentences in at least one of the languages. BLEURTQE filters out these examples, while BICLEANER

keeps them.

English

German

Comments

We are both, we have own factory
which can ensure sculpture quality and
best price and have a profession team to
provide you best service.

Wir sind beide, wir haben eigene Fabrik,
die Skulpturqualitit und besten Preis
sichern kann und ein Berufsteam haben,
um IThnen besten Service zur Verfiigung
zu stellen.

Unnatural language on both sides.

‘We honor do not track signals and do
not track, plant cookies, or use
advertising when a Do Not Track
(DNT) browser mechanism is in place.

Wir achten darauf, dass Sie keine
Signale verfolgen und keine Cookies
verfolgen oder Cookies verwenden,
wenn Sie einen
DNT-Browser-Mechanismus (Do not
Track) verwenden.

Unnatural language on both sides.

It really is fast, easy, free and
additionally to attempt.

Es ist schnell, Schnell, gratis und am
besten von allen zu try.

Incorrect sentences in both languages.

(c) Examples of wrong sentence alignment, although the sentences are related to each other. BLEURTQE filters out these

examples, while BICLEANER keeps them.

English

German

Translated German

Could you help me? Help to improve
my English and French language

Ja, ich mochte gern mein Deutsch mit
Dir verbessern.

Yes, I want to improve my German with
you.

We, therefore, guarantee that you will
get daily updates on office spaces to
rent in Hong Kong.

Wir konnen Thnen deshalb versichern,
dass Sie bei uns tédglich einen aktuellen
Uberblick iiber den osterreichischen
Markt erhalten.

We can guarantee that you will get an
up-to-date daily overview about the
Austrian market.

This implies that the law is either
repealed or not enforced.

Dariiber hinaus wird sichergestellt, dass
bestehende Gesetze nicht dupliziert
oder konterkariert werden.

In addition, it is ensured that existing
laws are not duplicated or counteracted.

(d) Examples of sentence pairs originating from the Bible. BLEURTQE filters them out, probably due to archaic language, while

BICLEANER keeps them.

English

German

19 Behold, my belly is as wine which hath no vent; it is

ready to burst like new bottles.

19 Siehe, mein Bauch ist wie der Most, der zugestopfet

ist, der die neuen Fisser zerreilet.

7:16 Those who went in, went in male and female of all
flesh, as God commanded him; and Yahweh shut him in.

hatte.

7:16 und das waren Minnlein und Fraulein von allerlei
Fleisch und gingen hinein, wie denn Gott ihm geboten

Table 4: Example sentences where the filtering methods diverge.
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the source and target sides are related and the BI-
CLEANER system seems to get confused by this
proximity. Some examples are given in Table 4c.
It can be seen that in all three examples the Ger-
man side is clearly related to the English text, with
probably a overlap big enough to get an accept-
able score from the translation system underlying
BICLEANER. Again, as BLEURTQE is trained to
distinguish fine-grained differences between trans-
lations, it is more robust against this kind of prob-
lems.

Religious Texts One shortcoming we found for
the BLEURTQE method is that many sentences
originating from the Bible corpus (or similar re-
ligious texts) are filtered out, while BICLEANER
keeps them. Some examples are given in Table 4d.
This is probably due to the language being archaic,
very different to the type of sentences BLEURTQE
has been trained on. Such style would be heav-
ily penalized in an evaluation, as a more modern
language would be preferred.

5.2 Noise

In the previous section we saw several examples
where BLEURTQE outperforms BICLEANER for
data selection. However we should not forget that
BICLEANER was developed with a (related but)
different goal, namely the cleaning of raw data.
In fact, our starting datasets, as made available
for the WMT evaluation have already undergone a
cleaning process, and are already at a pretty high
quality level.

If we were dealing with crawled data directly,
we would need to address different phenomena. In
this section we study how the filtering methods
perform when dealing with the typical noise found
on crawled data. We follow Herold et al. (2022) for
the categorization of different noise types, which
in turn is based on Khayrallah and Koehn (2018).
We create synthetic data for the English — German
translation direction containing the following noise
categories:

Misaligned Sentences created by shuffling the tar-
get side of the corpus.

Misordered Words created by reordering the
words in either the source or the target sen-
tences.

Wrong Language created by taking parallel sen-
tences corresponding to another language pair.

Untranslated created by copying one sentence
into the other direction i.e. each sentence pair
in the corpus has a copy of the source sen-
tence as a “target” sentence (or the reverse
direction).

Over/Undertranslation created by truncating ei-
ther the source or the target side.

We refer the reader to Herold et al. (2022) for
a more detailed description and justification of
these categories. We omitted the “Short Segments”,
“Raw Crawled Data” and “Synthetic Translations”
categories, as it was not clear how to define the
correct filtering strategy in those cases.

For each of the studied categories, we generated
200K synthetic noise examples by randomly select-
ing a subset of the training data. For these experi-
ments we re-tuned the threshold for each method
by computing the scores for the original sentences
and the noise examples, and computing the me-
dian. In this way, we filter exactly half of the data
and a perfect system would be able to completely
separate the original examples from the noisy ones.

Results can be found in Table 5. It can be seen
that for most categories BICLEANER clearly out-
performs BLEURTQE. This is specially the case
for the “Wrong Language” and “Untranslated” cat-
egories, where BICLEANER can detect all the noisy
examples. In fact, one of the practical advantages
of BLEURTQE is at the same time one of its weak-
nesses. As its backbone model is a multilingual
model, it is able to handle a wide number of lan-
guages, but it does not have a way to differentiate
between them.

For “Misordered Words” we find an interesting
asymmetry. BLEURTQE is much stronger in detect-
ing problems when the target side is reordered, un-
doubtedly due to this being the “natural” direction
for which it was trained. BICLEANER also shows
this behavior, with its target side performance be-
ing superior to that of BLEURTQE, but inferior in
the opposite direction. BICLEANER is also clearly
better at detecting Over- and Undertranslations.

5.3 Combination of Filtering Methods

Since BLEURTQE and BICLEANER based filter-
ing both improve translation quality, and they fil-
ter different sentences, it is only natural to try to
combine both. As can be seen in Table 3, the
amount of available data dropped to roughly one
third when combining both methods. The result
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Noise type BLEURTQE BICLEANER
Misaligned Sentences 8.1 5.6
Misordered Words (src) 24.3 39.1
Misordered Words (tgt) 10.3 6.3
Wrong Language 43.8 0.0
Untranslated (src) 47.6 0.0
Untranslated (tgt) 63.8 0.0
Overtranslation 35.2 13.9
Undertranslation 134 7.5

Table 5: Percentage of sentences being kept as valid for
each of the synthetic noise categories. 0% means that
all noisy sentences have been filtered out, i.e. perfect
performance.

only slightly degraded in the English to German
direction compared to just using BLEURTQE (0.3
BLEURT points on WMT’22), but degraded more
in the German to English direction (0.6 BLEURT
points on WMT’22). Combining the two methods
is thus too aggressive with our setup, and hurts
translation performance. Adapting the thresholds
for the combination, may result in better perfor-
mance. Note however that ParaCrawl already used
BICLEANER in its pipeline (Espla et al., 2019), thus
we have already implicitly been using a combina-
tion of both methods.

6 Conclusions

In this paper we have shown that filtering data us-
ing QE metrics is an effective way of improving
translation quality. In contrast to “traditional” data
filtering methods that focus on detecting noise in
the data, QE methods focus on selecting the best
translation examples. Analyzing the differences
between the two different methods, we see that
QE metrics are not as effective at detecting certain
types of noise, e.g. untranslated sentences, but are
much better at identifying more fine grained prob-
lems in the data, like small translation errors or
grammatical mistakes. Therefore, when starting
with already cleaned data, we can obtain a boost in
performance by focusing the NMT system training
on the best sentences.

Our results show that the improvements obtained
generalize across different domains, as measured
by a variety of metrics. Even for more distant do-
mains, like the ACL Talks of of the IWSLT’23
corpus, the performance of the systems remains
largely constant. QE estimation is a very active
field of research. Using this approach, the improve-
ments obtained in this area can have a direct impact
on improving the quality of NMT systems.

Limitations

Better results could have been obtained by tuning
the threshold for each method individually, but this
would also increase the computational cost mas-
sively.

A more in-depth comparison could be carried
out starting from the raw web-crawled data. How-
ever in this study we chose to start from conditions
similar to what most participants in the WMT eval-
uation use.

Ethics Statement

BLEURTQE and COMETKIWTI scoring all the train-
ing data is computationally expensive, and may be
a limiting factor of the method for small institu-
tions.
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Appendices
A Test Data Statistics

Table 6 shows statistics of the test data sets after
filtering the sentences with a length of over 128
tokens.

B Additional Results

B.1 WMT Data: Domain-specific Evaluation

The WMT’22 and WMT’23 test sets are comprised
of text originating from different domains. The
scores reported in the main text correspond to the
evaluation of the corpora as a whole. In Tables 7
to 12 we show the results for each individual do-
main. It can be seen that the improvements are
achieved over all separate domains. There are

test set lines filtered

en — de 2037 2036

de —en 1984 1981

, en —ja 2037 2037
WMT22 ja—en 2008 2007
en — zh 2037 2037

zh —en 1875 1849

en —de 557 404

de —en 549 468

, en —ja 2074 2073
WMT23 ja—en 1992 1988
en —zh 2074 2073

zh —en 1976 1948

Table 6: WMT test set sizes. All test sets are filtered
to use less than 128 tokens. This mainly reduced the
en <> de WMT’23 test set since this was a paragraph
level task. The effect on all other test sets is minimal.

only two cases where training on all data per-
forms slightly better than filtering with BLEURTQE
(ecommerce de — en in Table 8, and manuals
zh — en in Table 10).

B.2 Other Metrics

In this appendix we report the COMET22, BLEURT,
BLEU and CHRF scores for the experiments re-
ported in Section 4. Table 13 shows the results for
German — English, Table 14 for English — Ger-
man, Table 15 for English — Japanese, Table 16
for Japanese — English, Table 17 for English —
Chinese and Table 18 for Chinese — English. The
additional metrics support the conclusions of the

paper.
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WMT’22 WMT’23
conversation ecommerce news social mastodon news speech user review
None 87.9 874 86.4 83.1 825 80.8 80.9 82.0
BICLEANER 88.7 88.1 86.8 83.1 825 823 81.4 82.1
COMETKIWI 88.8 88.3  86.8 83.9 83.3 829 81.6 83.8
BLEURTQE 88.9 88.5 87.2 84.2 84.2 83.1 81.8 84.0
Table 7: COMET22 scores for each domain of en — de WMT test sets.
WMT’22
conversation ecommerce news  social
None 84.7 854 844 83.5
BICLEANER 84.8 85.0 84.5 82.8
COMETKIWI 85.0 85.2 84.8 83.6
BLEURTQE 85.1 853 849 83.9
Table 8: COMET22 scores for each domain of de — en WMT test sets.
WMT’22
conversation ecommerce news social
None 84.2 84.0 81.5 75.3
BICLEANER 85.2 83.9 81.8 76.1
COMET22 86.0 84.8 833 78.1
BLEURT 86.4 84.9 83.6 78.7
Table 9: COMET22 scores for each domain of en — zh WMT test sets.
WMT’22 WMT’23
conversation ecommerce news social manuals news user review
None 74.0 66.8  76.8 74.1 777 789 68.4
BICLEANER 75.2 70.8 779 75.6 77.4 79.5 70.5
COMETKIWI 76.4 712 782 75.7 775  80.1 70.6
BLEURTQE 75.9 71.5 783 76.0 775  79.7 71.0

Table 10: COMET22 scores for each domain of zh — en WMT test sets.

WMT’22
conversation ecommerce news  social
None 88.1 875 864 80.6
BICLEANER 88.6 87.7 86.5 81.0
COMETKIWI 89.2 87.9 87.3 81.9
BLEURTQE 89.3 88.6 87.7 82.5

Table 11: COMET22 scores for each domain of en — ja WMT test sets.

WMT’22
conversation ecommerce news  social
None 77.5 83.0 752 74.9
BICLEANER 77.0 83.1 77.1 75.2
COMETKIWI 77.4 84.1 77.8 75.4
BLEURTQE 78.2 839 783 75.5

Table 12: COMET22 scores for each domain of ja — en WMT test sets.
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WMT’22 (dev) WMT’19 WMT’23
Filter COMET22  BLEURT BLEU CHRF  COMET22 BLEURT BLEU CHRF  COMET22 BLEURT BLEU CHRF
None 84.5 734 323 574 84.6 73.1 41.1 64.8 83.3 722 374 612
Random 84.2 73.1 320 57.1 84.3 729 405 644 83.5 722 382 621
BICLEANER 84.2 73.0 320 572 84.8 734 413 655 84.0 73.1 389 635
COMETKIWI 84.6 736 325 575 85.1 740 41.8 65.7 84.6 73.8 40.6 65.0
BLEURTQE 84.8 737 323 574 85.2 740 414 653 84.6 739 399 642
IWSLT 21 IWSLT’23
Filter COMET22  BLEURT BLEU CHRF COMET22 BLEURT BLEU  CHRF
None 84.2 732 278 527 874 791 472 724
Random 84.1 73.0 273 525 87.2 785 456 712
BICLEANER 84.1 73.0 27.5 525 87.3 79.0 469 72.1
COMETKIWI 84.4 73.3 280 53.0 87.3 79.0 466 719
BLEURTQE 84.4 733 28,0 53.0 87.3 790 47.1 722

Table 13: Full results for German — English. The comerkiwi and BLeurtQE results for IWSLT 21 are identical due to

rounding.
WMT’22 (dev) WMT’19 WMT’23
Filter COMET22  BLEURT BLEU CHRF  COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU  CHRF
None 86.2 76.7 359 62.6 86.0 75.7  43.1 67.0 81.8 70.1 382 61.6
Random 86.0 76.5 35.1 62.2 85.5 75.0 424  66.5 80.8 68.9 364 61.0
BICLEANER 86.7 77.5 364 63.1 86.4 762 429 672 82.2 705 384 623
COMETKIWI 86.9 77.6 362 63.0 86.7 764 44.0 68.0 82.9 719 409 659
BLEURTQE 87.2 78.0 36.7 63.3 86.7 76.5 42.1 66.8 83.5 724 409 655
IWSLT 21 IWSLT 23
Filter COMET22  BLEURT BLEU CHRF  COMET22 BLEURT BLEU CHRF
None 83.2 73.0 232 56.6 84.5 76.5 458 722
Random 82.8 72.8 22.8 56.3 84.2 762 449 T71.7
BICLEANER 83.3 73.1  23.1 56.7 84.9 76.8 452 719
COMETKIWI 83.6 735 232 569 84.8 76.6 459 724
BLEURTQE 83.9 740 239 572 85.1 76.8 45.6 72.0
Table 14: Full results for English — German.
WMT’22 (dev) WMT’23 IWSLT’23
Filter COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF
None 85.6 645 222 314 82.3 583 19.0 28.9 86.9 68.1 40.5 48.1
Random 84.5 62.8 21.0 303 80.7 555 172 272 85.8 65.8 357 436
BICLEANER 86.0 649 219 31.5 83.2 59.2  19.1 29.0 87.2 68.2 392 47.1
COMETKIWI 86.6 65.5 227 32.1 83.7 60.0 193 295 87.9 69.3 413 48.6
BLEURTQE 87.0 66.1 22.7 322 84.0 60.0 195 295 87.4 68.1 38.8 46.5
Table 15: Full results for English — Japanese.
WMT’22 (dev) WMT’23 IWSLT’23
Filter COMET22  BLEURT BLEU CHRF  COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU  CHRF
None 77.6 62.6 18.1 425 75.9 622 16.0 41.6 85.5 734 305 622
Random 75.9 60.8 16.1 40.8 75.0 61.0 15.0 40.7 84.6 719 274 599
BICLEANER 78.1 63.6 18.2 443 77.4 633 172 442 85.0 722 284 61.0
COMETKIWI 78.7 64.1 18.8 446 78.0 64.0 16.6 44.1 85.0 72.6 282 60.8
BLEURTQE 79.0 644 19.0 452 78.2 643 174 44.7 85.1 72.8 29.6 61.7

Table 16: Full results for Japanese — English.
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WMT’22 (dev) WMT’23
COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF
None 81.2 658 377 335 79.7 64.8 434 390
Random 80.2 64.5 36.6 32.7 79.3 643 416 373
BICLEANER 81.7 66.6 37.0 33.0 80.3 657 424 37.6
COMETKIWI 83.0 68.0 382 34.0 82.5 68.2 44.0 40.1
BLEURTQE 834 68.5 38.7 344 82.2 67.7 436 389

WMT’19 IWSLT’ 23
COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF
None 77.6 594 31.1 274 84.2 722 525 47.1
Random 77.2 59.1 307 275 82.1 693 476 419
BICLEANER 78.4 60.4 31.1 27.5 83.3 70.7 479 423
COMETKIWI 80.1 62.2 321 283 84.1 712 479 422
BLEURTQE 79.9 619 31.7 28.1 84.1 71.1 473 422

Table 17: Full results for English — Chinese.

WMT’22 (dev) WMT’23
COMET22  BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF
None 72.8 595 174 462 74.7 61.0 18.8 449
Random 72.2 588 169 46.3 74.2 60.2 185 449
BICLEANER 74.8 609 17.1 47.6 75.7 61.5 19.1 458
COMETKIWI 75.2 614 179 485 76.0 61.6 19.2 46.2
BLEURTQE 754 61.7 177 48.1 76.0 619 186 457

WMT’ 19 IWSLT’23
COMET22 BLEURT BLEU CHRF COMET22 BLEURT BLEU CHRF
None 78.3 65.6 237 536 84.9 745 333 632
Random 78.1 650 232 532 84.1 73.8 31.7 621
BICLEANER 79.6 66.6 239 547 84.2 739 326 624
COMETKIWI 80.0 67.0 2477 555 84.5 739 30.8 61.6
BLEURTQE 79.9 67.2 237 549 84.8 745 32.1 625

Table 18: Full results for Chinese — English.
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