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Abstract

Position-based token-mixing approaches, such
as FNet and MLPMixer, have shown to be ex-
citing attention alternatives for computer vision
and natural language understanding. The mo-
tivation is usually to remove redundant opera-
tions for higher efficiency on consumer GPUs
while maintaining Transformer quality. On the
hardware side, research on memristive crossbar
arrays shows the possibility of efficiency gains
up to two orders of magnitude by performing
in-memory computation with weights stored on
device. While it is impossible to store dynamic
attention weights based on token-token interac-
tions on device, position-based weights repre-
sent a concrete alternative if they only lead to
minimal degradation. In this paper, we propose
position-based attention as a variant of multi-
head attention where the attention weights are
computed from position representations. A
naive replacement of token vectors with po-
sition vectors in self-attention results in a sig-
nificant loss in translation quality, which can be
recovered by using relative position represen-
tations and a gating mechanism. We show ana-
lytically that this gating mechanism introduces
some form of word dependency and validate its
effectiveness experimentally under various con-
ditions. The resulting network, rPosNet, outper-
forms previous position-based approaches and
matches the quality of the Transformer with rel-
ative position embedding while requiring 20%
less attention parameters after training.1

1 Introduction

The Transformer (Vaswani et al., 2017) revolution-
ized the field of neural machine translation be-
fore its wide adoption in numerous other tasks
(Dong et al., 2018; Devlin et al., 2019; Chen
et al., 2021; Dosovitskiy et al., 2021). Using self-
attention (Vaswani et al., 2017), the Transformer
computes high-level representations for each token

1Code available at https://github.com/apptek/
posnet-position_based_attention

as a weighted sum of the entire sequence, where
the weights depend on the pairwise content inter-
actions. However, recent work argues that results
similar to the Transformer can also be achieved
by modeling self-attention weights based on po-
sitional instead of content information (Wu et al.,
2019; You et al., 2020; Tolstikhin et al., 2021; Liu
et al., 2021; Lee-Thorp et al., 2022). Often, these
position-based methods are used with some form
of gating mechanism that precedes or wraps the
token-mixing operation (Wu et al., 2019; Liu et al.,
2021; Kim et al., 2023).

Position-based self-attention alternatives often
speed up the computation on commercial comput-
ing devices like GPU, but they can become more
attractive from the perspective of using memristive
crossbar arrays (Chua, 1971; Strukov et al., 2008).
Recent advances in analog in-memory computation
with memristive crossbar arrays have shown im-
pressive efficiency improvements in the inference
of deep learning models (Hu et al., 2018; Wang
et al., 2019; Kataeva et al., 2019; Yao et al., 2020;
Xue et al., 2021), up to 110 times better energy
efficiency and 30 times better performance den-
sity compared to a Tesla V100 GPU (Yao et al.,
2020). However, such efficiency is obtained by
storing weights of matrix-vector multiplications in
the device rather than calculating them on the fly,
which excludes the possibility of using attention to
compute the weight matrix.

With the goal of finding self-attention alterna-
tives for machine translation that can be more easily
used with memristive crossbar arrays, we compare
existing position-based approaches and observe a
significant quality loss when they use no form of
gating. Additionally, by scoring with a diverse
set of metrics, we show that, even with gating, no
existing approach can consistently match Trans-
former results. While the role of gating to guide
the information flow of neural networks is known
(Srivastava et al., 2015; Dauphin et al., 2017), its

https://github.com/apptek/posnet-position_based_attention
https://github.com/apptek/posnet-position_based_attention


508

importance for the performance of position-based
approaches has yet to be explored.

In this paper, we propose aPosNet and rPosNet,
two position-based networks that leverage gating
and compute self-attention weights based on the
interactions of absolute and relative position rep-
resentations. Both differ slightly from the Trans-
former baseline with relative position embeddings
(Shaw et al., 2018), which enables us to deliver
insights into gating and its dependency on position
information. In summary, we provide the following
contributions:

• Analytically, we derive that wrapping the
weighted sum of tokens with a gating mech-
anism introduces latent content-dependent
token-mixing weights (Section 3).

• We provide an inference-time matrix pre-
computation for positional attention that can
be easily stored in device (Section 4).

• rPosNet outperforms existing position-based
methods and performs on par with the Trans-
former with relative position embeddings
while saving 20% of the self-attention param-
eters (Section 6).

• We show that increasing the expressiveness
of token-mixing weights reduces the useful-
ness of gating, coherently with the idea that
it enables content-based interactions (Section
7.1).

• We observe experimentally that rPosNet is
less effective when used in cross-attention.
Our gating reformulation suggests one prob-
able reason, but we leave detailed investiga-
tions for future work (Section 7.2).

2 Background

Neural machine translation is typically modeled
with an encoder-decoder sequence-to-sequence
(Sutskever et al., 2014) Transformer, which mainly
consists of multi-head attention and feed-forward
sub-layers. In the following, we introduce our nota-
tion, position-based token-mixing alternatives and
the gating mechanism commonly used in modern
architectures.

2.1 Multi-head attention
Given a source sequence representation x P RMˆD

and target sequence representation y P RNˆD, the

multi-head attention mechanism (Vaswani et al.,
2017) mixes the elements in x for every element
in y. If y and x refer to the same sequence, it
is called self-attention. The multi-head concept
derives from performing the following operations
on H parallel splits of the feature dimension D. In
this work, we drop the head indices for simplicity
of notation. To calculate the unnormalized mixing
weight, referred to as attention energy, of yn and
xm, those are projected into query and key and
combined using the dot product:

α̂nm :“
pWQynqpWKxmqJ

?
D

. (1)

Since α̂nm is computed from token contents, we
say that attention captures token-token interactions.
The attention weight is then calculated by the soft-
max normalization of the attention energy:

αnm :“
exp α̂nm

ř

m1 exp α̂nm1

, (2)

and used as the token-mixing weight in the
weighted sum over projected input tokens x, de-
noted value vectors:

cn :“
ÿ

m

αnm ¨ pW V xmq. (3)

We will refer to the result cn as context vector.
Finally, the context vectors of each head are con-
catenated and mixed with a linear projection, called
output projection.

2.2 Position-based token mixing

We briefly overview how existing position-based
token-mixing approaches propose to modify the
attention weights and provide the corresponding
Equations in Appendix A for comparison.

FNet Proposed for language understanding, FNet
(Lee-Thorp et al., 2022) applies a 2D Fourier trans-
form over the spatial and feature dimension of x.
However, this formulation performed poorly in pre-
liminary experiments, which is why our FNet im-
plementation, denoted FourierNet, applies a 1D
Fourier transform along the spatial dimension and
employs value and output projections. We will
show in our results that, despite its claimed good
quality for natural language understanding, the
translation quality achieved by FourierNet is sig-
nificantly lower than Transformer.
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Figure 1: Flowchart representation of (a) self-attention, (b) gated absolute position-based attention (aPosNet), and
(c) gated relative position-based attention (rPosNet). While self-attention provides word and position information to
queries (Q) and keys (K), we omit word information to calculate the attention weights of PosNet. In rPosNet, we
model relative positions using relative position representations (D). In addition, we employ the gating mechanism
presented in Section 2.3, which applies GeLU activation and layer normalization on the values (V) and elementwise
multiplies the context vector (C) with the GeLU activated gate (G) resulting in the gated context vector (Ĉ).

GaussianNet Proposed for machine translation,
You et al. (2020) hardcode self-attention weights
as a Gaussian distribution. They report similar per-
formance to the Transformer when GaussianNet is
applied for self-attention but a significant degrada-
tion if extended to cross-attention.

LinearNet Tolstikhin et al. (2021) propose mix-
ing tokens with a learnable spatial projection, ef-
fectively representing α. It has been proposed, to-
gether with other architecture changes, for image
classification and natural language understanding
with minor degradations to the Transformer.

LightConv For machine translation and other
tasks, Wu et al. (2019) introduce a lightweight form
of depthwise convolution, which shares the kernel
weights W across the feature dimension of a head
and the outputs while additionally softmax normal-
izing them.

gLinearNet Liu et al. (2021) combine the spatial
projection of LinearNet with the gating mechanism
of Section 2.3. They propose their architecture for
image classification and masked language model-
ing and report significant improvements over Tol-
stikhin et al. (2021).

2.3 Gating mechanisms

Various formulations of gating mechanisms have
been proposed to control the information flow
in neural networks (Hochreiter and Schmidhuber,
1997; Cho et al., 2014; Srivastava et al., 2015;
van den Oord et al., 2016; Dauphin et al., 2017).
They all have in common an elementwise multipli-
cation between two vectors where one, the gate, is
bounded in the r0, 1s interval. The gating mecha-
nism we consider here has been proven effective
with position-based token-mixing approaches (Liu
et al., 2021; Kim et al., 2023) and differs from other
gating mechanisms in that the gate is GeLU acti-
vated (Hendrycks and Gimpel, 2016) and thus only
lower bounded. This gating mechanism modifies
the weighted sum of Equation 3 by applying layer
normalization (Ba et al., 2016) on the value vector
vm “ W V xm and elementwise multiplying the
context vector with the gate gn “ σgpWGynq:

ĉn :“
”

ÿ

m

αnm ¨ Norm
`

σgpvmq
˘

ı

d gn, (4)

where σg refers to the GeLU function and ĉn to the
gated context vector. In general, gating can be ap-
plied with any formulation of α. However, we will
show experimentally in Section 7.1 that its benefits
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strongly depend on the information incorporated
within α.

3 Reformulating the Gating Mechanism

To better understand the implications of gating,
we reformulate Equation 4. We omit layer nor-
malization for simplicity and will show in the Ap-
pendix B that the general reformulation is unaf-
fected if we apply layer normalization on vm. Ad-
ditionally, we leverage the GeLU approximation
σgpvmq « vmσsp1.702vmq, where σs refers to the
Sigmoid function, and rewrite Equation 4 as

ĉn «
ÿ

m

αnmβnm d vm. (5)

Equation 5 shows that gating the context vector
introduces the latent weights βnm P RD:

βnm “ gn d σsp1.702vmq, (6)

which consists of the two independent factors
β1
n “ gn and β1

m “ σsp1.702vmq. While the mul-
tiplication of β1

n and β1
m, in general, allows for

token-token interactions, the independence of these
factors poses a limitation: for a given query token
yn, the ratio between the weights assigned to xm
and to xm1 is independent of yn:

βnm
βnm1

“
β1
m

β1
m1

. (7)

In other words, the ratios of token-mixing weights
for a query yn as computed by β are predetermined
by the ratios across β1

1...M . While we show in Sec-
tion 6 that this limitation is not problematic for
self-attention, it may be part of the reason gating
and relative position-based attention are not effec-
tive in cross-attention (see Section 7.2).

4 Position-based Attention

In this Section, we propose position-based atten-
tion, which determines the token-mixing weight
connecting tokens xm and yn solely based on the
position-position interactions between n and m.
We pair position-based attention with the gating
mechanism of Section 2.3.

4.1 Absolute position-based attention
In absolute position-based attention we compute
the attention energy as the dot product between the
two projected position embeddings ñ and m̃:

α̂nm :“
pWQñqpWKm̃qJ

?
Dh

. (8)

While ñ and m̃ are shared across all layers, WQ

and WK are layer-specific. We refer to the combi-
nation of Equation 8 and the gating mechanism of
Section 2.3 with aPosNet.

Pre-computing the attention energies The
query and key inputs ñ and m̃ are independent
of the word representations yn and xm and are
constant after training. Since the attention energy
values α̂nm only depend on ñ and m̃, we can
pre-compute α̂ and obtain a matrix of the form
pH ˆ N ˆ Mq that can be used during inference.
In the following theoretical complexity discussions
we set N “ M for simplicity of notation.

Theoretical complexity Apart from the gating
overhead, aPosNet has similar theoretical complex-
ity as attention. However, by pre-computing α̂, we
can skip the dot-product and key query projections,
reducing2 the number of parameters from 5D2 to
HN2 ` 3D2 and the number of operations from
2N2D ` 5ND2 to N2D ` 3ND2. We compare
theoretical complexities in Appendix C.

Relation to gLinearNet With the pre-computed
attention energy matrix, aPosNet becomes similar
to gLinearNet except that α of gLinearNet is not
normalized and has been trained directly.

4.2 Relative position-based attention
To model position interactions with relative
position-based attention, we borrow the relative po-
sition representations d̃nm from Shaw et al. (2018),
which we use in the dot product with the projected
position embedding ñ:

α̂nm :“
pWQñqpd̃nmqJ

?
Dh

. (9)

Similarly to Shaw et al. (2018), the distance em-
bedding d̃ is clipped to a maximum unidirectional
context size K:

d̃nm :“ Embeddingrel

´

clip
`

tγnu ´ m,K
˘

¯

.

(10)

However, in contrast to Shaw et al. (2018), we
extend relative position-based self-attention to be
compatible with cross-attention by multiplying n
with the length ratio γ :“ M

N which we determine
similar to You et al. (2020) by measuring the aver-
age length ratio on the training set. We refer to the

2Typically in sentence-level machine translation we have
N ! D.
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Table 1: Dataset statistics.

Dataset
Vocab. Size Train

Pairs
Test
Pairs

Valid
Pairs

Src Tgt

DEÑEN 10k 160k 6750 7283
ENÑDE 44k 4M 3003 40k
ENÑFR 46k 36M 3003 27k
ENÑZH 32k 45k 17M 2001 13k

combination of Equation 9 and the gating mecha-
nism of Section 2.3 with rPosNet. In Figure 1, we
illustrate the operations performed by aPosNet and
rPosNet in comparison to multi-head self-attention.

Pre-computing the attention energies Similar
to aPosNet, we can pre-compute α̂ of rPosNet af-
ter training, which summarizes the interactions
between query and relative position representa-
tions into a matrix of shape pH ˆ K̂ ˆ Nq, where
K̂ “ 2K ` 1. While the attention energy matrix
of aPosNet grows quadratically with the length of
the sequence, rPosNet’s matrix grows linearly due
to the constant size K̂ of the relative position rep-
resentations.

Theoretical complexity Pre-computing α̂ after
training reduces the number of parameters from
K̂D ` 4D2 to HK̂N ` 3D2 and operations from
K̂ND`N2D`4ND2 to N2D`3ND2. Inserting
the Base model configuration of Section 5 (D “

2048, K̂ “ 33) and the maximum sentence length
N “ 128, this pre-computation of α̂ saves 23% of
attention parameters.

Relation to LightConv After pre-computing α̂,
rPosNet differs from LightConv in that rPosNet’s
weights have global context and depend also on
the absolute query position, and as such are not
shared across yn. We provide an ablation study in
Section 7.3 to understand the importance of these
differences.

5 Experimental Setup

5.1 Datasets & evaluation
We perform our comparison on four datasets of
varying sizes: IWSLT14 German-English (Fed-
erico et al., 2014), WMT14 English-{German,
French} (Bojar et al., 2014), and WMT18 English-
Chinese (Bojar et al., 2018). We split each
dataset into train and validation pairs and eval-
uate DEÑEN models on the test sets TED-

{dev10,dev12, test10, tst11, tst12}, EN-{DE, FR}
models on newstest14 and ENÑZH models on new-
stest17. An overview of the dataset statistics is
shown in Table 1. We preprocess all datasets using
Byte Pair Encoding (BPE) (Sennrich et al., 2016)
and lowercase the text for the DEÑEN direction.

We report BLEU (Papineni et al., 2002), BLEURT

(Sellam et al., 2020), and COMET (Rei et al., 2020)
for each evaluation. All scores are calculated on
detokenized text. To calculate BLEU scores, we
use sacreBLEU3 and its internal tokenizations45.
For BLEURT and COMET, we use the official im-
plementations67 and the models BLEURT-20 and
wmt20-comet-da, respectively. To summarize re-
sults, we will refer to the translation quality dif-
ference between two approaches as their relative
difference averaged across all metrics and datasets.

5.2 Model architectures

Our Base and Big Transformer architectures fol-
low the implementation of Vaswani et al. (2017),
whereas, for the Small models, we halve the feed-
forward dimension to 1024 and increase dropout
to 0.3. We compare position-based token-mixing
approaches by leveraging the respective formu-
lations instead of encoder/decoder self-attention
while leaving the rest of the Transformer architec-
ture unchanged. We make an exception for Fourier-
Net, which cannot be straightforwardly extended to
the decoder because it has an explicit dependency
on the sequence length. Instead, FourierNet uses
multi-head attention within decoder self-attention.

In preliminary experiments, we found that aPos-
Net works best with sinusoidal positional embed-
dings (Vaswani et al., 2017) and rPosNet with learn-
able embeddings (Gehring et al., 2017). All other
position-based token-mixing approaches use sinu-
soidal positional embeddings. Similar to Shaw et al.
(2018), our implementation of rPosNet and Light-
Conv use a unidirectional context window K “ 16
for the Base and K “ 8 for the Big model.

5.3 Training setup

Our training setup closely follows the configura-
tion of Vaswani et al. (2017). Similarly, we use

3https://github.com/mjpost/sacrebleu
4SacreBLEU signature for EN, FR, DE:

nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
5SacreBLEU signature for ZH:

nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.0.0
6https://github.com/google-research/

bleurt
7https://github.com/Unbabel/COMET

https://github.com/mjpost/sacrebleu
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
https://github.com/Unbabel/COMET
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Table 2: Base model results on ENÑDE, ENÑFR, and ENÑZH. We calculate statistical significance (p-value
ď 0.05) using paired bootstrap resampling with respect to the Transformer (:) and to Shaw et al. (2018) (;). Note
that this scoring differs from Vaswani et al. (2017) in that they split German compound words, which usually
increases the BLEU score, and from You et al. (2020) in that we use sacreBLEU’s default tokenizer, not ’intl’.
We ensured that our baseline system and reimplementation of You et al. (2020) match in BLEU when evaluating
similarly.

Model
Params ENÑDE ENÑFR ENÑZH

(ENÑDE) BLEU BLEURT COMET BLEU BLEURT COMET BLEU BLEURT COMET

Transformer 66.5M 26.3 71.1 47.6 37.8 69.0 61.1 33.8 64.3 42.5
Shaw et al. (2018) 66.7M 26.3 71.4 48.6 37.8 69.2 61.6 34.0 64.6 43.5

FourierNet 63.4M 22.8:; 66.0:; 31.8:; 34.9:; 64.2:; 49.3:; 31.5:; 61.6:; 34.9:;

GaussianNet 60.2M 25.3:; 68.1:; 39.5:; 36.7:; 66.9:; 55.7:; 32.6:; 62.6:; 36.8:;

LinearNet 61.8M 25.3:; 69.8:; 44.3:; 37.0:; 67.7:; 58.2:; 33.1:; 63.3:; 40.2:;

LightConv 63.4M 26.0:; 70.6:; 46.7:; 37.4:; 68.6:; 60.3:; 33.0:; 63.5:; 41.1:;

gLinearNet 65.0M 26.1 70.8; 46.7; 37.8 69.1 61.3 33.5; 64.0; 42.4;

aPosNet 65.0M 25.9:; 70.6:; 46.1:; 37.7 69.0 61.4 33.6; 63.7; 42.2;

rPosNet 63.9M 26.6 71.4: 48.6 37.9 69.4: 61.8 33.8 64.2 43.1

Table 3: Big model results on ENÑDE and Small model results on DEÑEN.

Model
ENÑDE DEÑEN

Params BLEU BLEURT COMET Params BLEU BLEURT COMET

Transformer 221M 27.1 72.3 50.4 36.8M 35.0 69.3 37.6
Shaw et al. (2018) 221M 27.3 72.7: 51.5: 37.0M 35.4: 69.7: 38.8:

FourierNet 208M 24.0:; 67.6:; 36.5:; 33.6M 32.5:; 66.9:; 28.2:;

GaussianNet 196M 26.3:; 69.4:; 42.3:; 30.4M 34.3:; 68.4:; 34.1:;

LinearNet 199M 26.6:; 71.3:; 48.0:; 32.0M 34.0:; 68.3:; 33.9:;

LightConv 209M 26.8:; 71.7:; 49.1:; 33.6M 34.4:; 68.9:; 35.5:;

gLinearNet 212M 27.1 72.2; 49.9; 35.2M 34.5:; 69.0:; 36.3:;

aPosNet 212M 26.8:; 71.4:; 47.7:; 35.2M 34.2:; 68.5:; 34.7:;

rPosNet 210M 27.3 72.2; 50.4; 34.1M 35.1; 69.5; 38.2;

the Adam optimizer (Kingma and Ba, 2014) and
a warmup learning rate schedule with 4000 steps.
We group batches by sentence length and train the
Small models for 30k steps, the Base models for
150k, and the Big models for 300k.

The final model is an average over the best check-
point and its following if there are enough check-
points to average, or else we take an average over
the last checkpoints. We determine the best check-
point by its perplexity on the validation set. For
DEÑEN, we consistently average 30 checkpoints
with a checkpoint period of 300 steps; for the Base
models, we average 7 checkpoints with 1000 steps
each; for the Big models, 20 checkpoints with 600
steps each.

The Small models use an effective batch size
of approximately 16000 target tokens while the

Base and Big models accumulate approximately
27000 target tokens per step. The source and target
sentence lengths are restricted to 128 tokens. We
use beam search with a beam size of 12 for all
models. All models in this work are implemented
in PyTorch (Paszke et al., 2019). The Small models
are trained on a single 2080 TI graphics card, the
Base models on two, and the Big models on four.

6 Results

We compare translation quality of the Base model
configurations in Table 2, and Small and Big model
configurations in Table 3.

Gated position-based attention In all experi-
ments, we observe rPosNet performing as well or
slightly better than the Transformer with an av-
erage translation quality increase of 0.7% across
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all test sets and metrics. It shows that the self-
attention weights of rPosNet, consisting of content-
dependent β and position-dependent α, achieve
sufficient expressiveness for machine translation.
aPosNet cannot match this expressiveness and un-
derperforms the Transformer with an average rel-
ative degradation of 1.8%. In the Small setup on
DEÑEN, this reaches an absolute degradation of
2.9 points in COMET and 0.8 points in BLEURT.
The significant difference between aPosNet and
rPosNet highlights the importance of relative posi-
tion information in α.

The results of gLinearNet and LightConv further
emphasize the strong modeling capabilities of abso-
lute (query) and relative position (key) interactions
in rPosNet. In comparison, token-mixing weights
in gLinearNet solely model absolute position in-
teractions and in LightConv relative position inter-
actions. Both cannot match rPosNet’s translation
quality, with gLinearNet on average lacking behind
by 1.3% relative and LightConv by 2.4%. Note that
in contrast to Wu et al. (2019), we do not match pa-
rameters between LightConv and the Transformer.
Most prominent in the Base setting on ENÑDE,
rPosNet outperforms gLinearNet by 0.6 BLEURT

and 1.9 COMET points. While aPosNet cannot
match Transformer results, rPosNet consistently
outperforms other position-based methods and is
on par with Shaw et al. (2018) and the Transformer
across most model sizes and data conditions.

Hard-coded token-mixing weights Our results
show that hard coding encoder self-attention
weights as the twiddle factors of the Fourier trans-
form (FourierNet) leads to poor results for ma-
chine translation and, on average across all datasets
and metrics, degrades translation quality relative
to the Transformer by 13.2%. In GaussianNet,
weights are manually designed to follow the nor-
mal distribution of Transformer self-attention pat-
terns, which significantly reduces the degradation
to 6.3%. However, the translation quality is still
considerably worse than LinearNet’s, the weakest
model with trainable self-attention weights. The
difference between LinearNet and GaussianNet is
negligible in BLEU but made visible with BLEURT

and COMET, which correlate better with human
judgment (Kocmi et al., 2021). In particular, we
confirmed by manually analyzing a sample of trans-
lations (see Appendix E) that the semantic metrics
discriminate better between translation hypotheses
when they all have little overlap with the references

aPosNet
rPosNet

Rel.-Attention
Transformer
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41
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The Dependency Between
Query-Key Information and Gating on ENÑDE
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Figure 2: Approaches depicted on the x-axis differ in
the provided information to queries and keys. On the
y-axis we depict COMET, which is the most accurate
metric according to Kocmi et al. (2021), and provide
the full Table showing BLEU, BLEURT, and COMET
in Appendix D. If position information is provided to
queries and keys, gating has a significant positive impact
on translation quality that diminishes with the usage of
content information.

or changing a single word alters the meaning of the
sentence. Thus, approaches with learnable token-
mixing weights, such as rPosNet, are considerably
better than hard-coded approaches.

7 Analysis

7.1 The impact of gating and query-key
information

The gating mechanism is known to guide the
learning of cross-token patterns (Tu et al., 2017;
Dauphin et al., 2017). In Section 3, we mathe-
matically showed that by gating the context vector,
these patterns are captured within the latent token-
mixing weights β. Since the products of β and
α form the actual token-mixing weights, we ana-
lyze in this Section how content information in α
impacts the usefulness of gating. For that, we com-
pare the utilization of position versus content infor-
mation in the query and key input of self-attention,
with and without gating. The results are visualized
in Figure 2, where we depict COMET scores on the
y-axis and the query and key input on the x-axis.

The formulation of position-based attention with-
out gating primarily8 differs from the Transformer
in the provided information within queries and

8The position embeddings may also differ between ap-
proaches.
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keys. Relative attention uses the relative position
representations of Shaw et al. (2018)’s approach
but without the query-key dot product of multi-
head attention. Thus, relative attention differs from
rPosNet in that content information is provided
to the queries and is equal to dynamic convolu-
tions (Wu et al., 2019) with global context (Chang
et al., 2021). In total, the x-axis of Figure 2 depicts
position-position interactions for aPosNet and rPos-
Net, token-position interactions for relative atten-
tion, token-token interactions for the Transformer,
and token-token + token-position interactions for
Shaw et al. (2018). We sort these approaches on
the x-axis in order of their attention weight expres-
siveness.

Figure 2 shows that the gating mechanism of the
position-based attention approaches aPosNet and
rPosNet increases COMET by 3.5 points. On the
other hand, content-based approaches leverage gat-
ing with a lower absolute COMET increase of 2.6
points for relative attention, 2 points for the Trans-
former and only 0.9 points for Shaw et al. (2018).
Thus, gating is less helpful if α can capture content-
dependent patterns, and increasing the expressive-
ness of those patterns diminishes the usefulness of
gating. Since gating introduces an additional pro-
jection matrix of size D2 per self-attention layer,
content-based mixing approaches may just leverage
the additional parameters, but we leave further in-
vestigation for future work. In contrast, approaches
that do not incorporate content information within
the attention weights can benefit from token-token
interactions captured in β. Additionally, the compa-
rable performance of rPosNet and relative attention
with gating suggests that gating makes the content
information within relative attention redundant for
translation quality.

7.2 Comparing the usage of rPosNet across
attention layers

While the aforementioned experiments concen-
trated on self-attention, we also consider cross-
attention in this Section and analyze how the us-
age of rPosNet affects translation quality compared
to multi-head attention. In Table 4, we depict
the translation quality on ENÑDE when combi-
nations of encoder self-attention (enc-self), de-
coder self-attention (dec-self), and decoder cross-
attention (dec-cross) employ multi-head attention
(✗) or rPosNet (✓). The model using rPosNet only
for cross-attention while all other layers employ

Table 4: A translation quality comparison of all combi-
nations in which encoder self-attention (enc-self), de-
coder self-attention (dec-self), and/or decoder cross-
attention (dec-cross) use either multi-head attention
(✗) or rPosNet (✓). We conduct the experiments on
ENÑDE and report BLEU, BLEURT, and COMET.

rPosNet Layers ENÑDE

enc-
self

dec-
self

dec-
cross BLEU BLEURT COMET

✗ ✗ ✗ 26.3 71.1 47.6

✓ ✗ ✗ 26.4 71.2 48.1
✗ ✓ ✗ 26.1 71.1 47.2
✗ ✗ ✓ 24.6 69.2 43.8

✓ ✓ ✗ 26.6 71.4 48.6
✓ ✗ ✓ 24.8 69.8 45.2
✗ ✓ ✓ 24.3 69.0 42.8

✓ ✓ ✓ 24.9 69.3 43.5

multi-head attention (row 4) significantly decreases
translation quality by 5.7% relative to the Trans-
former. The result suggests that content-dependent
patterns incorporated by β cannot sufficiently cap-
ture source-target token interactions. We hypoth-
esize that part of the reason is the inability of β
to express varying relations across source tokens
(see Section 3). While this may be a significant
limitation of gating, we leave the exploration of
this and other possible reasons to future work.

However, utilizing rPosNet within all self-
attention layers (row 8), so that rPosNet is the
only token-mixing method, does not lead to fur-
ther degradation of translation quality with a rela-
tive degradation to the Transformer of 5.5% (5.3%
relative in BLEU). Although the loss is substan-
tial, rPosNet improves upon You et al. (2020)’s
relative BLEU degradation of 12.3%9. Addition-
ally, Table 4 shows that using rPosNet within de-
coder self-attention is only beneficial if encoder
self-attention leverages rPosNet, whereas the us-
age within encoder self-attention always positively
impacts translation quality.

7.3 From LightConv to rPosNet

With the similarities between LightConv and rPos-
Net, we want to understand what features of rPos-
Net are responsible for its better translation quality.
While Wu et al. (2019) propose LightConv initially

9As reported by You et al. (2020)
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Table 5: Starting from LightConv and progressively
implementing the features of rPosNet.

Model Params
ENÑZH

BLEU BLEURT COMET

Light Convolution 101M 33.2 63.4 40.6
+ GLU [LightConv] 104M 33.0 63.5 41.1
+ GeLU Gating 104M 33.5 63.7 42.4
+ Global Context 104M 33.6 63.9 42.4
rPosNet 104M 33.8 64.2 43.1

with the GLU mechanism (Dauphin et al., 2017)
(see Equation 14), we differentiate between Light-
Conv with and without GLU since the effect of gat-
ing is a central component of our analysis. We start
with LightConv without GLU, denoted Light Con-
volution, and progressively implement the features
of rPosNet. In Table 5, we show the translation
quality on ENÑZH of the models leveraging the
respective position-based approach instead of self-
attention. Light Convolution (row 1) shows similar
translation quality to LightConv (row 2). Replacing
GLU gating with the gating mechanism of Section
2.3, denoted GeLU gating (row 3), increases trans-
lation quality noticeably by 0.5 points in BLEU, 0.2
points in BLEURT, and 1.3 points in COMET. Addi-
tionally, adding global context (row 4) by spreading
the outer kernel weights across the whole sequence
increases translation quality slightly by 0.1 BLEU

and 0.2 BLEURT (no improvement in COMET). The
remaining difference to rPosNet (row 5) is the dif-
ferent training scheme and rPosNet’s unshared ker-
nel weights across query positions. Together they
add additional 0.2 points in BLEU, 0.3 in BLEURT,
and 0.7 in COMET. The results show that all dif-
ferences between LightConv and rPosNet are re-
sponsible for their translation quality difference.
While the global context seems negligible for ma-
chine translation, GeLU gating, training scheme,
and unshared token-mixing weights are the most
important.

8 Related Work

The question of how to represent position and inte-
grate it into the Transformer architecture has been a
vast research field that we briefly want to overview
and connect to our approach. An extensive line
of research focuses on improving position embed-
dings (Kitaev et al., 2020; Liu et al., 2020; Kiyono
et al., 2021) and their integration into the word
vectors (Neishi and Yoshinaga, 2019; Wang et al.,

2020). This direction is mainly orthogonal to our
approach, and many ideas and methods can be
leveraged with position-based attention. We leave
these investigations for future work and restricted
to learnable (Gehring et al., 2017) and sinusoidal
(Vaswani et al., 2017) embeddings.

A different line of research focuses on integrat-
ing position within the attention mechanism (Shaw
et al., 2018; Dai et al., 2019; Dufter et al., 2020;
Huang et al., 2020; Raffel et al., 2020; Ke et al.,
2020; He et al., 2021; Wu et al., 2021). They
all improve over Transformer models for various
tasks by modifying word and position interactions
within the attention matrix and introducing rela-
tive position representations as a scalar or vector.
While they still rely on content-dependent atten-
tion weights, they showed the importance of rela-
tive position representations, which we also used
in rPosNet. However, we are interested in study-
ing purely position-based self-attention approaches
and how they can perform at least on par with
the (content-based) Transformer. Additionally, we
compare with Shaw et al. (2018) as an upper bound
since it leverages token-token interactions and was
proposed for machine translation.

9 Conclusion

We have introduced the gated token-mixing ap-
proaches aPosNet and rPosNet in order to find
a high-quality self-attention alternative for ma-
chine translation whose attention weights can be
pre-computed at inference time. Although their
token-mixing weights are position-based, the gat-
ing mechanism introduces content dependency in
the form of latent weights β, as shown by our anal-
ysis. These weights capture token-token interac-
tions and are crucial for the results of rPosNet. In
our experiments, we have compared aPosNet and
rPosNet with existing position-based token-mixing
approaches and found that rPosNet outperforms all
the position-based alternatives and performs on par
with (Shaw et al., 2018) on most benchmarks while
saving more than 20% of the self-attention param-
eters. Moreover, the possibility of pre-computing
rPosNet’s token-mixing weights paves the way for
high-quality machine translation on specialized
hardware accelerators.

Limitations

The goal of this paper is to find alternatives for
self-attention with minimal or no quality loss that
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can pre-compute token-mixing weights at inference
time. We have compared numerous approaches
across many data conditions and model sizes to
show the validity of our results. However, we can
identify the following limitations in our work:

• rPosNet’s position-based attention is an ef-
fective replacement of Transformer’s self-
attention, but its usage in cross-attention leads
to quality loss;

• We did not have enough computational re-
sources to run our numerous experiments mul-
tiple times, so we relied on the consistent re-
sults we obtained across different conditions
and metrics.

• While our work is motivated by future use in
memristor-based devices, we have no experi-
ments in that specific hardware because i) it
is still experimental and hard to find, and ii)
our proposed models still contain operations
that cannot be performed naively in the analog
domain.

Acknowledgments

This work was partially supported by NeuroSys
which, as part of the initiative “Clusters4Future”,
is funded by the Federal Ministry of Education
and Research BMBF (03ZU1106DA). The work
reflects only the authors’ views and the funding
party is not responsible for any use that may be
made of the information it contains.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.
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A Formulas describing related
position-based token-mixing
approaches

In the following, we provide the formulas de-
scribing how the position-based token-mixing ap-
proaches from Section 2.2 formulate the context
vector.

FNet

cn :“ R
´

ÿ

m

exp
“

´ 2πj
n ¨ m

M

‰

¨ Fhpxmq

¯

(11)

GaussianNet

cn :“
1

σ
?
2π

ÿ

m

exp
”

´pm ´ µpnqq2

2σ2

ı

¨ pW V xmq

(12)

LinearNet

cn :“
ÿ

m

Wnm ¨ pW V xmq (13)

LightConv

cn :“
2K
ÿ

k“0

expWk
ř2K

k1“0 expWk1

¨ σGLUpW V xn`k´Kq

(14)

B Reformulating the gating mechanism
with layer normalization

Substituting zm “ σgpvmq we rewrite the gating
mechanism of Equation 4 as

ĉn :“
”

ÿ

m

αnm ¨ Normpzmq

ı

d gn. (15)

Similar to Section 3, we aim to rediscover the
weighted sum over vm. For this, we utilize the
definition of layer normalization:

Normpxq :“ a d rf1pxqx ´ f2pxqs ` b, (16)

Table 6: Comparing how different attention approaches
leverage gating.

Model Gating Params
ENÑDE

BLEU BLEURT COMET

Transformer ✗ 66.5M 26.3 71.1 47.6
✓ 69.7M 26.6 71.6 49.6

Shaw et al. (2018) ✗ 66.7M 26.3 71.4 48.6
✓ 69.9M 26.7 71.8 49.5

Rel. Self-Attention ✗ 63.6M 25.7 70.4 46.4
✓ 66.7M 26.5 71.3 49.0

aPosNet ✗ 61.8M 25.4 69.4 42.6
✓ 65.0M 25.9 70.6 46.1

rPosNet ✗ 60.8M 25.3 70.1 45.1
✓ 63.9M 26.6 71.4 48.6

with gain a P RD, bias b P RD, f1pxq “ 1?
σx

and
f2pxq “

µx?
σpxq

. The insertion into Equation 15

gives us:

ĉn « a d
ÿ

m

αnm f1pzmq ¨ gn d σspvmq
loooooooooooomoooooooooooon

βnmPRD

dvm

´ a d
ÿ

m

αnm ¨ f2pzmq ¨ gn `
ÿ

m

αnmb d gn.

(17)

Utilizing the normalization property
ř

m αnm “ 1
we can simplify Equation 17 to:

ĉn « a d
ÿ

m

αnmβnm d vm

` gn d

”

b ´ a
ÿ

m

αnmf2pzmq

ı

, (18)

with

βnm “ f1pzmq ¨ gn d σsp1.702vmq. (19)

Although Equation 18 assumes α to be normalized,
not normalizing α does not affect β and only adds a
context-dependent scale in front of b. All in all, the
Equations show that with or without layer normal-
ization, gating introduces the token-mixing weights
β.

C Theoretical complexity comparison

We compare theoretical complexities across
position-based token-mixing approaches, the Trans-
former, and Shaw et al. (2018) concerning the num-
ber of operations and parameters in Table 7.
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https://doi.org/10.18653/v1/2020.acl-main.687
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Table 7: We compare the theoretical complexity and number of parameters per attention layer. K̂ refers to the
bidirectional context size. With the formulation of position-based attention, the attention energies can be pre-
computed after training, resulting in different complexities between training and search.

Model
Parameters Operations

Train Search Train Search

Transformer 4D2 2N2D ` 4ND2

Shaw et al. (2018) K̂D ` 4D2 K̂ND ` 2N2D ` 4ND2

FNet 2D2 N logpNqD ` D logpDqN

GaussianNet 2D2 K̂ND ` 2ND2

LinearNet HN2 ` 2D2 N2D ` 2ND2

LightConv HK̂ ` 3D2 K̂ND ` 3ND2

gLinearNet HN2 ` 3D2 N2D ` 3ND2

aPosNet 5D2 HN2 ` 3D2 2N2D ` 5ND2 N2D ` 3ND2

rPosNet K̂D ` 4D2 HK̂N ` 3D2 K̂ND ` N2D ` 4ND2 N2D ` 3ND2

D Table: The impact of gating and
query-key information

By depicting COMET scores in Figure 2, we visual-
ized how the effectiveness of gating decreases with
increased token-mixing weight expressiveness. In
Table 6, we provide the full results with the number
of parameters, BLEU, BLEURT, and COMET.

E Example failure cases of BLEU

Throughout our analysis, we observed that BLEU

often disagrees with the semantic metrics BLEURT

and COMET. For example, the translation quality in
the Base configuration on ENÑDE of GaussianNet,
LinearNet, (see Table 2), aPosNet without gating,
and rPosNet without gating (see Table 6) is sim-
ilarly measured by BLEU but varies significantly
in BLEURT and COMET. We analyzed translation
samples of GaussianNet and LinearNet (see Ta-
ble 8) and observed that BLEU often falsely depicts
translation quality when hypotheses have little over-
lap with the reference or changing a single word
alters the meaning of the sentence. While the inac-
curacies of BLEU are already known (Kocmi et al.,
2021), we want to show exemplarily how BLEU

would have misled our analysis. Without using
BLEURT and COMET, we would have concluded
that aPosNet and rPosNet would be equally good
without gating and that the hard-coded weights of
GaussianNet are as good as the learnable weights
of LinearNet.
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Table 8: Example failure cases on ENÑDE in which BLEU depicts a misleading score. These inaccurate BLEU
scores are best visualized when comparing GaussianNet and LinearNet. Both models achieve the same corpus-level
BLEU score but differ significantly in BLEURT and COMET (see Table 2). The translations show that measuring
the syntactical overlap between the hypothesis and reference translation is not an accurate measure of translation
quality.

BLEU BLEURT COMET

Source Haigerloch: Focus on the Abendmahlskirche
Reference Haigerloch: Abendmahlskirche rückt in den Blickpunkt
LinearNet Haigerloch: Fokus auf die Abendmahlskirche 15.2 84.0 72.3
GaussianNet Haigerloch: Focus on the Abendmahlskirche 15.2 35.6 ´15.0

Source Does he know about phone hacking?
Reference Weiß er über das Telefon-Hacking Bescheid?
LinearNet Weiß er von Telefonhacking? 15.8 80.2 72.5
GaussianNet Kennt er über Telefon-Hacking? 17.0 38.2 8.8

Source The new season in the Falkenberg "Blue Velvet" club has begun.
Reference Die neue Saison in der Falkenberger Discothek "Blue Velvet" hat begonnen.
LinearNet Die neue Saison im Falkenberg "Blue Velvet" Club hat begonnen. 33.1 75.3 85.7
GaussianNet Die neue Saison im Falkenberg "Blue Velvet" hat begonnen. 53.7 72.2 74.5

Source Finally, let’s talk pumpkins.
Reference Aber kommen wir endlich zu den Kürbissen.
LinearNet Abschließend möchte ich noch auf die Kürbisse eingehen. 4.8 71.4 41.0
GaussianNet Schließlich, lassen Sie uns reden Kürbisse. 5.5 36.0 ´60.3

Source A combined English literature and language course will be scrapped.
Reference Der kombinierte Kurs aus englischer Literatur und Sprache wird abgeschafft.
LinearNet Eine kombinierte englische Literatur und Sprachkurs wird verschrottet. 9.6 60.8 44.0
GaussianNet A combined German literature and language course will be scrapped. 3.7 19.8 ´42.8

Source However, there was no sigh of relief to be heard from Ludwigsburg.
Reference Ein erstes Aufatmen war aus Ludwigsburg dennoch nicht zu vernehmen.
LinearNet Von Ludwigsburg war jedoch kein Seufzer der Erleichterung zu hören. 5.3 76.7 46.7
GaussianNet Es gab jedoch keinen Seufzer der Erleichterung, von Ludwigsburg gehört zu werden. 3.7 45.1 ´30.3

Source Sayings come from the Bible
Reference Sprichwörter kommen aus der Bibel
LinearNet Sprichwörter stammen aus der Bibel 42.7 90.3 108.0
GaussianNet Sayings kommen aus der Bibel 66.9 60.7 3.7

Source Uwe Link has an offer for anyone who wants to set off in a carriage.
Reference Wer dann mit der Kutsche vorfahren will, für den hat Uwe Link ein Angebot.
LinearNet Uwe Link hat ein Angebot für jeden, der in einer Kutsche starten will. 9.0 70.0 59.0
GaussianNet Uwe Link hat ein Angebot für jeden, der einen Wagen starten möchte. 8.5 46.3 ´10.0

Source Solicitors should uphold the highest standards of integrity
and should instil trust and confidence in the public.

Reference Anwälte müssen die höchsten Standards an Integrität aufrechterhalten
und in der Öffentlichkeit für Vertrauen und Zuversicht sorgen.

LinearNet Die Staatsanwälte sollten die höchsten Standards der Integrität wahren
und Vertrauen in die Öffentlichkeit schaffen.

10.9 77.9 67.4

GaussianNet Die Umweltschützer sollten die höchsten Standards der Integrität einhalten
und Vertrauen und Vertrauen in die Öffentlichkeit schaffen.

12.2 53.6 ´0.7


